Uncoverings-by-bases for groups and matroids

Robert Bailey Queen Mary, University of London r.f.bailey@qmul.ac.uk http://www.maths.qmul.ac.uk/~rfb/

Workshop on Covering Arrays, 16th May 2006

COVERINGS, UNCOVERINGS AND UBBs

- An (n,m,r) covering design is a set C of m-subsets of {1,...,n} such that any r-subset of {1,...,n} is contained in at least one of the m-subsets.
- An (n,k,r)-uncovering is a set U of k-subsets of {1,...,m} such that any r-subset of {1,...,n} is disjoint from at least one of the k-subsets.
- A base for a finite permutation group G acting on a set Ω is a sequence of points (x₁,...,x_b) from Ω such that its pointwise stabiliser is the identity.
- An uncovering-by-bases (or UBB) for G acting on Ω is a set U of bases so that any r-subset of Ω is disjoint from at least one base in U.
- Interesting case: when $r = \left\lfloor \frac{d-1}{2} \right\rfloor$, where *d* is the minimum degree of *G*.

EASY EXAMPLES

- If *G* is sharply *k*-transitive and has degree *n*, we have $r = \lfloor \frac{n-k}{2} \rfloor$ and any *k*-subset of $\{1, \ldots, n\}$ is a base. So we just need an (n, k, r)-uncovering.
- $H \wr S_n$, where *H* is a regular group of degree *m*.
 - Minimum degree is *m*, so $r = \left\lfloor \frac{m-1}{2} \right\rfloor$.
 - We think of Ω as an $m \times n$ rectangle. A base consists from a single point drawn from each column:

We call this a *transversal* of Ω .

- A UBB consists of r+1 disjoint transversals.

$$\operatorname{GL}(n,q)$$

- A basis for the vector space \mathbb{F}_q^n is a base for $\mathrm{GL}(n,q)$ acting on the non-zero vectors.
- The minimum degree is $q^n q^{n-1}$, so $r = \left\lfloor \frac{q^n q^{n-1} 1}{2} \right\rfloor$.
- For n = 2, this is easy to deal with.
- For n = 3, things are more difficult!

AN UNCOVERING BY TRIPLES

- To obtain a (2m, 3, m-1)-uncovering, think of the 2m-set as \mathbb{Z}_{2m} , then take all triples of the form $\{i-1, i, i+m\}$ for $i \in \mathbb{Z}_{2m}$.
- For example, with m = 5, we have

 We use this construction to construct a UBB for GL(3,q), by forcing each triple to be a basis for the vector space.

$\operatorname{GL}(3,q)$, for q odd

- We need a map from \mathbb{Z}_{2m} to \mathbb{F}_q^3 which forces each triple to be a basis.
- Instead of the vector space, we work in the extension field \mathbb{F}_{q^3} .
- Suppose q is odd, so that $q^3 1$ is even, say $q^3 1 = 2m$.
- We can write the elements of $\mathbb{F}_{q^3} \setminus \{0\}$ as

$$\left\{1, \alpha, \alpha^2, \ldots, \alpha^{2m-1}\right\}$$

where α is a primitive element of \mathbb{F}_{q^3} .

Obvious map: *i* → α^{*i*}. Unfortunately, this doesn't work! (Since α^{*m*} = −1, {1, α, α<sup>*m*+1</sub>} = {1, α, −α}, which is clearly not a basis.)
</sup>

Instead, we use the following trick.

• Define $\varphi_{\alpha}: \mathbb{Z}_{2m} \to \mathbb{F}_{a^3}^*$ by

i	0	1	2	•••	m-1	т	m+1	•••	2m - 3	2m - 2	2m - 1
$\varphi_{\alpha}(i)$	1	α	α^2	•••	α^{m-1}	α^{m+2}	α^{m+3}	•••	α^{2m-1}	α^m	α^{m+1}

- This leaves us with several cases to check, it reduces to verifying that $\{1, \alpha, \alpha^2\}$ and $\{1, \alpha, \alpha^3\}$ are bases.
- $\{1, \alpha, \alpha^2\}$ is always a basis.
- {1,α,α³} is NOT always a basis, but by judicious choice of α, we can ensure this.
- That such an element always α exists requires nontrivial theorems from number theory (such as the *Primitive Normal Basis Theorem*).

