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Chapter 4 Continuous-Time Fourier Transform 
 

4.0 Introduction 
 
• A periodic signal can be represented as linear combination of complex exponentials which 

are harmonically related. 
• An aperiodic signal can be represented as linear combination of complex exponentials, which 

are infinitesimally close in frequency. So the representation take the form of an integral 
rather than a sum 

• In the Fourier series representation, as the period increases the fundamental frequency 
decreases and the harmonically related components become closer in frequency. As the 
period becomes infinite, the frequency components form a continuum and the Fourier series 
becomes an integral. 

 

4.1 Representation of Aperiodic Signals: The Continuous-Time Fourier 
Transform 
 

4.1.1 Development of the Fourier Transform Representation of an Aperiodic Signal 
 
Starting from the Fourier series representation for the continuous-time periodic square wave: 
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The Fourier coefficients ka  for this square wave are 
 

Tk
Tk

ak
0

10 )sin(2
ω

ω
= .          (4.2) 

 
or alternatively 
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where ωω /)sin(2 1T  represent the envelope of kTa   
 
• When T increases or the fundamental frequency T/20 πω =  decreases, the envelope is 

sampled with a closer and closer spacing. As T becomes arbitrarily large, the original 
periodic square wave approaches a rectangular pulse. 

 
• kTa  becomes more and more closely spaced samples of the envelope, as ∞→T , the Fourier 

series coefficients approaches the envelope function. 
 

 
 

This example illustrates the basic idea behind Fourier’s development of a representation for 
aperiodic signals. 
 
Based on this idea, we can derive the Fourier transform for aperiodic signals. 
 
Suppose a signal )(tx  with a finite duration, that is, 0)( =tx  for 1Tt > , as illustrated in the 
figure below. 
 
• From this aperiodic signal, we construct a periodic signal )(~ tx , shown in the figure below. 
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• As ∞→T , )()(~ txtx = , for any infinite value of t . 
 
• The Fourier series representation of )(~ tx  is 
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• Since )()(~ txtx =  for 2/Tt < , and also, since 0)( =tx  outside this interval, so we have 
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• Define the envelope )( ωjX  of kTa  as 
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we have for the coefficients ka , 
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Then )(~ tx  can be expressed in terms of )( ωjX , that is 
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• As ∞→T , )()(~ txtx =  and consequently, Eq. (4.7) becomes a representation of )(tx . 
 
• In addition, 00 →ω  as ∞→T , and the right-hand side of Eq. (4.7) becomes an integral. 
 
We have the following Fourier transform: 
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and  
 

∫
∞

∞−

−= dtetxjX tjωω )()(       TransformFourier                         (4.9) 

 

 

4.1.2 Convergence of Fourier Transform 
 
If the signal )(tx  has finite energy, that is, it is square integrable, 
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Then we guaranteed that )( ωjX  is finite or Eq. (4.9) converges. If )()(~)( txtxte −= , we have 
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An alterative set of conditions that are sufficient to ensure the convergence: 
 
Contition1: Over any period, )(tx  must be absolutely integrable, that is 
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Condition 2: In any finite interval of time, )(tx  have a finite number of maxima and mi nima. 
 
Condition 3: In any finite interval of time, there are only a finite number of discontinuities. 
Furthermore, each of these discontinuities is finite. 
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4.1.3 Examples of Continuous-Time Fourier Transform 
 
Example : consider signal )()( tuetx at−= , 0>a . 
 
From Eq. (4.9),  
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If a  is complex rather then real, we get the same result if { } 0Re >a  
 
The Fourier transform can be plotted in terms of the magnitude and phase, as shown in the figure 
below. 
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Example : Let taetx −=)( , 0>a  
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The signal and the Fourier transform are sketched in the figure below. 
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Example : )()( ttx δ= .  (4.14) 
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That is, the impulse has a Fourier transform consisting of equal contributions at all frequencies. 
 
Example : Calculate the Fourier transform of the rectangular pulse signal 
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The Inverse Fourier transform is 
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Since the signal )(tx  is square integrable, 
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)(ˆ tx  converges to )(tx  everywhere except at the discontinuity, 1Tt ±= , where )(ˆ tx  converges to 

½, which is the average value of )(tx  on both sides of the discontinuity.  
 
In addition, the convergence of )(ˆ tx  to )(tx  also exhibits Gibbs phenomenon. Specifically, the 
integral over a finite-length interval of frequencies 
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     )()( ttx δ=                      1)( =ωjX  
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As ∞→W , this signal converges to )(tx  everywhere, except at the discontinuities. More over, 
the signal exhibits ripples near the discontinuities. The peak values of these ripples do not 
decrease as W increases, although the ripples do become compressed toward the discontinuity, 
and the energy in the ripples converges to zero. 
 
