SAMPLING

7.0 INTRODUCTION
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Under certain conditions, a continuous-time signal can be cotnpletely represented by and
recoverable from knowledge of its values, or samples. at points equally spaced in time.
This somewhat surprising property follows from a basic result that is referred to as the
sampling theorem. This theorem is extremely important and useful. It is exploited, for
example, in moving pictures, which consist of a sequence of individual frames, each of
which represents an instantaneons view (i.e.. a sample in time} of a continnously changing
scene. When these samples are viewed in sequence at a sufficiently fast rate, we perceive
an accurate representation of the original continuously moving scene. As another example,
printed pictures typically consist of a very fine grid of points, each_corresponding to a
sample of the spatially continuous scene represented in the picture. If the samples are
sufficiently close together, the picture appears to be spatially continuous, although under
a magnifying glass its representation in terms of samples becomes evident,

Much of the importance of the sampling theorem also lies in its role as & bridge
between continuous-time signals and discrete-time signals. As we will see in this chapter,
the fact that under certair conditions a continuous-time signal can be completely recovered
from a sequence of its samples provides a mechanizin for representing a continuous-time
signal by a discrete-time signal. In many contexts, processimng discrete-time signals is more
flexible and is often preferable to processing continwous-time sighals, This is due in large
part to the dramatic development of digital technology over the past few decades, result-
ing in the availability of inexpensive, lightweight, programmable, and easily reproducibie
discrete-lime systems. The concept of sampling, then, suggests an extremely atractive
and widely employed method for using discrete-time systern technelogy to implement
continuous-time systems and process contingous-time signals: We exploit sampling to
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convert a continuous-time signal to a discrete-time signal. process the discrete-time signal
using a discrete-time system, and then convert back to continuous time.

In the following discussion, we introduce and develop the concept of sampling and
the process of reconstructing a continucus-time signal from its samples. In this discus-
sion, we both identify the conditions under which a continuous-time signal can be exactly
reconstructed from its samples and examine the consequences when these conditions are
not satisfied. Following this, we explore the processing of continnous-time signals that
have been converted o discrete-time signals through sampling. Finally, we examune the

sampling of discrete-time signals and the related concepts of decimation and interpota-
tion.

7.1 REPRESENTATION OF A CONTINUOUS-TIME SIGNAL BY ITS SAMPLES:
THE 5AMPLING THEOREM

In general. in the absence of any additional conditions or information. we would not expect
that a signal could be uniquely specified by a sequence of equally spaced samples. For
cxample, in Figure 7.1 we illustrate three different continnous-time signais, all of which
have identical values at integer multiples of T, that is,

Xy (kT) = x20kT) = x3(kT).

Clearly, an infinite number of sigrals can generate a given set of samples. As we
will see, however, if 4 signal is band limited— e, if its Fourier transform i1s zero outside
a Tinite band of frequencies—and if the samples are taken sufficiently ciose together in
relation to the highest frequency present in the signal, then the samples uniguety specify
the sighal, and we can reconstruct it perfectly. This result, known as the sampling theorem,
is of profound importance in the practical application of the methods of signal and sysiem
analysis.

3l wy(t) Xa{t)

aT 2t =37 0 T 2T 2T t

Figure 7.1 Three continuous-time signals with identical values at integer
multiples aof T,
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7.1.1 impulise-Train Sampling

In order to develop the sampling thearem, we nzed a conventent way i which to represent
the sampling of a continuous-time signal at regular intervals. A useful way to do this is
through the use of a periodic impulse train multiplied by the continucus-time signal xt)
that we wish to sample This mechanism, known as impulse-train sampiing, is depicted
in Figure 7.2. The periodic impulse train p(r) is referred o as the sampling funciion, the
period T as the sampling period’ and the fundamental frequency of pt), w, = 2wfT as
the sampling freguency. In the time domait,

xp(f) = x(e)pla), (7.1)

where

Py = > 8¢~ a7 (7.2)

A= =

Because of the sampling property of the unit impulse discussed in Section 1.4.2, we
know that moltiplving x(#) by a unit impulse samples the value of the signal at the point at
which the impuise is located; 1.e., x(#)8{f — tp) = x(#)5{t — #o). Applying this to eq. (7.1),
we se€, a5 illvstrated in Figuse 7.2, that x,(7) 15 an impulse train with the amplitudes of
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t  Flgure 7.2 Impulse-train sampling.
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the impulses equal to the samples of x(f) at intervals spaced by T that is,

