Covering Arrays and Extremal Set-Partition Systems

Lucia Moura

School of Information Technology and Engineering
University of Ottawa
lucia@site.uottawa.ca

Workshop on Covering Arrays, May 2006

Covering arrays

Definition: Covering Array

A covering array of strength t, k factors, g levels for each factor and size N, denoted by $C A(N ; t, k, g)$, is an $k \times N$ array with symbols from a g-ary alphabet G such that in every $t \times N$ subarray, every t-tuple in G^{t} is covered at least once.

$$
N=10, t=2, k=4, g=3
$$

1	2	3	$\mathbf{4}$	5	6	$\mathbf{7}$	8	$\mathbf{9}$	10
0	0	0	1	1	1	2	2	2	0
0	1	2	0	1	2	0	1	2	0
0	1	2	2	0	1	1	2	0	1
0	0	2	1	2	0	2	0	1	1

Covering array optimization questions

Fix t and g.
Minimizing N for fixed k (number of tests)

$$
C A N(t, k, g)=\min \{N: \text { there exists a } C A(N ; t, k, g)\} .
$$

Maximizing k for fixed N (number of factors)

$$
C A K(N, t, g)=\max \{k: \text { there exists a } C A(N ; t, k, g)\} .
$$

Relationship between min-max problems

$$
C A N(t, k, g)=\min \{N: C A K(N, t, g) \geq k\}
$$

Methodology

We will focus on the following problem:
Maximizing k for fixed N (number of factors)

$$
C A K(N, t, g)=\max \{k: \text { there exists a } C A(N ; t, k, g)\} .
$$

General methodology for an optimization problem (maximization)
(1) Relaxed problem: relax constraints to find upper bounds
(2) Hard solution matching upper bound: build a feasible solution to hard problem that matches the upper bound (or close to upper bound)

More structure: sometimes it is worth adding more structure to the objects saught.

Binary covering arrays and set systems

- A binary covering array (strength 2) is a set system

Binary covering arrays and set systems

- A binary covering array (strength 2) is a set system

1	2	3	4	5	6	
0	0	1	1	1	0	$\{3,4,5\}$
0	1	0	1	0	1	$\{2,4,6\}$ 0 1
	0	1	1	0	$\{2,4,5\}$	
1	0	0	1	0	1	$\{1,4,6\}$

Binary covering arrays and set systems

- A binary covering array (strength 2) is a set system
\{3,4,5\}
\{2,4,6\}
\{2,4,5\}
\{1,4,6\}

Binary covering arrays and set systems

- A binary covering array (strength 2) is a set system

1					
0	0	1	1	1	0
0	1	0	1	0	1
0	1	0	1	1	0
1	0	0	1	0	1

- Maximization problem:
$\operatorname{CAK}(N, t, g)=\max \{k$: there exists a $C A(N ; t, k, g)\}$
- Maximization problem: strongly intersecting
Given N, find a set system \mathcal{A} with maximum $|\mathcal{A}|$ such that for all $A, B \in \mathcal{A}$ we have:

$$
\begin{array}{ll}
A \cap B \neq \emptyset, & A \cap \bar{B} \neq \emptyset \\
\bar{A} \cap B \neq \emptyset, & \bar{A} \cap \bar{B} \neq \emptyset .
\end{array}
$$

Sperner theorem for set systems

A system of subsets of an n-set has the Sperner property if no two subsets in the system are comparable.

Sperner's Theorem (1928)

If \mathcal{A} has the Sperner property, then $|\mathcal{A}| \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}$.
The upper bound is only acchieved by the set of all $\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$-subsets of the n-set, or by its (subsetwise) complement.

