ELG 3120 Signals and Systems Chapter 4

Chapter 4 Continuous-Time Fourier Transform

4.0 Introduction

A periodic signal can be represented as linear combination of complex exponentials which
are harmonically related.

An aperiodic signal can be represented as linear combination of complex exponentials, which
are infinitesimally close in frequency. So the representation take the form of an integral
rather than asum

In the Fourier series representation, as the period increases the fundamental frequency
decreases and the harmonically related comporents become closer in frequency. As the

period becomes infinite, the frequency components form a continuum and the Fourier series
becomes an integral.

4.1 Representation of Aperiodic Signals: The Continuous-Time Fourier
Transform

4.1.1 Development of the Fourier Transform Representation of an Aperiodic Signal

Starting from the Fourier series representation for the continuous-time periodic square wave:

1, t<T,
X(t) =i : (4.1)
10, T <[t|<T/2
X(t)
e o o | | | | | | * o o
- 2T -T T-T, T, T T 2T
2 2
The Fourier coefficients a, for this square wave are
= 2sn(oweTy) 4.2)
kw, T
or aternatively
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5 = 2SNWTL) 4.3)

w w=kwy
where 2sin(wT,) /w represent the envelope of Ta,

When T increases or the fundamental frequency w, =2p /T decreases, the envelope is

sampled with a closer and closer spacing. As T becomes arbitrarily large, the origina
periodic square wave approaches arectangular pulse.

Ta, becomes more and more closely spaced samples of the envelope, as T ® ¥ , the Fourier
series coefficients approaches the envel ope function.

This example illustrates the basic idea behind Fourier’s development of a representation for
aperiodic signals.

Based on thisidea, we can derive the Fourier transform for aperiodic signals.

Suppose a signal  x(t) with a finite duration, that is, x(t)=0 for [t|>T,, as illustrated in the
figure below.

From this aperiodic signal, we construct a periodic signal X(t) , shown in the figure below.
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-T, 0 T
(b)

AsT ® ¥, X(t) = x(t), for any infinitevaueof t.

The Fourier series representation of X(t) is

]kWOt

x(t)—aae

-1 d’ %(t)e et

Chapter 4

(4.4)

(4.5)

Since X(t) = x(t) for |t| <T /2, and also, since x(t) = 0 outside thisinterval, so we have

= 8 X0 id =2 ) xe it

Define the envelope X(jw) of Ta, as
: ¥ i
X(jw) = Q, x(V)e o
we have for the coefficients a,,
1, ,.
a = ?X(kao)

Then X(t) can be expressed intermsof X(jw), that is

+¥ . ¥ ’
RO = & =X (jhwg)e™ == & X(jkwp)ew,
k=- ¥ 20 oy
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AsT® ¥, X(t) = x(t) and consequently, Eqg. (4.7) becomes a representation of X(t) .
In addition, w, ® 0 as T ® ¥, and the right-hand side of Eq. (4.7) becomes an integral.

We have the following Fourier transform:

1 ¥ : W :
X(t) =5Q X(jw)e™adw Inverse Fourier Transform 48)

and

X(jw) = ), x(ye ™dt  Fourier Transform “9)

4.1.2 Convergence of Fourier Transform
If the signal x(t) hasfinite energy, that is, it is square integrable,
y 2
Q|X(t)| dt< ¥, (4.10)
Then we guaranteed that X (jw) isfinite or Eq. (4.9) converges. If e(t) = X(t) - x(t), we have
y 2
Q le(t)| dt=0. (4.11)

An alterative set of conditions that are sufficient to ensure the convergence:

Contitionl: Over any period, X(t) must be absolutely integrable, that is
O, Xt <¥ (4.12)

Condition 2: In any finite interval of time, x(t) have afinite number of maxima and mi nima.

Condition 3: In any finite interval of time, there are only afinite number of discontinuities.
Furthermore, each of these discontinuitiesisfinite.

4/4 Yao



ELG 3120 Signals and Systems Chapter 4

4.1.3 Examples of Continuous-Time Fourier Transform

Example: consider signal x(t) =e *u(t), a>0.