Basis for \mathbb{F}_{27}	Basis for \mathbb{F}_3^3
$1, \alpha, \alpha^{16}$	001,010,201
$\alpha, \alpha^2, \alpha^{17}$	010, 100, 211
$\alpha^2, \alpha^3, \alpha^{18}$	100, 102, 011
$\alpha^3, \alpha^4, \alpha^{19}$	102, 122, 110
$\alpha^4, \alpha^5, \alpha^{20}$	122,022,202
$\alpha^5, \alpha^6, \alpha^{21}$	022,220,221
$\alpha^6, \alpha^7, \alpha^{22}$	220, 101, 111
$\alpha^7, \alpha^8, \alpha^{23}$	101,112,212
$\alpha^8, \alpha^9, \alpha^{24}$	112,222,021
$\alpha^9, \alpha^{10}, \alpha^{25}$	222, 121, 210
$\alpha^{10}, \alpha^{11}, \alpha^{13}$	121,012,002
$\alpha^{11}, \alpha^{12}, \alpha^{14}$	012,120,020
$\alpha^{12}, \alpha^{15}, 1$	120,200,001
$\alpha^{15}, \alpha^{16}, \alpha$	200,201,010
$lpha^{16}, lpha^{17}, lpha^2$	201,211,100
$\alpha^{17}, \alpha^{18}, \alpha^{3}$	211,011,102
$lpha^{18}, lpha^{19}, lpha^4$	011,110,122
$\alpha^{19}, \alpha^{20}, \alpha^{5}$	110,202,022
$\alpha^{20}, \alpha^{21}, \alpha^{6}$	202,221,220
$\alpha^{21}, \alpha^{22}, \alpha^7$	221,111,101
$\alpha^{22}, \alpha^{23}, \alpha^{8}$	111,212,112
$\alpha^{23}, \alpha^{24}, \alpha^9$	212,021,222
$\alpha^{24}, \alpha^{25}, \alpha^{10}$	021,210,121
$\alpha^{25}, \alpha^{13}, \alpha^{11}$	210,002,012
$\alpha^{13}, \alpha^{14}, \alpha^{12}$	002,020,120
$\alpha^{14}, 1, \alpha^{15}$	020,001,200

S_m ACTING ON 2-SUBSETS

- Consider $G = S_m$, acting on the 2-subsets of $\{1, \ldots, m\}$.
- Degree $\binom{m}{2}$, minimum degree 2(m-2), so we have r = m 3.
- Think of the 2-subsets as the edges of the complete graph *K_m*.
- An example of a base is a spanning subgraph of the form

We call these bases V-graphs.

 V-graphs can easily be embedded into Hamilton circuits.

CONSTRUCTING A UBB FOR THIS

Using Ore's Theorem, we can show that $K_m \setminus R$ is Hamiltonian (where *R* is an arbitrary *r*-set of edges). This shows us that an uncovering-by-bases formed from V-graphs always exists.

To construct one:

- Use decompositions of K_m into either (i) Hamilton cycles (if m is odd), or (ii) Hamilton cycles and a 1-factor (if m is even).
- In each Hamilton circuit obtained, obtain a number of V-graphs.
- How many we need is determined by congruence classes modulo 3, but we either need 3 or 4 to succeed.
- For example, with m = 7 we have the following.

UBBs FOR MATROIDS

For a particular class of groups, known as *IBIS groups*, the irredundant bases of the group are precisely the bases (i.e. maximal independent sets) of a matroid.

The definition of uncovering-by-bases holds for matroids. (For IBIS groups the two notions coincide.)

For example, with the uniform matroid $U_{m,n}$, where every *m*-subset of $\{1, \ldots, n\}$ is a base, a UBB is just an (n, m, r)-uncovering (for some *r*).

Questions:

- What is the obvious value of *r* to choose?
- What does the *r* we had before represent in terms of matroid theory?

- For an IBIS group *G*, the fixed point sets of *G* are all flats of the corresponding matroid. In fact, every maximal proper flat is a fixed point set.
- Thus *r*, as we had it before, can be determined from the cardinality of a maximal proper flat.
- In the group case, this parameter has a "nice" interpretation, in terms of coding theory.
- What, if anything, does it mean for matroids?