+

Xpt) = > x(nT)b(t — nT). (.3

From the multiplication property (Section 4.5), we know that

X 1 . .
Xp(jw) = Eq—r[a’f(.!w)* P(jw)], (14)
and from Example 4.8,
4
P(jw) = ZT” > 8w — ki) (1.5)
k=-m

Since convelution with an impulse simply shifis a signal [ie., X(jw) * §{w — wy) =
X(f{w — wg))], it follows that

Xp(jw) = 5 > X ~ kw)). (7.6}

k= —m

That is, Xp( fer) 15 a periodic funclion of w consisting of a superposition of shifted replicas
of X{ jw), scaled by 1/T, as illustrated in Figure 7.3. In Figure 7.3(c), war < (0, — wpy),
or equivalently, w; > 2wy, and thus there is no overlap between the shifted replicas of
X{ jw), whereas in Fignre 7.3(d}, with w; < 2e s, there is overiap. For the case illustrated
in Figure 7.3(c), X{jw) is faithfully reproduced at integer multiples of the sampling fre-
quency. Consequently, if w; > 2atyy, x(7) can be recovered exactly from x,(r) by means of
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a lowpass filter with gain T and a cutoff frequency greater than wyy and less than &, — ey,
as indicated in Figure 7 4. This basic result, referred o as the sampling theorem, can be
stated as follows: '

Sampling Theorerm:
Let x{r) be a band-limited signal with X(jw) = 0 for |w| = war. Then x(r) is unigquely
determined by its sarnples x{nT). n = 0, £1, #2, . | if

&Js e ZCIJM..

where
2w
Wy T

Given these samples, we can reconstruct x(#) by generating a periodic impulisa train in
which successive impuises have amplitudes that are successive sample values. This
impulse train is then processed through an ideal lowpass filter with gain T and cutsff
frequency greater than wy and less than w; — wae. The resulting output signal will
exactly equal x(7).

'The important and clegaot samphng thearem was available for many yeers in a vanety of forms 1
the mathematics literature See, for example, J. M. Whittaker, “Inicrpelatory Funcion Theory,” (New York:
Stecher-Hafmer Scrvice Agency, 1964), chap. 4. It did not appear explicitly in (he literature of Commumeation
theory until the publication in 1949 of the clasuic paper by Shanoon ¢otitled “Comunenication in the Preseace of
Moise” (Proceedings of the IRE. January 1949, pp. 10-213. However, H. Nyquist in 1928 and D). Gabor 1n [ 946
had pointed cul, based onthe use of the Fourier Series, that 2TW pumbers are sufficient to represent a functinn
of doration T and highest frequency W, [H. Nygoisi, “Certain Topics m Telegraph Transmission Theory,” ATEE
Tranvactions, 1928, p. 61T, D, Gabor, *Theory of Communication,” Jeumal of FEE 93, 0, 26 [ 1946), p. 429,
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Figure 7.4 Exact recovery of a
continugus-tima signal from its sam-
pRs using an ideal lowpass fitter:

fa) system for sampling and recgn-
struction; (b} reprasentative spectrumn
tor x(1); (c) corresponding spectrum
for x(f); {d) ideal lowpass filter to re-
cover X{jw) from Xo{f}; (€) spectrum
af X{1.

The frequency Zwyy, which, under the sampling theorem, must be exceeded by the sam-
pling frequency, is commonly referred to as the Myvguist rate.?

As discussed in Chapter 6, ideal filters are generally not used in practice for a va-
riety of reasons. In any practical application, the ideal lowpass filter in Figure 7.4 would be

The frequency wy corresponding to onc-half the Nyquist rate 15 often referred to as the Nygust fre-

JUENCY.
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replaced by 4 nonideal filter H(ja) that approximated the desired frequency character-
istic accurately enough for the problem of interest (ie., H{jw} = 1 for |w| < wy, and
Hi jw) = 0 for || > ws — wa). Obviously, any such approximation in the lowpass Alter-
ing stage will lead to some discrepancy beiween x(f) and x.{r} in Figure 7.4 or, equiva-
lently, between X{ je) and X, { fer). The particular choice of nonidesal filter is then dictated
by the acceptable level of distortion for the application under consideranon For conve-
nience and to emphasize basic principles such as the sampling theorem, we wiil regularly
assume the availability and use of ideal filiers throughout this and the next chapter, with the
understanding that in practice such a filter must be replaced by a nonideal filter designed
to approximaile the ideal characterisues accurately encugh for the problem at hand.