Erdos-Ko-Rado theorem for set systems

A system of subsets of an n-set is t-intersecting if every two subsets in the system have intersection cardinality at least t.
Example: $n=6, k=3$
$(t=2) \quad \mathcal{A}=\{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\}$
$(t=1) \quad \mathcal{B}=\{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,3,4\}$,
$\{1,3,5\},\{1,3,6\},\{1,4,5\},\{1,4,6\},\{1,5,6\}\}$

Erdos-Ko-Rado Theorem (1961)

Let $t<k<n$. Let \mathcal{A} be a t-intersecting system of subsets of an n-set, such that each subset has cardinality at most k.
If $n \geq(t+1)(k-t+1)$, then $|\mathcal{A}| \leq\binom{ n-t}{k-t}$.
Moreover, if $n>(t+1)(k-t+1)$, then equality holds if and only if \mathcal{A} is a k-uniform trivially t-intersecting system.

Applying the methodology to covering arrays

Methodology for binary covering arrays

(1) Relaxed problem: strongly intersecting set system (plus complement) is Sperner - use Sperner upper bound.
(2) Hard solution matching upper bound: build a strongly intersecting set system that matches the upper bound.

More structure: use point-balanced covering arrays (uniform set systems with sets of cardinality around $N / 2$).

Solving the binary covering array problem

Pick all $\lfloor n / 2\rfloor$-subsets of $[1, n]$ that contain a common element.

Note: Systems are strongly Sperner and 1-intersecting.

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)
$C A K(n, t=2, g=2)=\binom{n-1}{\lfloor n / 2\rfloor-1}$. Moreover, this bound is attained by a $\lfloor n / 2\rfloor$-uniform trivially 1 -intersecting set system.

Proof: Let \mathcal{A} be the set system corresponding to the CA.

- (Case 1) n even.

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)
$C A K(n, t=2, g=2)=\binom{n-1}{\lfloor n / 2\rfloor-1}$. Moreover, this bound is attained by a $\lfloor n / 2\rfloor$-uniform trivially 1 -intersecting set system.

Proof: Let \mathcal{A} be the set system corresponding to the CA.

- (Case 1) n even.
- $\mathcal{A}^{*}=\{A, \bar{A}: A \in \mathcal{A}\}$ is Sperner.

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)
$C A K(n, t=2, g=2)=\binom{n-1}{\lfloor n / 2\rfloor-1}$. Moreover, this bound is attained by a $\lfloor n / 2\rfloor$-uniform trivially 1 -intersecting set system.

Proof: Let \mathcal{A} be the set system corresponding to the CA.

- (Case 1) n even.
- $\mathcal{A}^{*}=\{A, \bar{A}: A \in \mathcal{A}\}$ is Sperner.
- Sperner's theorem implies $\left|\mathcal{A}^{*}\right| \leq\binom{ n}{n / 2}$.

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

$C A K(n, t=2, g=2)=\binom{n-1}{\lfloor n / 2\rfloor-1}$. Moreover, this bound is attained by a $\lfloor n / 2\rfloor$-uniform trivially 1 -intersecting set system.

Proof: Let \mathcal{A} be the set system corresponding to the CA.

- (Case 1) n even.
- $\mathcal{A}^{*}=\{A, \bar{A}: A \in \mathcal{A}\}$ is Sperner.
- Sperner's theorem implies $\left|\mathcal{A}^{*}\right| \leq\binom{ n}{n / 2}$.
- $|\mathcal{A}| \leq \frac{1}{2}\left|\mathcal{A}^{*}\right| \leq \frac{1}{2}\binom{n}{n / 2}=\binom{n-1}{n / 2-1}$. \square

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

$C A K(n, t=2, g=2)=\binom{n-1}{\lfloor n / 2\rfloor-1}$. Moreover, this bound is attained by a $\lfloor n / 2\rfloor$-uniform trivially 1 -intersecting set system.

Proof: Let \mathcal{A} be the set system corresponding to the CA.

- (Case 1) n even.
- $\mathcal{A}^{*}=\{A, \bar{A}: A \in \mathcal{A}\}$ is Sperner.
- Sperner's theorem implies $\left|\mathcal{A}^{*}\right| \leq\binom{ n}{n / 2}$.
- $|\mathcal{A}| \leq \frac{1}{2}\left|\mathcal{A}^{*}\right| \leq \frac{1}{2}\binom{n}{n / 2}=\binom{n-1}{n / 2-1}$. \square
- (Case 2) n odd.