From Eq. (4.9),

¥

X(JW) — JF e.ate'j\A/tdt - —-e-(a+jW)t :#’ a>0 (412)
Q
a+ jw . a+jw

If a iscomplex rather then real, we get the same result if Re{a} >0

The Fourier transform can be plotted interms of the magnitude and phase, as shown in the figure

below.
. 1 . 80
X (jw)| = ————, DX (jw) =- tanten 2. (4.13)
O oy
IX(jo)! *X (i)
S —— | 2
=C~ w4
l a
N .
—-m/4 F——
e Jpm2 T
)
Example: Let x(t)=e ¥, a>0
1 1 2a
+ _
2

2

¥ . 0 . ¥ )
X(jw) = A e Me Mgt = yere Mdt + A e e Mdt = =
(w) 0, 0 Q a- jw a+jw a‘+w

The signal and the Fourier transform are sketched in the figure below.

X0 X(o)
1 2/a

1/a
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Example: x(t) =d(t). (4.14) X(t) =d(t) X(jw) =1
X(jw)= ¢, d(V)e Mdt=1. (4.15)

Chapter 4

That is, the impulse has a Fourier transform consisting of equal contributions at all frequencies.

Example: Calculate the Fourier transform of the rectangular pulse signa

11 t|<T.
X(t) _I | | 1 .
10, t>T,
X(t)

X(jw)

1 2T,
LT ER )
(b)
¥ - smwT
X(iw) = & x(t)e ™dt = N1e Mt = L.
(jw) = Q,x(H) o} "
(4.17)

The Inverse Fourier transform is

smle e

X(t) =— Q 2———=
Sincethe signal x(t) issguareintegrable,

e(t) = ), [x(1)- >“((t)|2dt =0

(4.16)

(4.18)

(4.19)

X(t) convergesto x(t) everywhere except at the discontinuity, t = £T,, where X(t) convergesto

%, which isthe average value of x(t) on both sides of the discontinuity.

In addition, the convergence of X(t) to x(t) also exhibits Gibbs phenomenon. Specificaly, the

integral over afinite-length interval of frequencies

1 w _sinwT.

1 ]WI
» QNZ dw
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AsW ® ¥ ,thissignal convergesto Xx(t) everywhere, except at the discontinuities. More over,
the signal exhibits ripples near the discontinuities. The peak values of these ripples do not
decrease as W increases, although the ripples do become compressed toward the discontinuity,
and the energy in the ripples converges to zero.

Example: Consider the signal whose Fourier transform is

o <w
X(JW)=|O W
70, W
X(jw) x(t)
1
W/n
-W w ® t
-n/W  wW
(@) (b)

The Inverse Fourier transform is

_sinWwt
pt

X(t) == () e dw
Comparing the results in the preceding example and this example, we have

AR .
Square wave 3 Snc function

- %o Ya

This means a square wave in the time domain, its Fourier transform is a sinc function. However,
if the signal in the ime domain is a sinc function, then its Fourier transform is a square wave.
This property isreferred to as Duality Property.

We also note that when the width of X (jw) increases, itsinverse Fourier transform x(t) will be

compressed. When W ® ¥, X(jw) converges to an impulse. The transform pair with severa
different values of Wis shown in the figure below.
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x(t)
Xz(t) 7 o7
W= %3(t)
Wa/m
—7/W,p W, —m/Wjy /Wy t
Xy (jw) Xa(jw) X(jw)
1 1 1
4.2 The Fourier Transform for Periodic Signals
The Fourier series representation of the signal x(t) is
S g
x(t) = a ae™. (4.20)
k=-¥
It's Fourier transformis
. S
X(jw) = a Pad(w-kw,).
k=-¥
(4.21)
Example: If the Fourier series coefficients for the square wave below are given
X(t)
4 O O | | | | * @ o
- 2T -T T.T, T, T 2T
2 2
inkw,T,
a, =20 Woly (4.22)
pk
The Fourier transform of thissignal is
. 5 2sinkw,T.
X(jw) = & 22 %Wols g - kw,) . (4.23)
k=-¥
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Figure 4.12 Fourier transform of a symmetric periodic square wave.

Example: The Fourier transformsfor x(t) =sinw,t and x(t) = cosw,t are shown in the figure
below.

