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Definitions: Finite Fields Ingredients

We consider polynomials over the binary field, F2.

A polynomial f of degree m is called primitive if k = 2m − 1
is the smallest positive integer such that f divides xk + 1.

A shift-register sequence with characteristic polynomial
f(x) = xm +

∑m−1
i=0 cix

i is the sequence a = (a0, a1, . . .)
defined by the recurrence relation

an+m =
m−1∑
i=0

ciai+n, for n ≥ 0.

If f is primitive, the sequence has period 2m − 1.
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A shift-register sequence with characteristic polynomial
f(x) = xm +

∑m−1
i=0 cix

i is the sequence a = (a0, a1, . . .)
defined by the recurrence relation

an+m =
m−1∑
i=0

ciai+n, for n ≥ 0.

If f is primitive, the sequence has period 2m − 1.

For more information on primitive polynomials and shift-register
sequences see Golomb or Lidl and Niederreiter books.
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Definitions: Ortogonal Arrays

A subset C of Fn
2 is called an orthogonal array of strength t if

for any t-subset T = {i1, i2, . . . , it} of {1, 2, . . . , n} and any
t-tuple (b1, b2, . . . , bt) ∈ Ft

2, there exists exactly |C|/2t

elements c = (c1, c2, . . . , cn) of C such that cij = bj for all
1 ≤ j ≤ t.
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for any t-subset T = {i1, i2, . . . , it} of {1, 2, . . . , n} and any
t-tuple (b1, b2, . . . , bt) ∈ Ft

2, there exists exactly |C|/2t

elements c = (c1, c2, . . . , cn) of C such that cij = bj for all
1 ≤ j ≤ t.

From the definition, if C is an orthogonal array of strength t, then
it is also an orthogonal array of strength s for all 1 ≤ s ≤ t.
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Previous Results

The next theorem relates orthogonal arrays with codes.

Theorem 1: Delsarte 1973

Let C be a linear code over Fq. Then, C is an orthogonal array of
maximal strength t if and only if C⊥, its dual code, has minimum
weight t + 1.

Let Cf
n be the set of all subintervals of the shift-register sequence

with length n generated by f , together with the zero vector.

Since (Cf
2m−1)

⊥ is the Hamming code, then by Theorem 1, Cf
n is

an orthogonal array of strength 2, for all 2 ≤ n ≤ 2m − 1.
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Previous Results (cont.)

The dual code of the code generated by shift register sequences can
be described in terms of multiples of its characteristic polynomial.

Theorem 2: Munemasa 1998

Let f be a primitive polynomial of degree m over F2 and let
2 ≤ n ≤ 2m − 1. Let Cf

n be the set of all subintervals of the
shift-register sequence with length n generated by f , together with
the zero vector of length n. The dual code of Cf

n is given by

(Cf
n)⊥ = {(b1, . . . , bn) :

n−1∑
i=0

bi+1x
i is divisible by f}.
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Previous Results (cont.)

Munemasa considers the case when the polynomial f generating
the sequence is a trinomial.

Theorem 3: Munemasa 1998

Let f(x) = xm + xl + 1 be a trinomial over F2 such that
gcd(m, l) = 1. If g is a trinomial of degree at most 2m that is
divisible by f , then g(x) = xdeg g−mf(x), g(x) = f(x)2, or
g(x) = x5 + x4 + 1 = (x2 + x + 1)(x3 + x + 1) or, its reciprocal,
g(x) = x5 + x + 1 = (x2 + x + 1)(x3 + x2 + 1).

Using Theorems 1, 2 and 3, Munemasa concludes that Cf
n

corresponds to an orthogonal array of strength 2 that has a
property very close to being an orthogonal array of strength 3.
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Pentanomials over F2

We consider shift-register sequence with length n generated
by a pentanomial f over F2 (that is, a polynomial with 5
nonzero terms) of degree m.

We show that no trinomial of degree at most 2m is divisible
by the given pentanomial f , provided that f is not in a finite
list of exceptions that we give.

Using Theorem 1 (Delsarte) and Theorem 2 (Munemasa) we

get that Cf
n , the set of all subintervals of the sequence of

length n, corresponds to an orthogonal array of strength 3.
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Why Pentanomials?

Primitive trinomials over F2 do not exist for every degree (for
example, see von zur Gathen 2003 and Seroussi 1998).

