3.4. Since  $\omega_0 = \pi$ ,  $T = 2\pi/\omega_0 = 2$ . Therefore,

$$a_k = \frac{1}{2} \int_0^2 x(t) e^{-jk\pi t} dt$$

Now,

$$a_0 = \frac{1}{2} \int_0^1 1.5 dt - \frac{1}{2} \int_1^2 1.5 dt = 0$$

and for  $k \neq 0$ 

$$\begin{array}{rcl} a_k & = & \frac{1}{2} \int_0^1 1.5 e^{-jk\pi t} dt - \frac{1}{2} \int_1^2 1.5 e^{-jk\pi t} dt \\ & = & \frac{3}{2k\pi j} [1 - e - jk\pi] \\ & = & \frac{3}{k\pi} e^{-jk(\pi/2)} \sin(\frac{k\pi}{2}) \end{array}$$

3.5. Both  $x_1(1-t)$  and  $x_1(t-1)$  are periodic with fundemental period  $T_1 = \frac{2\pi}{\omega_1}$ . Since y(t) is a linear combination of  $x_1(1-t)$  and  $x_1(t-1)$ , it is also periodic with fundemental period  $T_2 = \frac{2\pi}{\omega_1}$ . Therefore,  $\omega_2 = \omega_1$ .

Since  $x_1(t) \stackrel{FS}{\longleftrightarrow} a_k$ , using the results in Table 3.1 we have

$$x_1(t+1) \stackrel{FS}{\longleftrightarrow} a_k e^{jk(2\pi/T_1)}$$

 $x_1(t-1) \stackrel{FS}{\longleftrightarrow} a_k e^{-jk(2\pi/T_1)} \Rightarrow x_1(-t+1) \stackrel{FS}{\longleftrightarrow} a_{-k} e^{-jk(2\pi/T_1)}$ 

Therefore,

$$x_1(t+1) + x_1(1-t) \overset{FS}{\longleftrightarrow} a_k e^{jk(2\pi/T_1)} + a_{-k} e^{-jk(2\pi/T_1)} = e^{-j\omega_1 k} (a_k + a_{-k})$$

3.6. (a) Comparing  $x_1(t)$  with the Fourier series synthesis eq. (3.38), we obtain the Fourier series coefficients of  $x_1(t)$  to be

$$a_k = \begin{cases} \left(\frac{1}{2}\right)^k, & 0 \le k \le 100\\ 0, & \text{otherwise} \end{cases}$$

From Table 3.1 we know that if  $x_1(t)$  is real, then  $a_k$  has to be conjugate-symmetric, i.e,  $a_k = a_{-k}^*$ . Since this is not true for  $x_1(t)$ , the signal is **not real valued**.

Similarly, the Fourier series coefficients of  $x_2(t)$  are

$$a_k = \begin{cases} \cos(k\pi), & 100 \le k \le 100 \\ 0, & \text{otherwise} \end{cases}$$

From Table 3.1 we know that if  $x_2(t)$  is real, then  $a_k$  has to be conjugate-symmetric, i.e,  $a_k = a_{-k}^*$ . Since this is true for  $x_2(t)$ , the signal is real valued.

Similarly, the Fourier series coefficients of  $x_3(t)$  are

$$a_k = \begin{cases} j\sin(k\pi/2), & 100 \le k \le 100 \\ 0, & \text{otherwise} \end{cases}$$

From Table 3.1 we know that if  $x_3(t)$  is real, then  $a_k$  has to be conjugate-symmetric, i.e,  $a_k = a_{-k}^*$ . Since this is true for  $x_3(t)$ , the signal is **real valued**.

(b) For a signal to be even, its Fourier series coefficients must be even. This is true only for  $x_2(t)$ .

**3.22.** (b) 
$$T=2$$
,  $a_k=\frac{-1^k}{2(1+jk\pi)}[e-e^{-1}]$  for all  $k$ .

- **3.26.** (a) If x(t) is real, then  $x(t) = x^*(t)$ . This implies that for x(t) real  $a_k = a_{-k}^*$ . Since this is not true in this case problem, x(t) is not real.
  - (b) If x(t) is even, then x(t) = x(-t) and  $a_k = a_{-k}$ . Since this is true for this case, x(t) is even.
  - (c) We have

$$g(t) = \frac{dx(t)}{dt} \stackrel{FS}{\longleftrightarrow} b_k = jk \frac{2\pi}{T_0} a_k.$$

Therefore,

$$b_k = \left\{ \begin{array}{ll} 0, & k = 0 \\ -k(1/2)^{|k|}(2\pi/T_0), & \text{otherwise} \end{array} \right..$$

Since  $b_k$  is not even, g(t) is not even.

- 3.30. (a) The nonzero FS coefficients of x(t) are  $a_0 = 1$ ,  $a_1 = a_{-1} = 1/2$ .
  - (b) The nonzero FS coefficients of x(t) are  $b_1 = b_{-1}^* = e^{-j\pi/4}/2$ .
  - (c) Using the multiplication property, we know that

$$z[n] = x[n]y[n] \stackrel{FS}{\longleftrightarrow} c_k = \sum_{l=-2}^{2} a_l b_{k-l}.$$

This implies that the nonzero Fourier series coefficients of z[n] are  $c_0 = \cos(\pi/4)/2$ ,  $c_1 = c_{-1}^* = e^{-j\pi/4}/2$ ,  $c_2 = c_{-2}^* = e^{-j\pi/4}/4$ .

(d) We have

$$z[n] = \sin\left(\frac{2\pi}{6}n + \frac{\pi}{4}\right) + \sin\left(\frac{2\pi}{6}n + \frac{\pi}{4}\right)\cos\left(\frac{2\pi}{6}n\right)$$
$$= \sin\left(\frac{2\pi}{6}n + \frac{\pi}{4}\right) + \frac{1}{2}\left[\sin(\frac{4\pi}{6}n + \frac{\pi}{4}) + \sin(\frac{\pi}{4})\right]$$

This implies that the nonzero Fourier series coefficients of z[n] are  $c_0 = \cos(\pi/4)/2$ ,  $c_1 = c_{-1}^* = e^{-j\pi/4}/2$ ,  $c_2 = c_{-2}^* = e^{-j\pi/4}/4$ .

**3.31.** (a) g[n] is as shown in Figure S3.31. Clearly, g[n] has a fundamental period of 10.

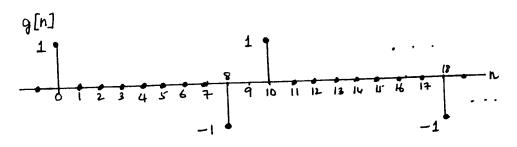


Figure S3.31

- (b) The Fourier series coefficients of g[n] are  $b_k = (1/10)[1 e^{-j(2\pi/10)8k}]$ .
- (c) Since g[n] = x[n] x[n-1], the FS coefficients  $a_k$  and  $b_k$  must be related as

$$b_k = a_k - e^{-j(2\pi/10)k} a_k.$$

Therefore,

$$a_k = \frac{b_k}{1 - e^{-j(2\pi/10)k}} = \frac{(1/10)[1 - e^{-j(2\pi/10)8k}]}{1 - e^{-j(2\pi/10)k}}.$$