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

$C A K(n, t=2, g=2)=\binom{n-1}{\lfloor n / 2\rfloor-1}$. Moreover, this bound is attained by a $\lfloor n / 2\rfloor$-uniform trivially 1 -intersecting set system.

Proof: Let \mathcal{A} be the set system corresponding to the CA.

- (Case 1) n even.
- $\mathcal{A}^{*}=\{A, \bar{A}: A \in \mathcal{A}\}$ is Sperner.
- Sperner's theorem implies $\left|\mathcal{A}^{*}\right| \leq\binom{ n}{n / 2}$.
- $|\mathcal{A}| \leq \frac{1}{2}\left|\mathcal{A}^{*}\right| \leq \frac{1}{2}\binom{n}{n / 2}=\binom{n-1}{n / 2-1}$. \square
- (Case 2) n odd.
- Wlog assume $|A| \leq\lfloor n / 2\rfloor$, for all $A \in \mathcal{A}$.

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

$C A K(n, t=2, g=2)=\binom{n-1}{\lfloor n / 2\rfloor-1}$. Moreover, this bound is attained by a $\lfloor n / 2\rfloor$-uniform trivially 1 -intersecting set system.

Proof: Let \mathcal{A} be the set system corresponding to the CA.

- (Case 1) n even.
- $\mathcal{A}^{*}=\{A, \bar{A}: A \in \mathcal{A}\}$ is Sperner.
- Sperner's theorem implies $\left|\mathcal{A}^{*}\right| \leq\binom{ n}{n / 2}$.
- $|\mathcal{A}| \leq \frac{1}{2}\left|\mathcal{A}^{*}\right| \leq \frac{1}{2}\binom{n}{n / 2}=\binom{n-1}{n / 2-1}$. \square
- (Case 2) n odd.
- Wlog assume $|A| \leq\lfloor n / 2\rfloor$, for all $A \in \mathcal{A}$.
- \mathcal{A} is 1 -intersecting, so by the EKR theorem, $|\mathcal{A}| \leq\binom{ n-1}{\lfloor n / 2\rfloor-1}$.

Covering arrays are systems of set partitions

- A covering array (strength 2) is a system of set-partitions:

$\begin{array}{llllllllll}3 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$										\{1,2,3,10\} \{4,5,6\} \{7,8,9\}	
0	0	0	1	1	1	2	2	2	0		
0	1	2	0	1	2	0	1	2	0	\{1,4,7,10\} \{2,5,8\}	\{3,6,9\}
0	1	2	2	0	1	1	2	0	1	$\{1,5,9\}\{2,6,7,10\}$	\{3,4,8\}
0	0	2	1	2	0	2	0	1	1	\{1,2,6,8\} \{4,9,10\}	\{3,5,7\}

Covering arrays are systems of set partitions

- A covering array (strength 2) is a system of set-partitions:

- Maximization problem:

Given N, find a set partition system \mathcal{P} with maximum $|\mathcal{P}|$ that is (pairwise) strongly intersecting:
For all $P, Q \in \mathcal{P}$ we have

$$
\text { for all } P_{i} \in P, Q_{j} \in Q, \quad P_{i} \cap Q_{j} \neq \emptyset
$$