X(jw)

g

l 0 (;)0 (63
: @)

p— =]

(o)

Fourier transforms of (a) x(¢) = sin wyt; (b) X(t) = c0S wyt.
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¥
Example: Calculate the Fourier transform for signal x(t) = 601 d(t- KT).

k=-¥

The Fourier seriesof thissignal is

_ 1 +1i2 - Wt —
a, —?Omd e =

|

The Fourier transform is

X(jw)z%éd(w-z%ko .

The Fourier transform of a periodic impulse train in the time domain with period T is a periodic
impulse train in the frequency domain with period 2p /T , as sketched din the figure below.

x(t)

_'|=1h EE——
=

2
T

Figure 4.14 (a) Periodic impulse train; (b} its Fourier transform.

=S
o

®)

4.3 Propertiesof The Continuous-Time Fourier Transform

4.3.1 Linearity

If x(t)-%® X(jw) and y(t)-%® Y(jw)

Then
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ax(t) +by(t)-%® aX (jw)+bY(jw) (4. 20)

4.3.2 Time Shifting

If X(t)-%® X(jw)

Then

X(t- t,)~%® e "X (jw). (4. 20)
Or

F{x(t- t,)} = & ™o X (jw) =|X (jw)[e!P* sl @ 20)

Thus, the effect of atime shift on asignal isto introduce into its transform a phase shift, namely,
- Wt

Example: To evaluate the Fourier transform of the signal x(t) shown in the figure below.

X(t)

15

1= |_l_|_|
| | i
1 2 3 4
X, (1) X, ()
1 1
t t
3 3 R
2 2 2 2
Thesignal x(t) can be expressed as the linear combination
1
X(t) = Exl(t - 25+ x,(t- 25). (4. 20)

X (t) and x,(t) arerectangular pulse signals and their Fourier transforms are

11/4 Yao



ELG 3120 Signals and Systems Chapter 4

Xy (jw)

_ 2sin(w/2) and X, (jw)
w

_2sn(3w/2)
W

Using the linearity and time-shifting properties of the Fourier transform yields

X(jw) = 7] sn(w/2) +Wzsin(aN/2)u
|

4.3.3 Conjugation and Conjugate Symmetry

If X(t)-%® X(jw)

Then
X* (t)=%® X* (- jw). (4. 20)

Since X * (jw) = g(‘;jx(t)e' iwtdtg = §, * (e dt,

Replacing w by - w, we see that

X* (- jw) = ) x* (Ve M, (4. 20)
The right-hand side is the Fourier transform of x* (t).

If x(t) isreal, from Eq. (4.20) we can get

X(- jw) = X* (jw). (4. 20)

We can also prove that if x(t) is both real and even, then X(jw) will also be real and even.
Similarly, if x(t) isboth rea and odd, then X(jw) will aso be purely imaginary and odd.

A rea function Xx(t) can be expressed in terms of the sum of an even function
x, (t) = Ev{x(t)} and an odd function x, (t) = Od{x(t)} . That is

X(t) = %, (1) + %, (1)

Form the Linearity property,
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F{x®)} = F{x. @)} + F{x, (1)},

From the preceding discussion, F{x,(t)} isreal function and F{x,(t)} is purely imaginary. Thus
we conclude with x(t) real,

X(t)-%® X(jw)
EV{x(1)}-%® Re{X (jw)}

Od{x()} -%® jIm{X (jw)}

Example: Using the symmetry properties of the Fouwier transform and the result

e *u(t)~%:® to evaluate the Fourier transform of the signal x(t) = e ol , Where a>0.

at+ Jw

. _al e @ +e*u(-t)u
Since x(t) = e ™ = e *u(t) + eu(- 1) :Zee u(t Ze u( t)L]=2E\/{e""“u(t)},
e u

) e 1 0 2a
So X(jw) =2R T
atjwg a“+w

4.3.4 Differentiation and I ntegration

If x(t)-%® X(jw)

Then

) 5@ jwx(jw)

dt . (4. 20)

(4. 20)

(‘i X(t)dt =%® = X (jw) +pX (0)d W)
jw -

Example: Consider the Fourier transform of the unit step x(t) = u(t).

It is know that
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g(t) =d(t)-%® 1
Also note that

x(t) = d g(t )t

The Fourier transform of thisfunctionis

X(jw) :iw+pG(O)d (w) :_i+pd(w).