7.1.2 Sampling with a Zero-Order Hold

The sampling theorem, which is most easily explained in terms of impulse-tira:n sampling.
establishes the fact that a band-limited signal 15 uniquely represented by 1ts samples_ In
practice, however, narrow, large-amplitude pulses, which approximate impulses, are alsc
relatively difficult 10 generate and transmit, and il is often more convenient o generate the
sampled signai in a form referred o as a zere-arder hold. Such a system samplcs xif) ar
i given instant and holds that value until the next instant at which a sample is taken, as
llustrated in Figure 7.5. The reconstruction of «{r} from tbe outpur of a zero-order hold
can agan be carmied out by lowpass filtenng. However, in this case, the required filter
na longer has constant gain in the passband. To develop the required filter charactenstic.
we first note that the output xqi(t) of the zero-order hold can in principle be gencrated by
impulse-train sampling followed by an LTT system with a rectangular impulse response, as
depicted in Fipure 7.6. To reconstruct xir) from x;(¢), we consider processing to(#) with an
LTI system with impulse response k() and frequency response #,(jw) The cascade of
this system with the sysiem of Figure 7.6 is sbown in Figure 7.7, where we wish to specify
H,{jew) so that r(¥} = x(t). Comparing the system i Figure 7.7 with that in Figure 7 4,
we see that rir) = x(r) if the cascade combination of fy(¢) and A, (r} is the ideal lowpasy
filter F{jw) used in Figure 7.4. Since, from Example 4.4 and the time-shifting property
in Section 4.3.2,

Hyljw) = e~ vT7 [E—E‘“E‘:Tm]. 7.7
this requures that
. g o TﬂH{jm]
Hjw) = m (7.8}
it
/\_/\ x{ﬂ o o I:t} K -

hiakd

Figure 7.5 Sampling utilizing a zero-order hold.
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Figure 7.8 Magnitude and phase
-3 far the reconstruciion filter for a zero-
T order hold.

For example, with the cutoff frequency of H{jw) equal 1o »,/2, the ideal magnitude and
phase for the reconstruction filter following a zero-order hold is that shown in Figure 7.8.

Once again, in practice the frequency response in eq. (7.8) cannot be exactly realized,
and thus an adequate approximation 0 it must be designed. In fact, in many situations, the
output of the zero-order hold is considered an adeguate approximation to the original signal
by itself, without any additional lowpass filtering, and in essence represents a possible, al-
though admittedly very coarse, interpelation between the sample values. Aiternatively, in
some applications, we may wish to perform some smoother interpolation between sample
values. [n the next section, we explore in more detail the general coacept of interpreting
the reconstruction of a signal from its samples as a process of interpolation.

7.2 RECONSTRUCTION OF A SHGNAL FROM ITS SAMPLES
LISING INTERPOLATION

Interpalation, that is, the fitting of & continuows signal to a set of sample values, is &
commeonly used precedure for reconstrcting a function, either approximately or exactly,
from samples. One simple interpolation procedure 15 the rero-order hold discussed in
Section 7.1. Another useful form ef interpolation is finear interpolarion, whereby adja-
cent sample points are connected by a straight bine, as illustrated in Figure 7.9 1In more

Figure 7.9 Linear interpofation be-
tween sample points. The dashed curve
- represents the onginal sigi#l and the

v solid curve the linear imtemalation.
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cemplicated interpelation formulas, sample points may be connected by higher erder poly-
nomials or other mathematical functions.

As we have seen in Section 7.1, for a band-limited signal, if the sampling mstants
are sufficiently close, then the signal can be reconstructed exactly; i.e., through the use
of a lowpass filter, exact interpolation can be carried out between the sample peints. The
interpretation of the reconstruction of x() as a process of interpolation becomes evident
when we consider the effect in the time domain of the lowpass filter in Figure 7.4, in
particular, the output is

x(8) = xp(t) * k()
or, with x,{f} given by eq, (7.3),

(-4

X8 = z alnTYAR(r — nT). 7.9

==

Equation (7.9) describes how to fit & continuous curve between the sample points

x{nT) and consequently represents an interpolation formula. For the ideal lowpass flter
H(jew) in Figure 7.4,

Rt = M_ (7.10;

ek

s that

w7 sin(e, (1 — nT))
T wlt—al

x40 = > xaT)

a-—m

(7.11)

The reconstruction according to eq. (7.11) with @, = w./2 is illustrated in Figure 7.10.
Figure 7.10¢{a} represents the original band-limited signal x{1), and Figure 7.10(b) rep-
Tesents x.(t), the ynpulse tramm of samples. In Figure 7.10{c), the saperposition of the
individual terms in eq. (7.11) is illustrated.