Strongly intersecting condition: upper bound via 2-parts

Theorem (Stevens, Moura and Mendelsohn 1998)
$C A K(n, 2, g) \leq \frac{1}{2}\left(\begin{array}{c}\left\lfloor\begin{array}{l}\left.\frac{2 n}{g}\right\rfloor \\ \left\lfloor\frac{n}{g}\right. \\ \hline\end{array}\right)\end{array}\right)$.
This theorem only uses the two smallest parts of each partition, and the following fact:
Consider a pair of set systems, $A_{1}, A_{2}, \ldots, A_{k}$ and $B_{1}, B_{2}, \ldots, B_{k}$, with $\left|A_{i}\right|+\left|B_{i}\right| \leq c$ and $\left|A_{i}\right| \leq a \leq c / 2$, and such that $A_{i} \cap B_{i}=\emptyset$, and all other sets intersect. Then, $k \leq \frac{1}{2}\binom{c}{a}$.
It is possible to relabel symbols of the covering array so that $\left|P_{1 j}\right| \leq\left\lfloor\frac{n}{g}\right\rfloor$ and $\left|P_{1 j}\right|+\left|P_{2 j}\right| \leq\left\lfloor\frac{2 n}{g}\right\rfloor$

Stronly intersecting versus Sperner formulation

Strongly intersecting formulation:

Partitions P and Q corresponding to two rows of a covering array must satisfy:

$$
\text { for all } P_{i} \in P, Q_{j} \in Q, \quad P_{i} \cap Q_{j} \neq \emptyset .
$$

Strongly Sperner formulation:

Partitions P and Q corresponding to two rows of a covering array must satisfy:

$$
\text { for all } P_{i} \in P, Q_{j} \in Q, \quad P_{i} \nsubseteq \bar{Q}_{j} \text { and } Q_{j} \nsubseteq \bar{P}_{i}
$$

Higher level extremal problems

- Framework by Ahlswede, Cai and Zhang: System of "clouds": $\mathcal{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right\}$.

Higher level extremal problems

- Framework by Ahlswede, Cai and Zhang: System of "clouds": $\mathcal{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right\}$.
- Types: $(\forall, \forall),(\exists, \exists),(\forall, \exists),(\exists, \forall)$

Higher level extremal problems

- Framework by Ahlswede, Cai and Zhang: System of "clouds": $\mathcal{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right\}$.
- Types: $(\forall, \forall),(\exists, \exists),(\forall, \exists),(\exists, \forall)$
- Binary relations: Comparable, iNcomparable, Disjoint, Intersecting.

Higher level extremal problems

- Framework by Ahlswede, Cai and Zhang: System of "clouds": $\mathcal{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right\}$.
- Types: $(\forall, \forall),(\exists, \exists),(\forall, \exists),(\exists, \forall)$
- Binary relations:

Comparable, iNcomparable, Disjoint, Intersecting.

- $I_{n}(\exists, \forall)$: largest cardinality k of a system of clouds of $[1, n]$ such that for all $\mathcal{A}_{i}, \mathcal{A}_{j}, \in \mathcal{A}$:

$$
\exists A \in \mathcal{A}_{i}, \forall A^{\prime} \in \mathcal{A}_{j}\left(A \cap A^{\prime} \neq \emptyset\right)
$$

Higher level extremal problems

- Framework by Ahlswede, Cai and Zhang: System of "clouds": $\mathcal{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right\}$.
- Types: $(\forall, \forall),(\exists, \exists),(\forall, \exists),(\exists, \forall)$
- Binary relations:

Comparable, iNcomparable, Disjoint, Intersecting.

- $I_{n}(\exists, \forall)$: largest cardinality k of a system of clouds of $[1, n]$ such that for all $\mathcal{A}_{i}, \mathcal{A}_{j}, \in \mathcal{A}$:

$$
\exists A \in \mathcal{A}_{i}, \forall A^{\prime} \in \mathcal{A}_{j}\left(A \cap A^{\prime} \neq \emptyset\right)
$$

- For us each cloud is a g-partition of $[1, n]$:

Higher level extremal problems

- Framework by Ahlswede, Cai and Zhang: System of "clouds": $\mathcal{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right\}$.
- Types: $(\forall, \forall),(\exists, \exists),(\forall, \exists),(\exists, \forall)$
- Binary relations:

Comparable, iNcomparable, Disjoint, Intersecting.

