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Covering arrays

Definition: Covering Array

A covering array of strength t, k factors, g levels for each factor
and size N , denoted by CA(N ; t, k, g), is an k ×N array with
symbols from a g-ary alphabet G such that in every t×N
subarray, every t-tuple in Gt is covered at least once.

N = 10, t = 2, k = 4, g = 3
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Covering array optimization questions

Fix t and g.

Minimizing N for fixed k (number of tests)

CAN(t, k, g) = min{N : there exists a CA(N ; t, k, g)}.

Maximizing k for fixed N (number of factors)

CAK(N, t, g) = max{k : there exists a CA(N ; t, k, g)}.

Relationship between min-max problems

CAN(t, k, g) = min{N : CAK(N, t, g) ≥ k}.
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Methodology

We will focus on the following problem:

Maximizing k for fixed N (number of factors)

CAK(N, t, g) = max{k : there exists a CA(N ; t, k, g)}.

General methodology for an optimization problem (maximization)

1 Relaxed problem: relax constraints to find upper bounds

2 Hard solution matching upper bound: build a feasible solution
to hard problem that matches the upper bound (or close to
upper bound)

More structure: sometimes it is worth adding more structure to the
objects saught.
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Binary covering arrays and set systems

A binary covering array
(strength 2) is a set system
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Maximization problem:
CAK(N, t, g) = max{k :
there exists a CA(N ; t, k, g)}

Maximization problem: strongly
intersecting
Given N , find a set system A
with maximum |A| such that for
all A,B ∈ A we have:

A ∩B 6= ∅, A ∩B 6= ∅,
A ∩B 6= ∅, A ∩B 6= ∅.
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Sperner theorem for set systems

A system of subsets of an n-set has the Sperner property if no two
subsets in the system are comparable.

{2} {3} {4}

 {}

{1}

{1,3} {1,4} {2,3} {2,4}{1,2}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

{3,4}

Sperner’s Theorem (1928)

If A has the Sperner property, then |A| ≤
(

n
bn

2
c
)
.

The upper bound is only acchieved by the set of all (bn
2 c)-subsets

of the n-set, or by its (subsetwise) complement.

Covering Arrays and Extremal Set-Partition Systems Lucia Moura



Covering arrays Set systems Set-partition systems Higher level extremal problems Final remarks

Erdos-Ko-Rado theorem for set systems

A system of subsets of an n-set is t-intersecting if every two
subsets in the system have intersection cardinality at least t.
Example: n = 6, k = 3
(t = 2) A = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}
(t = 1) B = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4},

{1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}}

Erdos-Ko-Rado Theorem (1961)

Let t < k < n. Let A be a t-intersecting system of subsets of an
n-set, such that each subset has cardinality at most k.
If n ≥ (t + 1)(k − t + 1), then |A| ≤

(
n−t
k−t

)
.

Moreover, if n > (t + 1)(k − t + 1), then equality holds if and only
if A is a k-uniform trivially t-intersecting system.
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Applying the methodology to covering arrays

Methodology for binary covering arrays

1 Relaxed problem: strongly intersecting set system (plus
complement) is Sperner - use Sperner upper bound.

2 Hard solution matching upper bound: build a strongly
intersecting set system that matches the upper bound.

More structure: use point-balanced covering arrays (uniform set
systems with sets of cardinality around N/2).
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Solving the binary covering array problem

Pick all bn/2c-subsets of [1, n] that contain a common element.

n odd:
1 2 3 4 5
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

n even:
1 2 3 4 5 6
1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1
1 0 0 0 1 1

Note: Systems are strongly Sperner and 1-intersecting.
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The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

CAK(n, t = 2, g = 2) =
(

n−1
bn/2c−1

)
. Moreover, this bound is

attained by a bn/2c-uniform trivially 1-intersecting set system.

Proof: Let A be the set system corresponding to the CA.

(Case 1) n even.

A∗ = {A,A : A ∈ A} is Sperner.

Sperner’s theorem implies |A∗| ≤
(

n
n/2

)
.

|A| ≤ 1
2 |A

∗| ≤ 1
2

(
n

n/2

)
=

(
n−1

n/2−1

)
. �

(Case 2) n odd.

Wlog assume |A| ≤ bn/2c, for all A ∈ A.

A is 1-intersecting, so by the EKR theorem, |A| ≤
(

n−1
bn/2c−1

)
.
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Covering arrays are systems of set partitions

A covering array (strength 2) is a system of set-partitions:
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Maximization problem:
Given N , find a set partition system P with maximum |P|
that is (pairwise) strongly intersecting:
For all P,Q ∈ P we have

for all Pi ∈ P,Qj ∈ Q, Pi ∩Qj 6= ∅.
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Strongly intersecting condition: upper bound via 2-parts

Theorem (Stevens, Moura and Mendelsohn 1998)

CAK(n, 2, g) ≤ 1
2

(b 2n
g
c

bn
g
c

)
.

This theorem only uses the two smallest parts of each partition,
and the following fact:
Consider a pair of set systems, A1, A2, . . . , Ak and B1, B2, . . . , Bk,
with |Ai|+ |Bi| ≤ c and |Ai| ≤ a ≤ c/2, and such that
Ai ∩Bi = ∅, and all other sets intersect. Then, k ≤ 1

2

(
c
a

)
.