Example : Consider the signal whose Fourier transform is 
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The Inverse Fourier transform is 
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Comparing the results in the preceding example and this example, we have 
 

functionSincwaveSquare
FT

FT

 ←
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−1
 

 
This means a square wave in the time domain, its Fourier transform is a sinc function. However, 
if the signal in the time domain is a sinc function, then its Fourier transform is a square wave. 
This property is referred to as Duality Property. 
 
We also note that when the width of )( ωjX  increases, its inverse Fourier transform )(tx  will be 
compressed. When ∞→W , )( ωjX  converges to an impulse. The transform pair with several 
different values of W is shown in the figure below. 
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4.2 The Fourier Transform for Periodic Signals 
 
The Fourier series representation of the signal )(tx  is 
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It’s Fourier transform is 
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Example : If the Fourier series coefficients for the square wave below are given 
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The Fourier transform of this signal is 
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Example : The Fourier transforms for ttx 0sin)( ω=  and ttx 0cos)( ω=  are shown in the figure 
below. 
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Example : Calculate the Fourier transform for signal ∑
∞
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The Fourier series of this signal is 
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The Fourier transform is 
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The Fourier transform of a periodic impulse train in the time domain with period T is a periodic 
impulse train in the frequency domain with period T/2π , as sketched din the figure below. 
 

 
 

4.3 Properties of The Continuous-Time Fourier Transform 

4.3.1 Linearity 
 
If )()( ωjXtx F→←  and )()( ωjYty F→←  
 
Then 
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)()()()( ωω jbYjaXtbytax F +→←+ .     (4. 20) 
 

4.3.2 Time Shifting 
 
If )()( ωjXtx F→←  
 
Then 
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Or 
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Thus, the effect of a time shift on a signal is to introduce into its transform a phase shift, namely, 

t0ω− . 
 
Example : To evaluate the Fourier transform of the signal )(tx  shown in the figure below. 
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The signal )(tx  can be expressed as the linear combination 
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)(1 tx  and )(2 tx  are rectangular pulse signals and their Fourier transforms are 
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Using the linearity and time-shifting properties of the Fourier transform yields 
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4.3.3 Conjugation and Conjugate Symmetry 
 
If )()( ωjXtx F→←  
 
Then 
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Replacing ω  by ω− , we see that 
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The right-hand side is the Fourier transform of )(* tx . 
 
If )(tx  is real, from Eq. (4.20) we can get  
 

)(*)( ωω jXjX =− .          (4. 20) 
 
We can also prove that if )(tx  is both real and even, then )( ωjX  will also be real and even. 
Similarly, if )(tx  is both real and odd, then )( ωjX  will also be purely imaginary and odd. 
 
A real function )(tx  can be expressed in terms of the sum of an even function 

{ })()( txEvtxe = and an odd function { })()( txOdtxo = . That is 
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Form the Linearity property, 
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{ } { } { })()()( txFtxFtxF oe += , 
 
From the preceding discussion, { })(txF e  is real function and { })(txF o  is purely imaginary. Thus 
we conclude with )(tx  real, 
 

)()( ωjXtx F→←  
 

{ } { })(Re)( ωjXtxEv F→←  
 

{ } { })(Im)( ωjXjtxOd F→←  
 
Example : Using the symmetry properties of the Fourier transform and the result 
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4.3.4 Differentiation and Integration 
 
If )()( ωjXtx F→←  
 
Then 
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Example :  Consider the Fourier transform of the unit step )()( tutx = . 
 
It is know that  
 



ELG 3120 Signals and Systems  Chapter 4 

 14/4 Yao 

1)()( →←= Fttg δ  
 
Also note that 
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The Fourier transform of this function is 
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where 1)0( =G . 
 
Example : Consider the Fourier transform of the function )(tx  shown in the figure below. 
 

t
1

1
1−

x(t)

  = 
t

1

1− 1
  + 

t

1

1− 1

1− 1−  
 
 

dt
tdx

tg
)(

)( =  

 
From the above figure we can see that )(tg  is the sum of a rectangular pulse and two impulses. 
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Note that 0)0( =G , using the integration property, we obtain 
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It can be found )( ωjX  is purely imaginary and odd, which is consistent with the fact that )(tx  is 
real and odd. 
 

4.3.5 Time and Frequency Scaling 
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)()( ωjXtx F→← , 
 
Then 
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From the equation we see that the signal is compressed in the time domain, the spectrum will be 
extended in the frequency domain. Conversely, if the signal is extended, the corresponding 
spectrum will be compressed.  
 
If 1−=a , we get from the above equation, 
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That is, reversing a signal in time also reverses its Fourier transform. 