- $I_{n}(\exists, \forall)$: largest cardinality k of a system of clouds of $[1, n]$ such that for all $\mathcal{A}_{i}, \mathcal{A}_{j}, \in \mathcal{A}$:

$$
\exists A \in \mathcal{A}_{i}, \forall A^{\prime} \in \mathcal{A}_{j}\left(A \cap A^{\prime} \neq \emptyset\right)
$$

- For us each cloud is a g-partition of $[1, n]$:

$$
\text { - } I_{n}(\forall, \forall)=C A K(n, 2, g) \text {. }
$$

Higher level extremal problems

- Framework by Ahlswede, Cai and Zhang: System of "clouds": $\mathcal{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right\}$.
- Types: $(\forall, \forall),(\exists, \exists),(\forall, \exists),(\exists, \forall)$
- Binary relations:

Comparable, iNcomparable, Disjoint, Intersecting.

- $I_{n}(\exists, \forall)$: largest cardinality k of a system of clouds of $[1, n]$ such that for all $\mathcal{A}_{i}, \mathcal{A}_{j}, \in \mathcal{A}$:

$$
\exists A \in \mathcal{A}_{i}, \forall A^{\prime} \in \mathcal{A}_{j}\left(A \cap A^{\prime} \neq \emptyset\right)
$$

- For us each cloud is a g-partition of $[1, n]$:
- $I_{n}(\forall, \forall)=C A K(n, 2, g)$.
- $N_{n}(\forall, \forall)=$ Sperner g-partition system

Note: $I_{n}(\forall, \forall) \leq N_{n}(\forall, \forall)$

Sperner's theorem for set-partition systems

$N_{n}(\forall, \forall)$: largest cardinality k of a system \mathcal{P} of g-partitions of $[1, n]$ such that for all $\mathcal{P}_{i}, \mathcal{P}_{j} \in \mathcal{P}$:

$$
\forall P \in \mathcal{P}_{i}, \forall P^{\prime} \in \mathcal{P}_{j}\left(P \nsubseteq P^{\prime} \text { and } P^{\prime} \nsubseteq P\right) \text {. (Weakly) Sperner }
$$

Theorem (Meagher, Moura and Stevens 2005)
Let g, n such that $n=c g+r$ and $0 \leq r<g$. Then,

$$
N_{n}(\forall, \forall) \leq \frac{1}{(g-r)+\frac{r(c+1)}{n-1}}\binom{n}{c}
$$

Theorem (Meagher, Moura and Stevens 2005)
Let g, n such that $g \mid n$. Then, $N_{n}(\forall, \forall)=\binom{n-1}{\frac{n}{g}-1}$. Moreover, this bound is met if and only if the g-partitions are uniform (all parts with cardinality $\frac{n}{g}$).

Example: weakly Sperner property

$$
n=2 g
$$

\{1,2,3\},\{4,5,6\}
\{1,2,4\},\{3,5,6\}
\{1,2,5\},\{3,4,6\}
\{1,2,6\},\{3,4,5\}
\{1,3,4\},\{2,5,6\}
\{1,3,5\},\{2,4,6\}
\{1,3,6\},\{2,4,5\}
\{1,4,5\},\{2,3,6\}
\{1,4,6\},\{2,3,5\}
\{1,5,6\},\{2,3,4\}
$n=3 g$
\{1,2,3\},\{4,5,6\},\{7,8,9\}
\{1,2,4\},....
\{1,2,5\},...
\{1,2,6\},...
\{1,7,8\},...
\{1,8,9\},\{2,3,4\}, \{5,6,7\}

Comparison of two bounds obtained

Theorem (Stevens, Moura and Mendelsohn 1998)
$C A K(n, 2, g) \leq \frac{1}{2}\left(\begin{array}{c}\left\lfloor\begin{array}{c}\left.\frac{2 n}{g}\right\rfloor \\ \left\lfloor\frac{n}{g}\right. \\ \hline\end{array}\right)\end{array}\right)$.