It is possible to relabel symbols of the covering array so that
|P1j | ≤ bn

g c and |P1j |+ |P2j | ≤ b2n
g c
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Stronly intersecting versus Sperner formulation

Strongly intersecting formulation:
Partitions P and Q corresponding to two rows of a covering array
must satisfy:

for all Pi ∈ P,Qj ∈ Q, Pi ∩Qj 6= ∅.

Strongly Sperner formulation:
Partitions P and Q corresponding to two rows of a covering array
must satisfy:

for all Pi ∈ P,Qj ∈ Q, Pi 6⊆ Qj and Qj 6⊆ P i
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Higher level extremal problems

Framework by Ahlswede, Cai and Zhang:
System of “clouds”: A = {A1,A2, . . . ,Ak}.

Types: (∀,∀), (∃,∃),(∀,∃), (∃,∀)
Binary relations:
Comparable, iNcomparable, Disjoint, Intersecting.
In(∃,∀): largest cardinality k of a system of clouds of [1, n]
such that for all Ai,Aj ,∈ A:

∃A ∈ Ai,∀A′ ∈ Aj(A ∩A′ 6= ∅).

For us each cloud is a g-partition of [1, n]:

In(∀,∀) = CAK(n, 2, g).
Nn(∀,∀) = Sperner g-partition system
Note: In(∀,∀) ≤ Nn(∀,∀)
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Sperner’s theorem for set-partition systems

Nn(∀,∀): largest cardinality k of a system P of g-partitions of
[1, n] such that for all Pi,Pj ∈ P:

∀P ∈ Pi,∀P ′ ∈ Pj(P 6⊆P ′andP ′ 6⊆P ). (Weakly) Sperner

Theorem (Meagher, Moura and Stevens 2005)

Let g, n such that n = cg + r and 0 ≤ r < g. Then,

Nn(∀,∀) ≤ 1

(g − r) + r(c+1)
n−1

(
n

c

)
.

Theorem (Meagher, Moura and Stevens 2005)

Let g, n such that g|n. Then, Nn(∀,∀) =
(

n−1
n
g
−1

)
. Moreover, this

bound is met if and only if the g-partitions are uniform (all parts
with cardinality n

g ).
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Example: weakly Sperner property

{1,2,3},{4,5,6}
{1,2,4},{3,5,6}
{1,2,5},{3,4,6}
{1,2,6},{3,4,5}
{1,3,4},{2,5,6}
{1,3,5},{2,4,6}
{1,3,6},{2,4,5}
{1,4,5},{2,3,6}
{1,4,6},{2,3,5}
{1,5,6},{2,3,4}

n=2g n=3g

{1,2,4},....

{1,2,6},...

{1,2,3},{4,5,6},{7,8,9}

{1,2,5},...

{1,8,9},{2,3,4}, {5,6,7}

.

.

.

.
{1,7,8},...
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Comparison of two bounds obtained

Theorem (Stevens, Moura and Mendelsohn 1998)

CAK(n, 2, g) ≤ 1
2

(b 2n
g
c

bn
g
c

)
.

Theorem (Meagher, Moura and Stevens 2005)

If g|n, then CAK(n, 2, g) ≤
(

n−1
n
g
−1

)
.

if g > 2, g|n, then

1

2

(2n
g
n
g

)
<

(
n− 1
n
g − 1

)
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Erdos-Ko-Rado theorem for set-partition systems

We are interested on: (∃,∃) with property p-intersecting.

This is useful for bounds on “anti-covering-arrays” for certain
uniform cases. For example: n = g2, p = 2

Conjecture

Suppose g|n, and let c = n/g be the size of each part of the
(uniform) partition system. p− In(∃,∃) =

(
n−p
c−p

)
U(n− c, g − 1).

This has been proven for p = c:

Theorem (Meagher and Moura 2005)

Let n ≥ g ≥ 1 and let P ⊆ Un
g be a partition system in which

every two partitions share at least one class. Let c = n/g. Then,
|P| ≤ U(n− c, g − 1)
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Higher strength: strongly intersecting and Sperner

Strongly intersecting formulation:
Partitions P i1 , P i2 , . . . , P it corresponding to t rows of a covering
array must satisfy:

for all Ak1 ∈ P i1 , Ak2 ∈ P i2 , . . . , Akt ∈ P it ,

Ak1 ∩Ak2 ∩ · · · ∩Akt 6= ∅.

Generalization of t-wise intersecting set systems.
Strongly Sperner formulation:
Partitions P i1 , P i2 , . . . P it corresponding to t rows of a covering
array must satisfy:

for all Ak1 ∈ P i1 , Ak2 ∈ P i2 , . . . , Akt ∈ P it ,

Ak1 6⊆ Ak2 ∪ · · · ∪Akt ,

...
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Conclusions

Binary case was solved via systems of sets.
The case g > 2 can be studied via systems of g-partition:

Stronger upper bounds for set-partition systems= stronger
lower bounds for covering arrays.
Some cases might be amenable to complete solution ( for
example, binary covering arrays with strength 3.)

Special attention should be given to point-balanced case
(Meagher conjectures there is always an optimal covering
array that is (almost) point-balanced).

Systems of set-partitions are interesting on their own right,
and other extremal problems could be investigated.
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