Uncoverings-by-bases for groups and matroids

Robert Bailey
Queen Mary, University of London
r.f.bailey@qmul.ac.uk http://www.maths.qmul.ac.uk/~rfb/
Workshop on Covering Arrays, 16th May 2006

COVERINGS, UNCOVERINGS AND UBBs

- An (n, m, r) covering design is a set \mathcal{C} of m-subsets of $\{1, \ldots, n\}$ such that any r-subset of $\{1, \ldots, n\}$ is contained in at least one of the m-subsets.
- An (n, k, r)-uncovering is a set $\mathfrak{U l}$ of k-subsets of $\{1, \ldots, m\}$ such that any r-subset of $\{1, \ldots, n\}$ is disjoint from at least one of the k-subsets.
- A base for a finite permutation group G acting on a set Ω is a sequence of points $\left(x_{1}, \ldots, x_{b}\right)$ from Ω such that its pointwise stabiliser is the identity.
- An uncovering-by-bases (or UBB) for G acting on Ω is a set $\mathcal{U l}$ of bases so that any r-subset of Ω is disjoint from at least one base in \mathcal{U}.
- Interesting case: when $r=\left\lfloor\frac{d-1}{2}\right\rfloor$, where d is the minimum degree of G.

EASY EXAMPLES

- If G is sharply k-transitive and has degree n, we have $r=\left\lfloor\frac{n-k}{2}\right\rfloor$ and any k-subset of $\{1, \ldots, n\}$ is a base. So we just need an (n, k, r)-uncovering.
- H l S_{n}, where H is a regular group of degree m.
- Minimum degree is m, so $r=\left\lfloor\frac{m-1}{2}\right\rfloor$.
- We think of Ω as an $m \times n$ rectangle. A base consists from a single point drawn from each column:

We call this a transversal of Ω.

- A UBB consists of $r+1$ disjoint transversals.

$\operatorname{GL}(n, q)$

- A basis for the vector space \mathbb{F}_{q}^{n} is a base for $\operatorname{GL}(n, q)$ acting on the non-zero vectors.
- The minimum degree is $q^{n}-q^{n-1}$, so $r=\left\lfloor\frac{q^{n}-q^{n-1}-1}{2}\right\rfloor$.
- For $n=2$, this is easy to deal with.
- For $n=3$, things are more difficult!

AN UNCOVERING BY TRIPLES

- To obtain a ($2 m, 3, m-1$)-uncovering, think of the $2 m$-set as $\mathbb{Z}_{2 m}$, then take all triples of the form $\{i-1, i, i+m\}$ for $i \in \mathbb{Z}_{2 m}$.
- For example, with $m=5$, we have

1	2	3	4	5	6	$\boxed{7}$	8	9	10	
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	4	5	6	7	8	$\boxed{9}$	10
1	2	3	4	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	$\boxed{7}$	8	9	10	
1	2	3	4	5	6	$\boxed{7}$	$\boxed{8}$	9	10	
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	7	8	$\boxed{9}$	10	
1	2	3	4	5	6	7	8	9	10	

- We use this construction to construct a UBB for GL $(3, q)$, by forcing each triple to be a basis for the vector space.

GL(3, $q)$, for q odd

- We need a map from $\mathbb{Z}_{2 m}$ to \mathbb{F}_{q}^{3} which forces each triple to be a basis.
- Instead of the vector space, we work in the extension field $\mathbb{F}_{q^{3}}$.
- Suppose q is odd, so that $q^{3}-1$ is even, say $q^{3}-1=$ $2 m$.
- We can write the elements of $\mathbb{F}_{q^{3}} \backslash\{0\}$ as

$$
\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{2 m-1}\right\}
$$

where α is a primitive element of $\mathbb{F}_{q^{3}}$.

- Obvious map: $i \mapsto \alpha^{i}$. Unfortunately, this doesn't work! (Since $\alpha^{m}=-1,\left\{1, \alpha, \alpha^{m+1}\right\}=\{1, \alpha,-\alpha\}$, which is clearly not a basis.)

Instead, we use the following trick.

- Define $\varphi_{\alpha}: \mathbb{Z}_{2 m} \rightarrow \mathbb{F}_{q^{3}}^{*}$ by

i	0	1	2	\cdots	$m-1$	m	$m+1$	\cdots	$2 m-3$	$2 m-2$	$2 m-1$
$\varphi_{\alpha}(i)$	1	α	α^{2}	\cdots	α^{m-1}	α^{m+2}	α^{m+3}	\cdots	$\alpha^{2 m-1}$	α^{m}	α^{m+1}

- This leaves us with several cases to check, it reduces to verifying that $\left\{1, \alpha, \alpha^{2}\right\}$ and $\left\{1, \alpha, \alpha^{3}\right\}$ are bases.
- $\left\{1, \alpha, \alpha^{2}\right\}$ is always a basis.
- $\left\{1, \alpha, \alpha^{3}\right\}$ is NOT always a basis, but by judicious choice of α, we can ensure this.
- That such an element always α exists requires nontrivial theorems from number theory (such as the Primitive Normal Basis Theorem).

