
Charles J. Charles J. ColbournColbourn
Computer Science and EngineeringComputer Science and Engineering
Arizona State University, Tempe, AZArizona State University, Tempe, AZ

Constructions of
Covering Arrays

0012
0201
0120
1102
1021
1210
2222
2111
2000

Challenge: Deleting a SymbolChallenge: Deleting a Symbol

It is well known that

CAN(2,k,v) ≤
 CAN(2,k,v-1) – 1.

02012
02201
02120
1102
1021
1210
20222
20111
20000

Challenge: Deleting a SymbolChallenge: Deleting a Symbol

Proof 1:

Make the first row
constant by
renaming symbols.

Then delete it.

001*0
0*001
01*00
110*0
10*01
1*010
**0*0*0
*111
*000

Challenge: Deleting a SymbolChallenge: Deleting a Symbol

Proof 2:

Change all of largest
symbol in each
column to * = “don’t
care”

Then fill in * with
entries from first row.

Then delete first row.

02012
02201
02120
1102
1021
1210
20222
20111
20000

Challenge: Deleting a SymbolChallenge: Deleting a Symbol

First rename
symbols and delete
first row.

2*12
22*1
212*
11*2
1*21
121*
*222
*111

Challenge: Deleting a SymbolChallenge: Deleting a Symbol

Second replace all
elements in the
deleted row by *

2112
2211
2121
1112
1121
1211
*222
*111

Challenge: Deleting a SymbolChallenge: Deleting a Symbol

Now move top row
elements into *
positions and delete
top row.

2112
2211
2121
1112
1121
1211
*222

Challenge: Deleting a SymbolChallenge: Deleting a Symbol

This works in general
and shows that

CAN(2,k,v) ≤
 CAN(2,k,v-1) – 2.

In fact it works for
mixed covering
arrays by removing
one level from each
factor.

Challenge: Deleting a SymbolChallenge: Deleting a Symbol

Is it always the case for k,v ≥ 2 that

CAN(2,k,v) ≤ CAN(2,k,v-1) – 3?

For mixed CAs too?

True for OAs from the projective plane.

A Testing ProblemA Testing Problem

• The user is presented with n
parameters (“factors”), each having
some finite number of values (“levels”).

• The j’th factor has sj levels; continuous
factors are modelled by a finite number
of intervals.

• Initially, we assume that levels for
factors can be selected independently.

Covering ArraysCovering Arrays

• A covering array is an N x k array.
• Symbols in column j are chosen from an

alphabet of size sj

• Choosing any N x t subarray, we find every
possible 1 x t row occurring at least once; t is
the strength of the array.

• Evidently, the number N of rows must be at
least the product of the t largest factor level
sizes

Covering ArraysCovering Arrays

• In general this is not sufficient. For constant t
> 1 and factor level sizes, the number of rows
grows at least as quickly as log n.

• Indeed, even for t=2, every two columns of
the covering array must be distinct

• and this alone suffices to obtain a log n lower
bound.

Covering ArraysCovering Arrays

CAλ(N;t,k,v)
– An N x k array where each N x t sub-array contains

all ordered t-sets at least λ times.

1
0
0
1
0
1

0101
1000
1101
0000
0011
1110

CA(6;2,5,2)

Covering ArraysCovering Arrays

• The goal, given k, t, and the sj’s, is to
minimize N. Or given N, t, and the sj’s,
to maximize k.

Covering ArraysCovering Arrays

• Research on the problem has fallen into four
main categories:
– lower bounds
– combinatorial/algebraic constructions

• direct methods
• recursive methods

– probabilistic asymptotic constructions
– computational constructions

• exact methods
• heuristic methods

Basic Combinatorial MethodsBasic Combinatorial Methods

• Consider the problem of constructing a
covering array of strength two, with g levels
per factor, and k factors.

• We could hope to have as few as g2 rows
(tests), and if this were to happen then every
2-tuple of values would occur exactly once (a
stronger condition than ‘at least once’).

• If we strengthen the condition to ‘exactly
once’, the covering array is an orthogonal
array of index one.

Orthogonal ArraysOrthogonal Arrays
OAλ(N;t,k,v) -An N x k array where each N x t sub-

array contains all ordered t-sets exactly λ times.

1111
0011
0101
1001
0110
1010
1100
0000

OA(8;3,4,2)

Orthogonal ArraysOrthogonal Arrays

• For strength two, an orthogonal array of index
one with g symbols and k columns exists
– only when k ≤ g+1,
– if k ≤ g+1 and g is a power of a prime.

• For primes, form rows of the array by
including (i,j,i+j,i+2j,…,i+(g-1)j) for all choices
of i and j, doing arithmetic modulo g as
needed.