There exists some empirical evidence that irreducible
pentanomials over F2 do exist for every degree (von zur
Gathen 2003 and Seroussi 1998).

Pentanomials have the next smallest number of terms, after
trinomials, that is possible in a primitive polynomial over F2.
This allows fast generation of a shift-register sequence when
primitive trinomials are not available.

The usage of pentanomials when trinomials do not exist is in
the IEEE standard specifications for public-key cryptography
(IEEE 2000).
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Main Theorem

Main Theorem

Let f(x) = xm + xl + xk + xj + 1 be a pentanomial over F2 such
that gcd(m, l, k, j) = 1. If g is a trinomial of degree at most 2m
divisible by f , with g = fh, then

1 f is one of the polynomial exceptions given in Table 1; or

2 m ≡ 1 mod 3 and f, g, h are as follows

f(x) = 1 + x + x2 + xm−3 + xm

= (1 + x + x2)(1 + xm−3 + xm−2),

h(x) = (1 + x) + (x3 + x4) + · · ·+
(xm−7 + xm−6) + xm−4,

g(x) = 1 + x2m−6 + x2m−4; or

3 f is the reciprocal of one of the polynomials above.
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No. f(x) h(x) type

1 x5 + x4 + x3 + x2 + 1 x3 + x2 + 1 p

2 x5 + x3 + x2 + x + 1 x3 + x + 1 p

3 x5 + x3 + x2 + x + 1 x4 + x + 1 p

4 x5 + x4 + x3 + x + 1 x2 + x + 1 p

5 x6 + x5 + x4 + x3 + 1 x4 + x3 + 1 r

6 x6 + x4 + x2 + x + 1 x3 + x + 1 i

7 x6 + x4 + x3 + x + 1 x2 + x + 1 p

8 x6 + x5 + x2 + x + 1 x5 + x4 + x3 + x + 1 p

9 x6 + x5 + x3 + x + 1 x2 + x + 1 r

10 x7 + x4 + x2 + x + 1 x3 + x + 1 r

11 x7 + x4 + x3 + x2 + 1 x3 + x2 + 1 p

12 x7 + x5 + x2 + x + 1 x7 + x6 + x5 + x4 + x3 + x + 1 p

13 x7 + x5 + x3 + x2 + 1 x5 + x4 + x3 + x2 + 1 r

14 x8 + x5 + x3 + x + 1 x5 + x4 + x2 + x + 1 p

15 x8 + x5 + x3 + x2 + 1 x8 + x7 + x5 + x4 + x3 + x2 + 1 p

16 x8 + x6 + x3 + x + 1 x6 + x4 + x2 + x + 1 r

17 x8 + x7 + x5 + x2 + 1 x6 + x5 + x4 + x2 + 1 r

18 x9 + x6 + x5 + x2 + 1 x8 + x5 + x4 + x2 + 1 i

19 x9 + x7 + x4 + x3 + 1 x8 + x6 + x4 + x3 + 1 i

20 x9 + x8 + x5 + x2 + 1 x6 + x5 + x4 + x2 + 1 r

21 x10 + x4 + x3 + x2 + 1 x8 + x7 + x4 + x2 + 1 i

22 x10 + x7 + x2 + x + 1 x6 + x4 + x3 + x + 1 r

23 x11 + x7 + x6 + x2 + 1 x8 + x7 + x4 + x2 + 1 r

24 x13 + x10 + x2 + x + 1 x9 + x7 + x6 + x4 + x3 + x + 1 r

25 x13 + x10 + x9 + x2 + 1 x12 + x9 + x8 + x6 + x4 + x2 + 1 p
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Corollaries

The infinite family of pentanomial exceptions are all factorable and
the largest degree of the irreducible polynomial exceptions is 13.

Corollary 5

If f(x) = xm + xl + xk + xj + 1 is irreducible over F2 with
gcd(m, l, k, j) = 1 and m ≥ 14, then f does not divide any
trinomials of degree less than or equal to 2m.

In particular, this is true for f primitive, since primitive polynomials
are irreducible. In addition, it can be shown that for any primitive
pentanomial f , the above GCD condition is satisfied.
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Using Theorems 1 (Delsarte) and Theorem 2 (Munemasa) we get
our results about the strength of orthogonal arrays given by
shift-register sequences generated by primitive pentanomials.