Interpolation using the impulse tesponse of an ideal lowpass filter as in eq. (7.11)
is commonly referred to as band-limited interpolation, since it implements exact re-
construction if x(#) is band limited and the sampling frequency satisfies the condi-
tiens of the sampling theorem. As we have indicated, in many cases it is preferable
to use a less accurate, but simpler, filter or, equivalently, a simpler interpolating fuonc-
ton than the function in eq. (7.10). For example, the zero-order hold can be viewed
as a form of interpolation between sample values in which the interpolating function
A(t) is the impulse response kr(r) depicted in Figure 7.6. In that sense, with x,(f)
in the figure corresponding to the approximation o x(r), the system hy(f) sepresents
an approximation to the ideal lowpass filter required for the exact imterpolation. Fig-
ure 7.11 shows the magnitude of the transfer function of the zers-order-hold interpo-
lating filter, superimposed on the desired transfer function of the exact interpolating
filter.

Both from Figure 7.11 and from Figure 7.6, we see that the zerp-order hold is a very
rough approximation, although in some cases it is sufficient. For exampie, if additional
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Figure 7.10  Ideal band-fimited in-
terpolation using the sinc function;

{a) band-limiteqd signal x{f}; {b] im-
pulse train of samples of £{I} (c) ideal
band-lirited interpolation in which the
impulse train is replaced by a superpo-

ich sition of sing functions [eq. (7.11))
IH,{jo}
T
—— ld2al interpolating
filter
Zero-ordar
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Figure 7.11 Transfer function for
g g o g w, the zerp-order hoitt ang for the ideal
F]

2 interpoiating filter,

lowpass filtering is naturally applied in a given applicadon, it will tend to improve
the overall interpolation. This is illustrated in the case of pictures in Figure 7.12. Fig-
ure 7.12{a) shows pictures with impulse sampling (i.e., sampling with spatially nar-
row pulses). Figure 7.12(k) is the result of applying a two-dimensional zero-prder
hold to Figure 7.12(a), with a resulting mosaic effect. However, the human visual
system inherently imposes lowpass filtering, and consequently, when viewed at 2 dis-
tance, the discontinuities in the mosatc are smeothed. For examgple, in Figure 7.12(¢) a
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Figure }.72 {a} The original pistures of Figures 6 2{a) and {g) with impulse sam-
piing; (b} zero-orcer hold appliad to the pictures in {a). The visual systerm naturaity
introduces lowpass fitering with a cutoff frequency that decreases with distance.
Thus, when viewed 2 2 distance, the discantinuities in the mosaic in Figure 7 12(h)
are smoothed; (c) result of applying 2 zero-order nold atter impulse samping with
one-third the horizantal and verhical spacng used in (a) and {b).
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zero-order hold is again used, but here the sample spacing in each direction is one-fourth
that in Figure 7.12ta). With normal viewing, considerable lowpass filiering is namrally
applied, although the mosaic effect is still evident.

I the crude imterpolation provided by the zero-order hold is insufficient, we can use
a variety of smoother interpolation strategies, some of which are known collectively as
higher crder holds. In particular, the zero-order held produces an output signal, as in Fig-
ure 7.5, that is discontinuous. In contrast, linear interpolaticn, as illustrated in Figure 7.9.
yields reconstructions that are continugus, altheugh with discontincus derivatives due to
the changes in slope at the sample points. Linear interpolation, which is semetimes referred
to as a first-order hold, can also be viewed as interpolation 1n the form of Figure 7.4 and
eq. (7.9) with k() triangular, as illustrated in Figure 7.13. The associated transfer funetion
i also shown in the figure and is

1

H{jw) = _[ (7.12)

sin(wT#2) 1*
- .

wid

The transfer function of the first-order hold is shown superimposed on the wansfer function
for the ideal interpolating filter. Figare 7.14 corresponds to the same pictures as those in
Figure 7.12(b}, but with a first-order hold applied to the sampled picture. In an analegous
fashion, we can define second- and higher order holds that produce reconsuctions with a
higher degree of smoothaess. For example, the output of a second-order hold provides an
interpolation of the samnple values that is continueus and has a continuous first derivative
and discontinuous second derivative.

pitl
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x(t) hé il - Hr}f:z} - it
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T 2T t
{b)
Figure 7.13 Linear intarpolation
hit) {first-order hokd} as impulse-train sam-
nling followed by convolution with a
1 triangular impulse response: {a) sys-

tem for sampling and reconstructicn:

(b} impulse train ol samples; [c} im-

-T T * pulse response representing a first-
{c) order hobd;




Sec. 7.3 ThaEffect of Undersamgling: Aliasing

x{t)

Hija}
T
|, |deal interpolating
filter
First-arder
hold
|
B - 0 by oy W
2 F

7.3 THE EFFECT OF UNDERSAMPLING: ALIASING

527

Figure 7.13  Conlinved {d) first-
arder hold applied fo the sampled sig-
nal; {e) comparigon of transfer fungtion
of ideal imerpolating fitter and first-
arder hald.