4.3.6 Duality 
 
The duality of the Fourier transform can be demonstrated using the following example. 
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The symmetry exhibited by these two examples extends to Fourier transform in general. For any 
transform pair, there is a dual pair with the time and frequency variables interchanged. 
 

Example : Consider using duality and the result 21
2
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ω
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transform )( ωjG  of the signal 
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Multiplying this equation by π2  and replacing t  by t− , we have 
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Interchanging the names of the variables t  and ω , we find that 
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Based on the duality property we can get some other properties of Fourier transform: 
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4.3.7 Parseval’s Relation 
 
If )()( ωjXtx F→← ,  
 
We have 
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Parseval’s relation states that the total energy may be determined either by computing the energy 
per unit time 2)(tx  and integrating over all time or by computing the energy per unit frequency 

πω 2/)( 2jX  and integrating over all frequencies. For this reason, 2)( ωjX  is often referred to 
as the energy-density spectrum. 
 

4.4 The convolution properties 
 

)()()()()()( ωωω jXjHjYtxthty F =→←∗=  
 
The equation shows that the Fourier transform maps the convolution of two signals into product 
of their Fourier transforms.  
 

)( ωjH , the transform of the impulse response, is the frequency response of the LTI system, 
which also completely characterizes an LTI system. 
 
Example : The frequency response of a differentiator. 
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From the differentiation property, 
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The frequency response of the differentiator is 
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Example : Consider an integrator specified by the equation: 
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∫ ∞−
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The impulse response of an integrator is the unit step, and therefore the frequency response of 
the system: 
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So we have 
 

 )()0()(
1

)()()( ωδπω
ω

ωωω XjX
j

jXjHjY +== , 

 
which is consistent with the integration property. 
 
Example : Consider the response of an LTI system with impulse response 
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to the input signal 
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To calculate the Fourier transforms of the two functions: 
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using partial fraction expansion (assuming ba ≠ ), we have 
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The inverse transform for each of the two terms can be written directly. Using the linearity 
property, we have 
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We should note that when ba = , the above partial fraction expansion is not valid. However, 
with  ba = , we have  
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so we have 
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4.5 The Multiplication Property 
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Multiplication of one signal by another can be thought of as one signal to scale or modulate the 
amplitude of the other, and consequently, the multiplication of two signals is often referred to as 
amplitude modulation. 
 
Example : Let )(ts  be a signal whose spectrum )( ωjS  is depicted in the figure below.  
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Also consider the signal 
 

ttp 0cos)( ω= , 
 
then 
 

)()()( 00 ωωπδωωπδω ++−=jP . 
 
The spectrum of )()()( tptstr =  is obtained by using the multiplication property, 
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which is sketched in the figure below.  

 

  
From the figure we can see that the signal is preserved although the information has been shifted 
to higher frequencies. This forms the basic for sinusoidal amplitude modulation systems for 
communications.  
 
Example : If we perform the following multiplication using the signal )(tr  obtained in the 
preceding example and ttp 0cos)( ω= , that is, 
 

)()()( tptrtg =  
 
The spectrum of )( ωjP , )( ωjR  and )( ωjG  are plotted in the figure below. 
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If we use a lowpass filter with frequency response )( ωjH  that is constant at low frequencies and 
zero at high frequencies, then the output will be a scaled replica of )( ωjS . Then the output will 
be scaled version of )(ts - the modulated signal is recovered. 
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4.6 Summary of Fourier Transform Properties and Basic Fourier Transform 
Pairs 
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4.7 System Characterized by Linear Constant-Coefficient Differential 
Equations 
 
An LTI system described by the following differential equation: 
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00
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which is commonly referred to as an Nth-order differential equation. 
 
The frequency response of this LTI system 
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where )( ωjX , )( ωjY  and )( ωjH  are the Fourier transforms of the input )(tx , output )(ty  and  
the impulse response )(th , respectively. 
 
Applying Fourier transform to both sides, we have 
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From the linearity property, the expression can be written as 
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From the differentiation property, 
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)( ωjH  is a rational function, that is, it is a ratio of polynomials in )( ωj . 

 
Example : Consider a stable LTI system characterized by the differential equation 
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The frequency response is 
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Te impulse response of this system is then recognized as 
 

)()( tueth at−= . 
 
Example : Consider a stable LTI system that is characterized by the differential equation 
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The frequency response of this system is 
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Then, using the method of partial-fraction expansion, we find that 
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The inverse Fourier transform of each term can be recognized as 
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Example : Consider a system with frequency response of ( )( )31
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that the input to the system is 
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find the output response. 
 
The output in the frequency domain is give as 
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Using partial-fraction expansion, we have 
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By inspection, we get directly the inverse Fourier transform: 
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