Basis for \mathbb{F}_{27}	Basis for \mathbb{F}_{3}^{3}
$1, \alpha, \alpha^{16}$	$001,010,201$
$\alpha, \alpha^{2}, \alpha^{17}$	$010,100,211$
$\alpha^{2}, \alpha^{3}, \alpha^{18}$	$100,102,011$
$\alpha^{3}, \alpha^{4}, \alpha^{19}$	$102,122,110$
$\alpha^{4}, \alpha^{5}, \alpha^{20}$	$122,022,202$
$\alpha^{5}, \alpha^{6}, \alpha^{21}$	$022,220,221$
$\alpha^{6}, \alpha^{7}, \alpha^{22}$	$220,101,111$
$\alpha^{7}, \alpha^{8}, \alpha^{23}$	$101,112,212$
$\alpha^{8}, \alpha^{9}, \alpha^{24}$	$112,222,021$
$\alpha^{9}, \alpha^{10}, \alpha^{25}$	$222,121,210$
$\alpha^{10}, \alpha^{11}, \alpha^{13}$	$121,012,002$
$\alpha^{11}, \alpha^{12}, \alpha^{14}$	$012,120,020$
$\alpha^{12}, \alpha^{15}, 1$	$120,200,001$
$\alpha^{15}, \alpha^{16}, \alpha$	$200,201,010$
$\alpha^{16}, \alpha^{17}, \alpha^{2}$	$201,211,100$
$\alpha^{17}, \alpha^{18}, \alpha^{3}$	$211,011,102$
$\alpha^{18}, \alpha^{19}, \alpha^{4}$	$011,110,122$
$\alpha^{19}, \alpha^{20}, \alpha^{5}$	$110,202,022$
$\alpha^{20}, \alpha^{21}, \alpha^{6}$	$202,221,220$
$\alpha^{21}, \alpha^{22}, \alpha^{7}$	$221,111,101$
$\alpha^{22}, \alpha^{23}, \alpha^{8}$	$111,212,112$
$\alpha^{23}, \alpha^{24}, \alpha^{9}$	$212,021,222$
$\alpha^{24}, \alpha^{25}, \alpha^{10}$	$021,210,121$
$\alpha^{25}, \alpha^{13}, \alpha^{11}$	$210,002,012$
$\alpha^{13}, \alpha^{14}, \alpha^{12}$	$002,020,120$
$\alpha^{14}, 1, \alpha^{15}$	$020,001,200$

S_{m} ACTING ON 2-SUBSETS

- Consider $G=S_{m}$, acting on the 2 -subsets of $\{1, \ldots, m\}$.
- Degree $\binom{m}{2}$, minimum degree $2(m-2)$, so we have $r=m-3$.
- Think of the 2-subsets as the edges of the complete graph K_{m}.
- An example of a base is a spanning subgraph of the form

We call these bases V-graphs.

- V-graphs can easily be embedded into Hamilton circuits.

CONSTRUCTING A UBB FOR THIS

Using Ore's Theorem, we can show that $K_{m} \backslash R$ is Hamiltonian (where R is an arbitrary r-set of edges). This shows us that an uncovering-by-bases formed from V-graphs always exists.

To construct one:

- Use decompositions of K_{m} into either (i) Hamilton cycles (if m is odd), or (ii) Hamilton cycles and a 1-factor (if m is even).
- In each Hamilton circuit obtained, obtain a number of V-graphs.
- How many we need is determined by congruence classes modulo 3 , but we either need 3 or 4 to succeed.
- For example, with $m=7$ we have the following.

UBBs FOR MATROIDS

For a particular class of groups, known as IBIS groups, the irredundant bases of the group are precisely the bases (i.e. maximal independent sets) of a matroid.

The definition of uncovering-by-bases holds for matroids. (For IBIS groups the two notions coincide.)

For example, with the uniform matroid $U_{m, n}$, where every m-subset of $\{1, \ldots, n\}$ is a base, a UBB is just an (n, m, r) uncovering (for some r).

Questions:

- What is the obvious value of r to choose?
- What does the r we had before represent in terms of matroid theory?
- For an IBIS group G, the fixed point sets of G are all flats of the corresponding matroid. In fact, every maximal proper flat is a fixed point set.
- Thus r, as we had it before, can be determined from the cardinality of a maximal proper flat.
- In the group case, this parameter has a "nice" interpretation, in terms of coding theory.
- What, if anything, does it mean for matroids?