. iw
where G(0) =1.
Example: Consider the Fourier transform of the function x(t) shown in the figure below.
X(t) 1
1F ! -1 1 ¢
1 t t L v
1 — 1 1 + -1 1

dx(t)

g(t) :T

From the above figure we can seethat g(t) isthe sum of arectangular pulse and two impulses.

G(jw) = gae’Zsmw O em

jw

- e

Notethat G(0) =0, using the integration property, we obtain

i G(jw 2sinw  2cosw
X(jw) = S 4 b0y w) = 23NW _ 200W
jw jw jw

It can befound X(jw) ispurely imaginary and odd, which is consistent with the fact that x(t) is
real and odd.

4.3.5 Time and Frequency Scaling
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X(t) -%® X(jw),

Then
1
x(at) ~%® —

4

From the equation we see that the signal is compressed in the time domain, the spectrum will be
extended in the frequency domain. Conversely, if the signal is extended, the corresponding
spectrum will be compressed.

X (j?"") . (4. 20)

If a=-1, we get from the above equation,
X(-t)~%® X(- jw). (4. 20)

That is, reversing asignal in time aso reversesits Fourier transform.

4.3.6 Duality

The duality of the Fourier transform can be demonstrated using the following example.

i1, t<T, . 2sinwT.
X (t) =i -3%A® X, (jw) = 1
10 %O, t>T, 4 1(jw)
sinWT. ] i1 <W
X,(t) = L-%® X, (jw) =i u
pt 10, |w|>W
X1(jw)
x1(t)
2T,
1 m m
F "T\ i
-~ /\ N\
T, T t ~ U J e
Xo(t) Xo(jw)
1
-W w ®
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The symmetry exhibited by these two examples extends to Fourier transform in general. For any
transform pair, thereisadual pair with the time and frequency variables interchanged.

Example: Consider using duality and the result e LA X(jw) = 1+2 > to find the Fourier
w

transform G( jw) of the signa

g()-1+t

Since el -35® X (jw) =i2, that is,
1+w

el = 1 ¥ee 2 9e'W‘dw
2IOQ‘e1+W 2

Multiplying thisequation by 2p andreplacing t by - t, we have

- X¥® 2 0w
e C—— € dw
» 0‘e1+W o

Interchanging the names of the variablest and w , we find that

W _ ]Wt 12 2 O |w|
e dw b F°
» O‘glﬂ 7} gl+t 7} = %pe

Based on the duality property we can get some other properties of Fourier transform:

dX (jw)

- jtx(t)~%®

ey (1) ~FA® X(jW - w,))

i j_ltx(t) +px(0)d (t)-%® ¢ x(h)ch
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4.3.7 Parseval’ s Relation

If x(t)-%® X(jw),

We have

O, [x(t)fdt = %(i X (jw)[ cw

Parseval’ s relation states that the total energy may be determined either by computing the energy
per unit time |x(t)|2 and integrating over al time or by computing the energy per unit frequency

|X(jw)|2 /20 and integrating over all frequencies. For this reason, |X(jw)|2 is often referred to
asthe energy-density spectrum.

4.4 The convolution properties

y(t) = h(t)* x(t)=%® Y(jw) = H (jw) X (jw)

The equation shows that the Fourier transform maps the convolution of two signals into product
of their Fourier transforms.

H(jw), the transform of the impulse response, is the frequency response of the LTI system,
which also completely characterizesan LTI system.

Example: The frequency response of a differentiator.

_ ox(®)
Codt

y(t
From the differentiation property,

Y(jw) = jwX(jw),

The frequency response of the differentiator is

YAW ) .

H(jw) = X(jw)

Example: Consider an integrator specified by the equation:
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y(t) = CtL x(t )dt .

The impulse response of an integrator is the unit step, and therefore the frequency response of
the system:

H(jw) :_i+pd(w).
jw
So we have
Y(jw) =H (jw) X(jw) =jiWX(J'W)+pX(0)d W),

which is consistent with the integration property.

