9.21. (b)

$$
e^{-4 t} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+4}, \quad \mathcal{R} e\{s\}>-4 .
$$

Also,

$$
e^{-5 t} e^{j 5 t} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+5-j 5}, \quad \operatorname{Re}\{s\}>-5 .
$$

and

$$
e^{-5 t} e^{-j 5 t} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+5+j 5}, \quad \mathcal{R} e\{s\}>-5 .
$$

From this we obtain

$$
e^{-5 t} \sin (5 t) u(t)=\frac{1}{2 j}\left[e^{-5 t} e^{j 5 t}-e^{-5 t} e^{-j 5 t}\right] u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{5}{(s+5)^{2}+25},
$$

where $\mathcal{R} e\{s\}>-5$. Therefore,

$$
e^{-4 t} u(t)+e^{-5 t} \sin (5 t) u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s^{2}+15 s+70}{s^{3}+14 s^{2}+90 s+100}, \quad \mathcal{R} e\{s\}>\text { E. }-4
$$

(d)

$$
e^{-2 t} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+2}, \quad \mathcal{R e}\{s\}>-2 .
$$

Using an approach along the lines of part (c), we obtain

$$
e^{2 t} u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow}-\frac{1}{s-2}, \quad \mathcal{R} e\{s\}<2 .
$$

From these we obtain

$$
e^{-2|t|}=e^{-2 t} u(t)+e^{2 t} u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{2 s}{s^{2}-4},-4-2<\mathcal{R} e\{s\}<2 .
$$

Using the differentiation in the s-domain property, we obtain

$$
t e^{-2|t|} \stackrel{\mathcal{L}}{\longleftrightarrow}-\frac{d}{d s}\left[\frac{2 s}{s^{2}-4}\right]=-\frac{2 s^{2}+8}{\left(s^{2}-4\right)^{2}}, \quad-2<\mathcal{R} e\{s\}<2
$$

9.22. (a) From Table 9.2, we have

$$
x(t)=\frac{1}{3} \sin (3 t) u(t)
$$

(b) From Table 9.2 we know that

$$
\cos (3 t) u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s}{s^{2}+9}, \quad \mathcal{R e}\{s\}>0 .
$$

Using the time scaling property, we obtain

$$
\cos (3 t) u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow}-\frac{s}{s^{2}+9}, \quad \mathcal{R} e\{s\}<0 .
$$

Therefore, the inverse Laplace transform of $X(s)$ is

$$
x(t)=-\cos (3 t) u(-t)
$$

(c) From Table 9.2 we know that

$$
e^{t} \cos (3 t) u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s-1}{(s-1)^{2}+9}, \quad \mathcal{R} e\{s\}>1 .
$$

Using the time scaling property, we obtain

$$
e^{-t} \cos (3 t) u(-t) \stackrel{L}{\longleftrightarrow}-\frac{s+1}{(s+1)^{2}+9}, \quad \mathcal{R e}\{s\}<-1 .
$$

Therefore, the inverse Laplace transform of $X(s)$ is

$$
x(t)=-e^{-t} \cos (3 t) u(-t)
$$

(d) Using partial fraction expansion on $X(s)$, we obtain

$$
X(s)=\frac{2}{s+4}-\frac{1}{s+3}
$$

From the given ROC, we know that $x(t)$ must be a two-sided signal. Therefore,

$$
x(t)=2 e^{-4 t} u(t)+e^{-3 t} u(-t)
$$

(g) We may rewrite $X(s)$ as

$$
X(s)=1-\frac{3 s}{(s+1)^{2}}
$$

From Table 9.2, we know that

$$
t u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s^{2}}, \quad \mathcal{R e}(s\}>0 .
$$

Using the shifting property, we obtain

$$
e^{-t} t u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{(s+1)^{2}}, \quad \mathcal{R} e\{s\}>-1 .
$$

