2002 Final
Question 1

$$
\begin{aligned}
& g(t)=\frac{d x(t)}{d(t)} \Rightarrow \\
& g(t)=g_{1}(t)+g_{2}(t) \\
& G_{1}(j w)=f_{1}\left[g_{1}(t)=\frac{2 \sin w \cdot \frac{1}{2}}{w} e^{-j w \frac{1}{2}}\right. \\
& G_{2}(j w)=f_{1}\left[g_{2}(t)\right]=e^{-j w} \\
& G(j w)=G_{1}(j w)+G_{2}(j w)=\frac{2 \sin w \cdot \frac{1}{2}}{w} e^{-j \omega \frac{1}{2}}-e^{-j w} \\
& X(j w)=\frac{G(j w)}{j w}+\pi G(v) \delta(\omega) \\
& \text { and } G(0)=0
\end{aligned}
$$

so

$$
\begin{aligned}
x(j w) & =\frac{\frac{2 \sin \omega \frac{1}{2}}{w} e^{-j \omega \frac{1}{2}}-e^{-j w}}{j w} \\
& =\frac{2 e^{-j \frac{w}{2}} \sin \frac{w}{2}}{j \omega^{2}}-\frac{e^{-j w}}{j \omega}
\end{aligned}
$$

Question 2
(a) the impulse response of the system is

$$
H(j w)=\frac{2}{(j w)^{2}+6 j w+8}
$$

(b) the input $x(t)=e^{-2 t} u(t)$
it Fonnier transform is $x(j w)=\frac{1}{2+j \omega}$
so the output of this system is

$$
\begin{aligned}
Y(j w) & =H(j w) \times(j w) \\
& =\frac{2}{(j w)^{2}+6 j w+8} \cdot \frac{1}{2+j w} \\
& =\frac{2}{(2+j w)^{2}(4+j w)} \\
& =\frac{A_{11}}{2+j w}+\frac{A_{12}}{(2+j w)^{2}}+\frac{A_{13}}{4+j w .}
\end{aligned}
$$

Based on the techniques of partial - fraction expansion
we obtained $A_{11}=-\frac{1}{2}, A_{12}=1, A_{13}=\frac{1}{2}$

$$
Y(j w)=\frac{-\frac{1}{2}}{2+j w}+\frac{1}{(2+j w)^{2}}+\frac{\frac{1}{2}}{4+j w}
$$

the out put of the system then cam be found by inverse transform

$$
y(t)=\left(-\frac{1}{2} e^{-2 t}+t e^{-2 t}+\frac{1}{2} e^{-4 t}\right) u(t)
$$

Question 3

$$
\begin{aligned}
X(j \omega) & =\frac{1}{1-\frac{1}{2} e^{-j \omega}} \\
Y(j \omega) & =\frac{1}{4} \cdot \frac{1}{1-\frac{1}{2} e^{-j \omega}}+\frac{1}{1-\frac{1}{4} e^{-i \omega}} \\
H(j \omega) & =\frac{Y\left(e^{-j \omega}\right)}{X\left(e^{j \omega}\right)}=\frac{\frac{1}{4} \cdot \frac{1}{1-\frac{1}{2} e^{-i \omega}}+\frac{1}{1-\frac{1}{4} e^{-i \omega}}}{\frac{1}{1-\frac{1}{2} e^{-j \omega}}} \\
& =\frac{1}{4}+\frac{1-\frac{1}{2} e^{-j \omega}}{1-\frac{1}{4} e^{-i \omega}}=\frac{1}{4}+1-\frac{\frac{1}{4} e^{-j \omega}}{1-\frac{1}{4} e^{-j \omega}} \\
& =\frac{5}{4}-\frac{1}{4} \cdot \frac{1}{1-\frac{1}{4} e^{-j \omega}} \cdot e^{-j \omega} \\
h(n) & =f^{-1}[H(j \omega)]=\frac{5}{4} \delta(n)-\frac{1}{4}\left(\frac{1}{4}\right)^{n-1} u(n-1)
\end{aligned}
$$

Qnestion 4
(a)

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\frac{1}{2}+\frac{1}{2} e^{-j \omega} \\
& h(n)=\frac{1}{2} \delta(n)+\frac{1}{2} \delta(n-1)
\end{aligned}
$$

(b) $\left|H\left(e^{j \omega}\right)\right|=\frac{1}{2}\left|1+e^{-i \omega}\right|=\left|\cos \frac{\omega}{2}\right|$
(c)

(d) low-pass filter

Question 5
(a) the differential expression for this system is

$$
R c \frac{d y(t)}{d t}+L c \frac{d^{2} y(t)}{d t^{2}}+y(t)=x(t)
$$

(b)

$$
H(j w)=\frac{1}{L(c j w)^{2}+R C(j w)+1}
$$

(c)

$$
\begin{aligned}
& L=10 \times 10^{-3} \mathrm{H} \\
& C=100 \times 10^{-6} \mathrm{~F} \\
& R=1 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& H(j w)=\frac{\frac{1}{L C}}{(j w)^{2}+\frac{R}{L} j w+\frac{1}{L C}}=\frac{\frac{1}{L C}}{(j w)^{2}+2 \frac{1}{\sqrt{L C}} \cdot \frac{\sqrt{C C} \cdot R}{2 C} j w+\frac{1}{L_{C}}} \\
& \xi=\frac{1}{2} \sqrt{\frac{C}{L}} R=\frac{1}{2} \sqrt{\frac{109 \times 10^{-6}}{10 \times 10^{-3}}}<1
\end{aligned}
$$

So the system is over-damped

Question 6

$$
\begin{aligned}
H(j \omega) & =\frac{10+j \omega}{(1+j \omega)(100+j \omega)} \\
& =\frac{1}{10} \cdot \frac{1}{1+j \omega} \cdot \frac{1}{1+\frac{j w}{100}} \cdot\left(H \frac{j w}{10}\right)
\end{aligned}
$$

Question 7
(a)

$$
\begin{aligned}
& x(t)=1+\cos (100 \pi t)+\cos (200 \pi t) \\
& f_{M}=100 \\
& \text { So Nyquist rate fs }=2 f_{M}=200
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y(t)=x^{2}(t)=(1+\cos 100 \pi t+\cos 200 \pi t)^{2} \\
& f_{M}=200
\end{aligned}
$$

So Nyquist rate $f_{s}=2 f_{m}=400$.

Question 8
(a) $H(s)=\frac{1}{s^{2}-s-2}$
(b)

$$
H(s)=\frac{1}{(s-2)(s+1)} \Rightarrow
$$

(c)

$$
H(s)=\frac{A}{s-2}+\frac{B}{s+1}=\frac{\frac{1}{3}}{s-2}-\frac{\frac{1}{3}}{s+1}
$$

(i) The system is stable \rightarrow

$$
y(t)=-\frac{1}{3} e^{2 t}\left(\begin{array}{l}
\text { nt) } \\
u(-t) \\
\hline
\end{array}\right.
$$

(ii) The system is causal $\rightarrow\left(\frac{1}{3} e^{2 t}-\frac{1}{3} e^{-t}\right) u(t)$ (iii) The system is neither stable nor causal

$$
h y(t)=\left(-\frac{1}{3} e^{2 t}+\frac{1}{3} e^{-t}\right) u(-t)
$$