Example: Consider the response of an LTI system with impulse response
h(t) =e *u(t), a>0

to the input signd

x(t) = e "u(t), b>0

To calculate the Fourier transforms of the two functions:

X(jw) = ——, and
b+ jw
. 1
H = .
(W)=
Therefore,
Y(jw) =

(a+jw)b+ jw)’
using partial fraction expansion (assuming a ! b), we have

. 1 ¢é 1 1 40
Y(jw) = - 7
(%) b-aga+jw b+ jw{

The inverse transform for each of the two terms can be written directly. Using the linearity
property, we have
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y(o) :b_—la[e'atu(t)- evu().

We should note that when a =b, the above partia fraction expansion is not valid. However,
with a=Db, wehave

1

Oy

Considering;:jié ! l:Jand
(a+ jw)y aw&a+ jwlf

e *u(t)~%4® , and

a+ jw

te *u(t) ~%4® jig%l.g,
dw ga + jw

so we have

Y(t) =te *u(t).

4.5 The Multiplication Property

r(t) = S(t) p(t) %@ R(jw) :z%df S(ja)P(j(w- q))dg

Multiplication of one signal by another can be thought of as one signal to scale or modulate the
amplitude of the other, and consequently, the multiplication of two signals is often referred to as
amplitude modulation.

Example: Let s(t) beasignal whose spectrum S(jw) isdepicted in the figure below.
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S(jw)
A

0 a ®

(@)

Also consider the signal

p(t) = cosw,t ,

then

P(jw) =pd(w - w,) +pd W +w,).

The spectrum of r(t) = s(t) p(t) isobtained by using the multiplication property,

R(jw) =5 &) SW)P((w- a))de

=%SUW-wa+%suW+wa

which is sketched in the figure below.

- P(o) - i) = o [S(io) + Pl
A/2<‘~
/‘I\ A
—wg wg ®
—wg oy ® (—wp— ) (—wg+ o) (g — 1) (o + o)
(b) (©)

From the figure we can see that the signal is preserved athough the information has been shifted
to higher frequencies. This forms the basic for sinusoidal amplitude modulation systems for
communications.

Example: If we perform the following multiplication using the signal r(t) obtained in the
preceding example and p(t) = cosw,t , that is,

g(t) =r(t) p(t)

The spectrum of P(jw), R(jw) and G(jw) are plotted in the figure below.
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RUw) ™ P(jw) ™
WL -
A /;\
" @ v v ~ag o - o
G(jw)
A/4 A/2 A/4
A A
—2wq — )y oy 2w
(c}

If we use alowpass filter with frequency response H(jw) that is constant at low frequencies and
zero at high frequencies, then the output will be a scaled replica of S(jw). Then the output will
be scaled version of s(t) - the modulated signal is recovered.
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4.6 Summary of Fourier Transform Properties and Basic Fourier Transform

Pairs
TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM
Section Property Aperiodic signal Fourier transform
x(®) X(jw)
y® Y(jw)
43.1 Linearity ax(t) + by(r) aX(jw) + bY(jw)
432 Time Shifting x(t — 1) e X (jw)
436 Frequency Shifting e/ x(f) X(j{w — wo))
433 Conjugation X' X'(— jw)
4.3.5 Time Reversal x(—1) X(—jw)
4.3.5 Time and Frequency x(at) ﬁX (ﬂ)
Scaling a a
4.4 Convolution x(1) * y() X(jw)Y(jow)
. . . +ox .
45 Multiplication x(Dy@® 2%[ X(jOYG(w — 6)do
434 Differentiation in Time % x(®) joX(jw)
434 Integration f x(t)dt jin (jw) + 7X(0)8(w)
43.6 Differentiation in tx(t) jiX (jw)
F do
requency
X(jo) = X*(- jw)
Re{X(jw)t = Re{X(— jw)}
433 Conjugate Symmetry x(r) real In{X(jw) = —Im{X(— jw)}
for Real Signals X(jw)| = |X(—jow)|
IX(jw) = —IX(~ jow)
433 Symmetry for Realand  x(¢) real and even X(jw) real and even
Even Signals
433 Symmetry forRealand  x(¢) real and odd X(jw) purely imaginary and odd
Odd Signals
=& :
433 Even-Odd Decompo- xe(®) Ov{x(t)} Lx(¢) reall q;e{X(]fo)}
sition for Real Sig- xo(t) = 0d{x(?)} [x(¢) real] JIm{X(jw)}
nals
437 Parseval’s Relation for Aperiodic Signals