In previous sections in this chapter, it was assumed that the sampling frequency was
sufficiently high that the conditions of the sampling theorem were met. As illustrated in
Figure 7 3, with w; > 2any, the spectrum of the sampled signal consists of scaled repli-
cations of the spectrum of x{#), and this forms the basis for the sampling theorem. When

{ai

(b}

Figure 7.143 Rasult of appiying a first-order hold rather than 4 zero-order hatd af-
ter impulse sampling with ane-third the horizontal and vertical spacing used in Fig-

ures 7.12{a) ang (k)
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ws < 2wy, X{jwr), the spectrum of x{t), is no longer replicated in X ,(jw) and thus is
no longer recoverable by lowpass filtering. This effect. in which the individual terms in
eq. (7.6} overlap, is referred_to as aliasing, and in this section we explore its effect and
CONSEUENCEs.

Clearly. if the system of Figure 7.4 is applied to a signal with w, < Zwy, the
reconstructed signal x,{r) will no longer be equal to x(i). However, as explored in
Problem 7.25, the original signal and the signal x,(¢) that is reconstructed using band-
Limited interpelation will always be equal at the sampling instants; that is, for any chaice
of w.,

xinT) = x(nT), n=10 %1 *2 . ... (7.13)

Some nsight into the relationship between x(#) and x,{1) when w, < Zwys is pro-
vided by considering in more detail the comparauvely simple case of a sinuscidal signal.
Thus, let

ity = coswnl, (7.14)

with Fourier transform X(fw} as indicated in Fignre 7.15(a). In this figure, we have
graphically distinguished the impulse at e from that at —wg for convenience. Let us
consider X, (jw), the spectturn of the sampled signal, and focus in particular on the
effect of a change in the frequency wg with the sampling frequency . fixed. In Fig-
ures 7.15(b){e), we illustrate X,(jw) for several values of wg. Also indicated by a
dashed Line 55 the passband of the lowpass filter of Figure 7.4 with o, = w,/2. Note
that no aliasing occurs in (b) and (c), since wy < w,/2, whereas aliasing does occur
i {d) and (e). For each of the four cases, the lowpass filtered output x,.(¢#) 1s given as
follows:

(a) @y = f’-ﬁ—’; x (1} = coswot = Xt}
®) wy = %; x (1) = coswer = x(f)
(€} wo = 4:’; x,(f) = cos(ers — wolf 7 xif)
@ wo = 22 x() = coslw, — wot # X0

Wiien aliasing occurs, the ofiginal frequency wy takes on the identity of a lower fre-
qUENCY, w; — wy. For wyf2 < wg < wy, as w increases relative (4 «w;,, the output frequency
w; — wy decreases. When w, = @y, for example, the reconstructed signal is a constant.
This 15 consistent with the fact that, when sampling once per cycle, the samples are all
equal and would be identical to those obtained by sampling a constant signal (wa = 0).
In Figure 7.16, we have depicted, for each of the four cases in Figure 7.15, the signal x(¢),
its samples, and the reconstructed signal x, (). From the figure, we can see how the lowpass
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Figure 7_.15 Effect in the frequency
domain of aversampiing and under-
sampling: {a) spectrem of original si-
nusoidd signal; (b}, {c] spectrum of
sampled signal with w, > 2oy {d},

(&) spectrum of sampled signal with

wy <2 2oy, AS W {NCrAase wy in mav-
ing frem (b} through (d}, the impulses
drawn with solid lines move to the
nght, while the impulses drawn with
dashed lines mave 1o the left. In (d)
and (e), these impulses have movad
sufficientty that there is a change n the
ones faling within the passband of the
ideal lowpass filter.

filter interpolates between the samples, in particular always fitting a sinusoid of frequency

less than w,/2 to the samples of x(r).

As a variation on the preceding exarnples, consider the signal

x(1) = cos{wgt + b).

