9.21. (b)

e Mu(t) «— powrt Re{s} > —4
Also,
“Sheittu(t) £y — 51_ = Res}> =5
and )
5t —j5t L _r
e e u(t)(—)———s+5+j5, Re{s} > —5.
From this we obtain
—5t Lo st jst -5t —jst £ 0
t . — 2 —_—
e sin(5t)u(t) 5 [e7e?t — e e 7 u(t) +— GO+
where Re{s} > —5. Therefore,
2
- —5t . c s+ 15s + 70 g
e~ *u(t) + e % sin(5t)u(t) «— 1457 3905 3 100" Re{s} > *cb. —4—
(d)
e 2y(t) LN —1—, Re{s} > —-2.
s+2
Using an approach along the lines of part (c), we obtain
_ 1
e?u(—t) & 5 Re{s} < 2.
S —
From these we obtain <§
e~ = e7 2y (t) + etu(— t -2 < Re{s} <2

Using the differentiation in the s-domain property, we obtam
s Ly i 257 _ m
[32 —4| " (s2-4)?

P -2 < Re{s} < 2.
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9.22. (a) From Table 9.2, we have
1
z(t) = 3 sin(3t)u(t).

(b) From Table 9.2 we know that

c s
cos(3t)u(t) «— Y Re{s} > 0.
Using the time scaling property, we obtain
cos(3t)u(—t) <= ":sz_s_:@ Re{s} < 0.

Therefore, the inverse Laplace transform of X (s) is
z(t) = — cos(3t)u(—t).

(c) From Table 9.2 we know that
c s—1

Ct COS(3t)u(t) — m, RC{S} > 1.
Using the time scaling property, we obtain
- c s+1
e "cos(3t)u(—t)  d —m, RC{S} < —1.

Therefore, the inverse Laplace transform of X (s) is
z(t) = —e "t cos(3t)u(—t).
(d) Using partial fraction expansion on X (s), we obtain
2 1
s+4 s+3
From the given ROC, we know that z(t) must be a two-sided signal. Therefore,

z(t) = 2e~u(t) + e u(-t).

X(s) =

(g) We may rewrite X(s) as

3s
X(s)=1— —=.
(s) (s+1)2
From Table 9.2, we know that
c 1
tu(t) «— = Re{s} > 0.
Using the shifting property, we obtain
—t L 1
e ‘tu(t) ¢— —— -1
(t) GT DY Re{s} > -1

Using the differentiation property,

%[e_ttu(t)] = etu(t) — te~tu(t) L Re{s} > —1.

S
(s+1)2’
Therefore,

z(t) = 8(t) — 3e~tu(t) — 3te tu(t).



9.28. (a) The possible ROCs are
(i) Re{s} < -2.
(ii) —2 < Re{s} < -1.
(iii) —1 < Re{s} < L.
(iv) Re{s} > L
(b) (i) Unstable and anticausal.
(ii) Unstable and non causal.
(iii) Stable and non causal.
(iv) Unstable and causal.

9.31. (a) Taking the Laplace transform of both sides of the given differential equation and sim-

plifying, we obtain
Y(s) _ 1

X(s) s2-s5-2
The pole-zero plot for H(s) is as shown in Figure S9.31.

H(s) =

Im
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Figure 59.31

(b) The partial fraction expansion of H (s) is

_ 1/3 _ 1/3
T s-2 s+1

H(s)

(i) If the system is stable, the ROC for H(s) has to be —1 < Re{s} < 2. Therefore,
h(t) = —%e%u(—t) - %e—t (t).
(ii) If the system is causal, the ROC for H(s) has to be Re{s} > 2. Therefore,
h(t) = %emu(t) - %e‘tu(t).

(iii) If the system is neither stable nor causal, the ROC for H(s) has to be Re{s} < -1.

Therefore,

h(t) = —%e%u(—t) + %e_tu(—t).



9.35. (a) We may redraw the given block diagram as shown in Figure 59.35.
From the figure, it is clear that
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Therefore, f(t) = dy; (t)/dt. Similarly, e(t) = df (t)/dt. Therefore, e(t) = d?y(t)/dt?.
From the block diagram it is clear that

Pyi(t) _dn(t)

y(0) = e(t) — 1) - b (t) = o -

- 6y1 (t).
Therefore,
Y (s) = s?Y;(s) — sYy(s) — 6Y1(s). (59.35~1)

Now, let us determine the relationship between y;(¢) and z(t). This may be done
by concentrating on the lower half of the above figure. We redraw this in Figure 59.35.

From Example 9.30, it is clear that y;(t) and z(t) must be related by the following
differential equation:

g;i,(t) + 2dy;t(t) +y1(t) = z(t).

Therefore,

X(s)
Z+2+1

Using this in conjunction with eq (59.35-1), we get

Yl(s) =

s2—s5—6

Y(s)=s2+2s+1

X(s).
Taking the inverse Laplace transform, we obtain

dz'y(t) + 2dy(t) d*z(t)  dz(t)

a2 a Ty =—gm - —~ —620t)

(b) The two poles of the system are at —1. Since the system is causal, the ROC must be to
the right of s = —1. Therefore, the ROC must include the jw-axis. Hence, the system
is stable.