Theorem (Meagher, Moura and Stevens 2005)
If $g \mid n$, then $\operatorname{CAK}(n, 2, g) \leq\binom{ n-1}{\frac{n}{g}-1}$.
if $g>2, g \mid n$, then

$$
\frac{1}{2}\binom{\frac{2 n}{g}}{\frac{n}{g}}<\binom{n-1}{\frac{n}{g}-1}
$$

Erdos-Ko-Rado theorem for set-partition systems

- We are interested on: (\exists, \exists) with property p-intersecting.
- This is useful for bounds on "anti-covering-arrays" for certain uniform cases. For example: $n=g^{2}, p=2$

Conjecture

Suppose $g \mid n$, and let $c=n / g$ be the size of each part of the (uniform) partition system. $p-I_{n}(\exists, \exists)=\binom{n-p}{c-p} U(n-c, g-1)$.

This has been proven for $p=c$:
Theorem (Meagher and Moura 2005)
Let $n \geq g \geq 1$ and let $\mathcal{P} \subseteq U_{g}^{n}$ be a partition system in which every two partitions share at least one class. Let $c=n / g$. Then, $|\mathcal{P}| \leq U(n-c, g-1)$

Higher strength: strongly intersecting and Sperner

Strongly intersecting formulation:

Partitions $P^{i_{1}}, P^{i_{2}}, \ldots, P^{i_{t}}$ corresponding to t rows of a covering array must satisfy:

$$
\text { for all } \begin{array}{r}
A_{k_{1}} \in P^{i_{1}}, A_{k_{2}} \in P^{i_{2}}, \ldots, A_{k_{t}} \in P^{i_{t}}, \\
\\
A_{k_{1}} \cap A_{k_{2}} \cap \cdots \cap A_{k_{t}} \neq \emptyset .
\end{array}
$$

Generalization of t-wise intersecting set systems.

Strongly Sperner formulation:

Partitions $P^{i_{1}}, P^{i_{2}}, \ldots P^{i_{t}}$ corresponding to t rows of a covering array must satisfy:

$$
\text { for all } \begin{array}{r}
A_{k_{1}} \in P^{i_{1}}, A_{k_{2}} \in P^{i_{2}}, \ldots, A_{k_{t}} \in P^{i_{t}}, \\
A_{k_{1}} \nsubseteq \bar{A}_{k_{2}} \cup \cdots \cup \bar{A}_{k_{t}},
\end{array}
$$

Conclusions

- Binary case was solved via systems of sets.

The case $g>2$ can be studied via systems of g-partition:

- Stronger upper bounds for set-partition systems= stronger lower bounds for covering arrays.
- Some cases might be amenable to complete solution (for example, binary covering arrays with strength 3.)
- Special attention should be given to point-balanced case (Meagher conjectures there is always an optimal covering array that is (almost) point-balanced).
- Systems of set-partitions are interesting on their own right, and other extremal problems could be investigated.

References

(1) R. Ahlswede, N. Cai and Z. Zhang. Higher level extremal problems. J. Combin. Inform. System Sci., 21:185-210, 1996.
(2) P. Erdos, C. Ko and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. 12:313-320, 1961.
(3) G. Katona. Two applications (for search theory and truth functions) of Sperner type theorems. Period. Math. Hungar., 3:19-26, 1973.
D.J. Kleitman and J. Spencer. Families of k-independent sets. Discrete Math., 6:255-262, 1973.
K. Meagher and L. Moura. Erdos-Ko-Rado theorems for uniform set-partition systems. Electr. J. Combin. 12, R40, 12 pages, 2005.
(6)
K. Meagher, L. Moura and B. Stevens. A Sperner-type theorem for set-partition systems. Electr. J. Combin. 12, N20, 6 pages, 2005.
(7) E. Sperner. Ein Satz uber Untermengen einer endlichen Menge. Math. Z., 27:544-548, 1928.

8 B. Stevens, L. Moura and E. Mendelsohn. Lower bounds for transversal covers. Des., Codes and Cryptogr., 15:279-299, 1998.