(7.15)
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It this case, the Fourier transform of x{f} 1s essentially the same as Figure 7.15(a), ex-
cept that the impulse indicated with a solid line now has amplitude #e/®, while the
impulse indicated with a dashed line has amplitude with the opposite phase, namely,
are P I we pow consider the same set of choices for wy as in Figure 7.15, the re-
sulting spectra for the sampled versions of cos(wgt + ) are exactly as in the figure,
with all solid impulses having amplitude we/® and all dashed ones having arnplitude
e f*. Again, in cases (b) and (c) the condition of the sampling theorem is met, so
that x,(f; = cos{wat + ¢ = x(f), while in {d) and {e) we again have aliasing. How-
ever, we now see that there has been a reversal in the solid and dashed impulses ap-
pearing in the passband of the lowpass filler. As a resuit, we find thal in these cases,
x(1) = cos{{w;—wq}t — ¢], where we have achange in the sign of the phase ¢, i.¢., 2 phase
reversal.

It is impartant to note that the sampling theorem explicity requires that the sampling
frequency be greater than twice the highest frequency in the signal, rather than greater
than or equal to twice the highest frequency. The next example illustrates that sampling a
sinusoidal signal at exacdy twice its frequency (i.c., exactly two samples per cycle) is not
sufficieni.

Example 7.1
Consider the ssmusoidal signal

x(t} = cos (%r + ;;b),

and suppose that this signal is sampled, using impulse sampling, &t exactly twice the
frequency of the sinnzgoid, i.e., at sampling frequency «,. As shown in Problem 7.39, if
this impulse-sampled signal is applied as the input to an ideal lowpass filter with cutoff
frequency w, /2, the resulting output is

x [t} = {Cosghicos (% i‘).

As a consequence, we see that perfect reconstruction of x(i} occurs only in the case in
which the phase ¢ is zero (or an integer multiple of 24r). Otherwise, the signal x,{t} does
not equal x(r}.

As an extreme exemple, consider the case in which ¢ = —arf2, se that
(N = sn (%r)

This signal is sketched in Figure 7.17 We observe that the values of the signal at integer
multiples of the sampling period 2wfw, are zero. Consequently, sampling at this rate
produces a signal that is identically zero, and when this zero input is applied to the ideal
lowpass filter, the resulting output x,41) is also identically zero.
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Figure 7.17  Sinusoidzl signal far BExample 7.1,

The effect of undersampting, whereby higher frequencies are reflected into lower
frequencies, is the principle on which the stroboscopic effect is based. Consider, for exam-
ple, the situation depicted in Figure 7.18, in which we have a disc rotating at a constant rate
with a single radial line marked on the disc. The fiashing strobe acts as a sampling system,
since it illuminates the disc for extremely brief time intervals at a periodic rate. When the
strobe frequency is much higher than the rotational speed of the disc, the speed of rotaticn
of the disc is perceived correctly. When the strobe frequency becomes less than twice the
rotaticnal frequency of the disc, the rotation appears to be at alower frequency than is actu-
ally the case. Furthermore, because of phase reversal, the disc wiil appear 1o be rotating in
the wrong direction’ Roughly speaking, if we track the position of a fixed line on the disc
ar successive samples, then wben wy < w; < 2ary, so that we sample somewhat more fre-
quently than ence per revolution, samples of the disc will show the fixed line in positions
that are-successively displaced in a counterclockwise direction, opposite 1o the clockwise
rotation of the disc itself. At one flash per revolution, corresponding to o, = wp, the radial
line appears stationary {i.e., the rotational frequency of the disc and its harmonice have
been aliased to zero frequency). A similar effect is commonly observed in Westermn movies,

\

Fctating disc

Strobe Figure 7.18 Sirobe effect.
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where the wheels of a stagecoach appear 1o be rotating more slowly than would be consis-
tent with the coach’s forward motion, and sometimes in the wrong direction. In this case,
the sampling process correspends to the tact that moving pictures are a sequence of indi-
vidual frames with a rate {osuaily between 18 and 24 frames per second) corresponding
1o the samnpling freguency.

The preceding discussion suggests interpreting the streboscopic effect as an exam-
ple of a useful application of aliasing due to undersampling. Another practical application
of aliasing arises in a measuring instrument referred 10 as a sampling oscitloscope. This
instrument is mtended for observing very high-frequency waveforms and exploits the prin-
ciples of sampling to alias these frequencies into ones that are more easily displayed. The
sampling oscilloscope is explored in more detail in Problem 7.38.
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