Corollary 6

If f(x) = xm + xl + xk + xj + 1 is primitive over F2 and not one
of the exceptions in Table 1 or their reciprocals, then, for
m < n ≤ 2m,

1 Cf
n is an orthogonal array of strength at least 3; or

equivalently,

2 (Cf
n)⊥, the dual code of Cf

n , has minimum weight at least 4.

Since Cf
n has strength 3, the third moment of the Hamming

weight of the shift-register sequence is minimized, as desired for
less statistical bias (Jordan and Wood 1973, Lindholm 1968).
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Sketch of Proof

The complete proof involves a great number of subcases.
The complete case analysis can be found on the technical
report (Dewar, Moura, Panario, Stevens and Wang 2006).
The polynomial exceptions were also checked by computer.

We separately consider the top-left portion and the bottom-right
portion of the box diagram (next slide).

Key observation: the top and bottom portions are independent and
the proof combines each possible top subcases with each possible
bottom case.
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Sketch of Munemasa’s Proof

Let f(x) = xm + xl + 1 be a trinomial. If g = hf is also trinomial
for some h, then h must have an odd number of non-zero terms.
We write

h(x) =
t∑

s=0

xis ,

where t is even, it is the degree of h and i0=0.

Theorem 3: Munemasa 1998

Let f(x) = xm + xl + 1 be a trinomial over F2 such that
gcd(m, l) = 1. If g is a trinomial of degree at most 2m that is
divisible by f , then g(x) = xdeg g−mf(x), g(x) = f(x)2, or
g(x) = x5 + x4 + 1 = (x2 + x + 1)(x3 + x + 1) or, its reciprocal,
g(x) = x5 + x + 1 = (x2 + x + 1)(x3 + x2 + 1).
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Figure: An illustration of equation g(x) =
∑t

s=0 xisf(x), with f, g
trinomials.
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We have g = fh if and only if rec(g) = rec(f)rec(h). Thus, by
taking reciprocals, we can reduce the problem in either of two ways:

· the first is to assume that m ≥ 2l (Munemasa);

· the second, which we use, is to assume that the middle term of
g(x) is either an “m” (that is, it equals m + is for some s) or it is
an “l” from the top t/2 rows.

The top 0 must cancel and it must cancel down.

Division of Trinomials by Pentanomials and Orthogonal Arrays Daniel Panario



Introduction Our Results Proof Conclusions References

If the top 0 cancels down with an m:

Since it ≤ m, we get 0 + it = m + i0.

Since all 0’s must cancel (with the exception of the 0 in row
i0), they cancel with l’s.

At most one of the remaining t− 1 m’s can be left-over and
two m’s cannot cancel themselves, so we have that t ≤ 3 and
its parity forces t = 2.

It is easy to check that in this case h = f and g = f2.
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If the top 0 cancels down with an l:

Then, 0 + it = l + iz for some z < t.

By contradiction all 0’s must cancel down with l’s.

There are exactly t− 1 0’s that cancel, which uses all but one
l, namely l + it.

Again, at most one m cancels up with an l and at most one
m can be left-over. This gives us t = 2.

If l + i2 = m + i1, then m− l = l. The GCD condition gives
l = 1, m = 2 and h = f and g = f2.
If l + i2 = m + i0, then l + i2 = 3l. The GCD condition forces
l = 1, m = 3 and we get f(x) = 1 + x + x3, h(x) = 1 + x + x2

and g(x) = x5 + x4 + 1, which is the only exception. Given
our symmetry assumption, we get the reciprocal exception.

�

Division of Trinomials by Pentanomials and Orthogonal Arrays Daniel Panario



Introduction Our Results Proof Conclusions References

If the top 0 cancels down with an l:

Then, 0 + it = l + iz for some z < t.

By contradiction all 0’s must cancel down with l’s.

There are exactly t− 1 0’s that cancel, which uses all but one
l, namely l + it.

Again, at most one m cancels up with an l and at most one
m can be left-over. This gives us t = 2.

If l + i2 = m + i1, then m− l = l. The GCD condition gives
l = 1, m = 2 and h = f and g = f2.
If l + i2 = m + i0, then l + i2 = 3l. The GCD condition forces
l = 1, m = 3 and we get f(x) = 1 + x + x3, h(x) = 1 + x + x2

and g(x) = x5 + x4 + 1, which is the only exception. Given
our symmetry assumption, we get the reciprocal exception.