• For prime powers, the symbols used are
those of the finite field.

• For non-prime-powers, lots of open
questions!

Direct MethodsDirect Methods

• OAs provide a direct construction of covering
arrays.

• Another direct technique chooses a group on
g symbols, and forms a ‘base’ or ‘starter’
array which covers every orbit of t-tuples
under the action of the group.

• Then applying the action of the group to the
starter array and retaining all distinct rows
yields a covering array (typically exhibiting
much symmetry as a consequence of the
group action).

Direct MethodsDirect Methods

• An example
(-,0,1,3,0,2,1,4)

• Form eight cyclic shifts
• Add a column of 0 entries
• Develop modulo 5
• Add the 6 constant rows (with – in last

column) to get
CA(46;2,9,6)

Direct MethodsDirect Methods

• Develop modulo 5
• Add 6 constant rows (with – in last column)

0-4120310
00-412031
010-41203
0310-4120
00310-412
020310-41
0120310-4
04120310-

Direct MethodsDirect Methods

• Stevens/Ling/Mendelsohn: From
PG(2,q) delete a point to obtain a frame
resolvable q-GDD of type (q-1)(q+1).
Extend a frame pc and fill in “don’t care’’
positions to get a CA(2,q+2,q-1) with q2-
1 rows.

• (C, 2005) Can be extended to get a
CA(2,q+1+x,q-x) for all nonnegative x.
Relies only on having a row with no
twice-covered pair.

Direct MethodsDirect Methods

• Sherwood: Rather than use the field as
a group of symmetries, use partial test
suites build from the field and a
compact means of determining when t
such partial suites cover all possibilities.

• Sherwood, Martirosyan, C (2006): many
new constructions for t=3,4,5

• Walker, C (preprint): and for t=5,6,7.

Recursive MethodsRecursive Methods

B

• A simple example (the Roux (1987) method).

B

AA
A is a strength 3 covering array, 2 levels
per factor.

B is a strength 2 covering array, 2 levels
per factor.

The bottom contains complementary
arrays.

The result is a strength 3 covering array.

Generalizing RouxGeneralizing Roux

• Extensions by
– Chateauneuf/Kreher (2001) to t=3, all g
– Cohen/C/Ling (2004) to t=3, adjoining more than

two copies, all g
– Hartman/Raskin (2004) to t=4
– Martirosyan/Tran Van Trung (2004) to all t under

certain assumptions
– Martirosyan/C (2005) to all t, all g.
– C/Martirosyan/Trung/Walker(2006) for t=3, t=4.

Roux for twoRoux for two

• Prior to the Roux construction for t ≥ 3, Poljak
and Tuza had studied a direct product
construction when t=2.

• This forms the basis of methods of Williams,
Stevens, and Cohen & Fredman.

Roux for twoRoux for two

• Let A be a CA(N;2,k,v) and B a CA(M;2,f,v)

is a CA(N+M;2,kf,v).

AA A………

b1b1b1b1 b2b2b2b2
bfbfbfbf

………

Roux for twoRoux for two

• Stevens showed that when each array has v
constant rows, the resulting array has v
duplicated rows and hence v rows can be
removed.

• A recent extension (CMMSSY, 2006) shows
that even when the arrays have “nearly
constant” rows, again v rows can be
eliminated.

• And an extension to mixed CAs.

Roux for twoRoux for two

• Let O be the all zero matrix
• Let C be a matrix with v rows, all of which are

constant and distinct
• An SCA(N;2,k,v) A looks like

A1

OC

A2

Roux for twoRoux for two

Let A be a SCA(N;2,k,v), B a SCA(M;2,f,v)
minus v rows forming C,O

A1 A2A1 A2 A1………

b1b1b1b1 b2b2b2b2
bfbfbfbf………

OO C O C O

has M+N-v rows

PHF and PHF and TuranTuran Families Families

• Of particular note, but not enough time to
discuss in detail:
– Bierbrauer/Schellwat (1999): use a “perfect hash

family” of strength t whose number of symbols
equals the number of columns of the CA.
Substitute columns for symbols. Asymptotically the
best thing since sliced bread.

– Hartman (2002): Turan families used much like
above but more accurate for arrays with few
symbols.

Four Values Per FactorFour Values Per Factor

Six Values Per FactorSix Values Per Factor

Ten Values Per FactorTen Values Per Factor

13 Values Per Factor13 Values Per Factor

TablesTables

• For more tables than you can shake a
stick at (and updates of the ones here),
see
– Colbourn (Disc Math, to appear) for t=2
– C/M/T/W (DCC, to appear) for t=3, 4
– Walker/C (preprint) for t=5

• We need better *general* direct
constructions for small t, better recursions
for large t.

ThanksThanks