L ) |x(O)fdt =

1 (* _
o | KGorrde
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Sec. 4.6

Tables of Fourier Properties and of Basic Fourier Transform Pairs

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Chapter 4

329

Fourier series coefficients

Signal Fourier transform (if periodic)
+o ) +00
Z age’tent 2 Z ad(w — kwo) a
== k=
eloot 28 (w — wg) G
a; = 0, otherwise
—g, =1
cos ot 8@ —wo) + 8@ +wg)] 4T
a; = 0, otherwise
= — = L
sin wot Z.[B(w — wg) — 8(w + wy)] @ a1 2
J a, = 0, otherwise
a=1 a =0 k#0
x(@0) =1 27 8(w) this is the Fourier series representation for
any choice of T > 0
Periodic square wave
w=-1" f<T = 2sin kwoT. T kwoT: in kwoT
=10, Ti<l=1? ZMS(w—kwo) Dol ine (Kol Smiwoly
- k T T kr
and k=—
x(t+T) = x(t)
a 27T 27k 1
n;a(x nT) T Zma(w - T) a =  forall k
x(t){ L |<T 2sinwT) .
0, |d>T, @
sin Wt . 1, lwl<W
X(jo) = { ot —
wt 0, |wl>W
8() 1 —
1
u(t) — + 7dw) —
Jw
8@t — 1p) e it —
ar 1
e u(t), Rela} > 0 _ e
a+ jo
te “u(t), Refa} > 0 N — —
’ @+ joy
0 ,’:)! e~ u(r), 1 .
Refa} >0 (a+ joy
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4.7 System Characterized by Linear Constant-Coefficient Differential
Equations

An LTI system described by the following differential equation:

& dfy(t) ¥ . d*x()
b , 4. 67
9:0 % dt* 9:0 < dt ( )

which is commonly referred to as an Nth-order differential equation.
The frequency response of thisLTI system

Y(jw)

H(jw) = X(W)’

(4. 68)

where X(jw), Y(jw) and H(jw) arethe Fourier transforms of theinput x(t), output y(t) and
the impulse response h(t) , respectively.

Applying Fourier transform to both sides, we have

14 diy(t)d 1Y dx@)i
FI& a, dy” =Fi4 p, X0 (4. 69)
T k=0 t" fico  dt" {)

From the linearity property, the expression can be written as

dyt)d_ ¥
d P

1 d*x(t)u
b, F% v g (4.70)

Q

J
a

k=0

i
kFl
|

From the differentiation property,

é. ak(jW)kY(jW) = é, bk(jW)kX(jW) b H(jw) = Y(jw) _ Ay b, (jw)

_ (4. 71)
k=0 k=0 X(jw) éN a, (jw)"

H(jw) isarationa function, that is, it isaratio of polynomiasin (jw).
Example: Consider astable LTI system characterized by the differential equation

y( ) +ay(t) = x(t), with a>0.

The frequency responseis
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1
jw+a

H(jw) =

Te impulse response of this system is then recognized as
h(t) =e *u(t) .

Example: Consider astable LTI system that is characterized by the differential equation

d?y(t) | , dy(t) _ ax(t)
e +4 ot +3y(t) = m +2x(t) .

The frequency response of this systemis

(jw) +2 _ jw+2
(jw)? +4(jw)+3  (jw +1)(jw +3)°

H(jw) =

Then, using the method of partial-fraction expansion, we find that

1/2 N 1/2
jw+1l  jw+3’

H(jw) =

The inverse Fourier transform of each term can be recognized as

h(t) :%e'tu(t) +%e‘3tu(t) .

Example: Consider a system with frequency response of H(jw) =

Jw+2 and suppose
(w3 7P

that the input to the system is

X(t) = e'u(t),

find the output response.

The output in the frequency domain is give as

L, € jw+2 e 1 u_ jw+2
Y =H X = P g ’
(jw) (jw) X(jw) g(jw+l)(jW+3)ue“ejW+18 (jW+l)2(jW+3))

Using partial-fraction expansion, we have
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1/4 1/2 1/4
+ +

Y(jW)ZjW+l (jw+1)2 (jW+3))’

By inspection, we get directly the inverse Fourier transform:

h(t) = g—e += te HJ(t)

26/4

Chapter 4

Yao