Using the differentiation property,

$$
\frac{d}{d t}\left[e^{-t} t u(t)\right]=e^{-t} u(t)-t e^{-t} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s}{(s+1)^{2}}, \quad \mathcal{R} e\{s\}>-1 .
$$

Therefore,

$$
x(t)=\delta(t)-3 e^{-t} u(t)-3 t e^{-t} u(t)
$$

9.28. (a) The possible ROCs are
(i) $\mathcal{R} e\{s\}<-2$.
(ii) $-2<\mathcal{R e}\{s\}<-1$.
(iii) $-1<\operatorname{Re}\{s\}<1$.
(iv) $\operatorname{Re}\{s\}>1$.
(b) (i) Unstable and anticausal.
(ii) Unstable and non causal.
(iii) Stable and non causal.
(iv) Unstable and causal.
9.31. (a) Taking the Laplace transform of both sides of the given differential equation and simplifying, we obtain

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{1}{s^{2}-s-2}
$$

The pole-zero plot for $H(s)$ is as shown in Figure S9.31.


Figure S9.31
(b) The partial fraction expansion of $H(s)$ is

$$
H(s)=\frac{1 / 3}{s-2}-\frac{1 / 3}{s+1}
$$

(i) If the system is stable, the $\operatorname{ROC}$ for $H(s)$ has to be $-1<\mathcal{R} e\{s\}<2$. Therefore,

$$
h(t)=-\frac{1}{3} e^{2 t} u(-t)-\frac{1}{3} e^{-t} u(t) .
$$

(ii) If the system is causal, the $\operatorname{ROC}$ for $H(s)$ has to be $\mathcal{R} e\{s\}>2$. Therefore,

$$
h(t)=\frac{1}{3} e^{2 t} u(t)-\frac{1}{3} e^{-t} u(t)
$$

(iii) If the system is neither stable nor causal, the ROC for $H(s)$ has to be $\mathcal{R e}\{s\}<-1$. Therefore,

$$
h(t)=-\frac{1}{3} e^{2 t} u(-t)+\frac{1}{3} e^{-t} u(-t)
$$

9.35. (a) We may redraw the given block diagram as shown in Figure S9.35.

From the figure, it is clear that

$$
\frac{F(s)}{s}=Y_{1}(s) .
$$



Therefore, $f(t)=d y_{1}(t) / d t$. Similarly, $e(t)=d f(t) / d t$. Therefore, $e(t)=d^{2} y_{1}(t) / d t^{2}$. From the block diagram it is clear that

$$
y(t)=e(t)-f(t)-6 y_{1}(t)=\frac{d^{2} y_{1}(t)}{d t^{2}}-\frac{d y_{1}(t)}{d t}-6 y_{1}(t)
$$

Therefore,

$$
\begin{equation*}
Y(s)=s^{2} Y_{1}(s)-s Y_{1}(s)-6 Y_{1}(s) \tag{S9.35-1}
\end{equation*}
$$

Now, let us determine the relationship between $y_{1}(t)$ and $x(t)$. This may be done by concentrating on the lower half of the above figure. We redraw this in Figure S9.35.

From Example 9.30, it is clear that $y_{1}(t)$ and $x(t)$ must be related by the following differential equation:

$$
\frac{d^{2} y_{1}(t)}{d t^{2}}+2 \frac{d y_{1}(t)}{d t}+y_{1}(t)=x(t)
$$

Therefore,

$$
Y_{1}(s)=\frac{X(s)}{s^{2}+2 s+1}
$$

Using this in conjunction with eq (S9.35-1), we get

$$
Y(s)=\frac{s^{2}-s-6}{s^{2}+2 s+1} X(s)
$$

Taking the inverse Laplace transform, we obtain

$$
\frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+y(t)=\frac{d^{2} x(t)}{d t^{2}}-\frac{d x(t)}{d t}-6 x(t)
$$

(b) The two poles of the system are at -1 . Since the system is causal, the ROC must be to the right of $s=-1$. Therefore, the ROC must include the $j \omega$-axis. Hence, the system is stable.