�

Division of Trinomials by Pentanomials and Orthogonal Arrays Daniel Panario



Introduction Our Results Proof Conclusions References

If the top 0 cancels down with an l:

Then, 0 + it = l + iz for some z < t.

By contradiction all 0’s must cancel down with l’s.

There are exactly t− 1 0’s that cancel, which uses all but one
l, namely l + it.

Again, at most one m cancels up with an l and at most one
m can be left-over. This gives us t = 2.

If l + i2 = m + i1, then m− l = l. The GCD condition gives
l = 1, m = 2 and h = f and g = f2.
If l + i2 = m + i0, then l + i2 = 3l. The GCD condition forces
l = 1, m = 3 and we get f(x) = 1 + x + x3, h(x) = 1 + x + x2

and g(x) = x5 + x4 + 1, which is the only exception. Given
our symmetry assumption, we get the reciprocal exception.

�

Division of Trinomials by Pentanomials and Orthogonal Arrays Daniel Panario



Introduction Our Results Proof Conclusions References

If the top 0 cancels down with an l:

Then, 0 + it = l + iz for some z < t.

By contradiction all 0’s must cancel down with l’s.

There are exactly t− 1 0’s that cancel, which uses all but one
l, namely l + it.

Again, at most one m cancels up with an l and at most one
m can be left-over. This gives us t = 2.

If l + i2 = m + i1, then m− l = l. The GCD condition gives
l = 1, m = 2 and h = f and g = f2.
If l + i2 = m + i0, then l + i2 = 3l. The GCD condition forces
l = 1, m = 3 and we get f(x) = 1 + x + x3, h(x) = 1 + x + x2

and g(x) = x5 + x4 + 1, which is the only exception. Given
our symmetry assumption, we get the reciprocal exception.

�

Division of Trinomials by Pentanomials and Orthogonal Arrays Daniel Panario



Introduction Our Results Proof Conclusions References

If the top 0 cancels down with an l:

Then, 0 + it = l + iz for some z < t.

By contradiction all 0’s must cancel down with l’s.

There are exactly t− 1 0’s that cancel, which uses all but one
l, namely l + it.

Again, at most one m cancels up with an l and at most one
m can be left-over. This gives us t = 2.

If l + i2 = m + i1, then m− l = l. The GCD condition gives
l = 1, m = 2 and h = f and g = f2.

If l + i2 = m + i0, then l + i2 = 3l. The GCD condition forces
l = 1, m = 3 and we get f(x) = 1 + x + x3, h(x) = 1 + x + x2

and g(x) = x5 + x4 + 1, which is the only exception. Given
our symmetry assumption, we get the reciprocal exception.

�

Division of Trinomials by Pentanomials and Orthogonal Arrays Daniel Panario



Introduction Our Results Proof Conclusions References

If the top 0 cancels down with an l:

Then, 0 + it = l + iz for some z < t.

By contradiction all 0’s must cancel down with l’s.

There are exactly t− 1 0’s that cancel, which uses all but one
l, namely l + it.

Again, at most one m cancels up with an l and at most one
m can be left-over. This gives us t = 2.

If l + i2 = m + i1, then m− l = l. The GCD condition gives
l = 1, m = 2 and h = f and g = f2.
If l + i2 = m + i0, then l + i2 = 3l. The GCD condition forces
l = 1, m = 3 and we get f(x) = 1 + x + x3, h(x) = 1 + x + x2

and g(x) = x5 + x4 + 1, which is the only exception. Given
our symmetry assumption, we get the reciprocal exception.

�

Division of Trinomials by Pentanomials and Orthogonal Arrays Daniel Panario



Introduction Our Results Proof Conclusions References

Further Work

Our results guarantee that the orthogonal arrays constructed, Cf
n ,

have strength at least 3. What can be said about strength 4?
This requires the analysis of pentanomials dividing tetranomials.

Another question is concerned with generalizations of our main
theorem for polynomials with more than five terms as well as for
finite fields other than F2.

Under which conditions, given t, does there exist a positive integer
d such that if a polynomial f of degree m has precisely t non-zero
coefficients and m ≥ d, then f does not divide any polynomials
with exactly s non-zero coefficients and degree less than or equal
to some function of m, for all s ≤ t?
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