Solution for ELG 3120 Assignment #3

2.3 Let us define the signals

% [n]:@"u[n]

hy[n]=u[n]

We note that x[n]=x,[n—2] and h[n]=h [n+2]

Now , we have y[n]=x[n]*h[n]=x[n-2]*h[n+2]
=3 i [k-2]m[n-k+2]

k=—0

By replacing k with m + 2 in the above summation, we obtain

y[nl= 3 x[m]h [n—m] =[] [n]

m=—o0

Using the results of Example 2.3 in the textbook and set « :% , we get

y[n]= 2{1-@"“}”[,1]

The output is plotted below:
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2.6 The solution is

yn]=x[n]xh[n]= 2 x[

o0

k=—c0

The output is plotted as following:
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(a) The desired convolution is
y(t) = J._OC x(z')h(t - z’)dT

= J‘Ot e e’ dr >0

e—ﬂt {e (a=B)t _1}
Then y(t)= Fa u(t) for a#

y(t)=te"u(t) fora=p
The output is plotted as follows
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(b) The desired convolution is
y(t)zj._ix(r)h(t—r)dr
=j02 t— r)dr I (t r)dr

And this can be written as
_ (2 2 _ S oo(t-1) 5 l 2t 2(1-2) 2(1-5) <
y(t)—'[oe dr I e dr—z[e 2e +e } for t <1

()=
(1 )Z—IS e Tdr—l[ Z(t_s)—ez] for 3<t<6
)=

2
y(t)=0 fort>6
The output is plotted below

I A=) g - J A=) = %[ez —26%7 4 ez(’_s)} for 1<¢<3
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(c) The desired convolution is
y(t) = f x(r)h(t—r)dr

= Jj sin(zz)h(1—7)dr

So y(t)zO for t <1

y(t):%[l—cos{ﬂ(t—l)}] for 1<t<3

y(t)=%[cos{7z(t—3)}—l] for 3<¢<5

y(t)=0 for t>5
The output is plotted below
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(d) The desired convolution is

Let (1) =h (z)_ém_z)

4 <t<1
Where A, (¢)= {A 0=t N
0 otherwise

So y(t):h(t)*x(t)=h1(t)*x(t)—%x(t—2)

And h (t)*x(1)= J.t i(az‘+b)dr zg[%atz —%a(t—l)2 +bt—b(t—l)}

Then
y(t)z%[%atz—%a(t—l)z +bt—b(t—1)}—%[a(t—2)+b]

=at+b=x (t)
The output is plotted below
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(e) The desired convolution is
x(t) periodic implies y () periodic. We only give one period.

For —lStSl we have
2 2

Bl , 1
y(f)=J.t_lz(t—‘r—l)d7+_|._;(l—t+z')df:Z+t_t2

For lﬁtgé we have
2 2

1 t .
y(t)zj.il(l—t+r)dr+.|‘;(t—1—r)df=t2 —3I+Z

The output is plotted below
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2.29
(a) Causal because h(t) =0 for t<0
-3
Stable because j:‘h (t)‘dt = eT < o0

(b) Noncausal because %(7) =0 for £ <0

Unstable because J.:‘h (t)‘dt =

(¢) Noncausal because /() # 0 for £ <0
100

Stable because J-_Z‘h (t)‘dt = eT <o

(d) Noncausal because h(t) 0 for <0

Stable because J-_Z‘h (t)‘dt = % <o

(¢) Noncausal because h(t)#0 for 7 <0
Stable because ro ‘h (t)‘dt = % < o0
(f) Causal because h(t)=0 for <0

Stable because joo ‘h (t)‘dt =l<o
(g) Causal because h(t)=0 for 1 <0

Unstable because Ji‘h (t)‘dt =0



2.33. (a) (i) From Example 2.14, we know that

n(t) = [;—)e’“ - %e-”] u(t).

(ii) We solve this along the lines of Example 2.14. First assume that y,(t) is of the
form Ke? for t > 0. Then using eq. (P2.33-1), we get for t > 0

2Ke? 4+ 2Ke** =¢* = K= %

We now know that y,(t) = }e® for ¢ > 0. We may hypothesize the homogeneous
solution to be of the form
yn(t) = Ae™ .

Therefore,

ya(t) = Ae™ % + %em, for t > 0.

Assuming initial rest, we can conclude that y,(t) = 0 for ¢t < 0. Therefore,

1
w0 =0=A+; = A=-_

Then,
Lo, 1 o
ya(t) = —7¢ t1¢ u(t).
(iii) Let the input be z3(t) = ae®u(t) + Be?u(t). Assume that the particular solution

yp(t) is of the form
Yp(t) = Kyae™ + KofBe®

for t > 0. Using eq. (P2.33-1), we get
3K ae® + 2K,y 0e% + 2K ae® + 2K58e% = o3 + Be?.
Equating the coefficients of €% and e?* on both sides, we get

1
and K.-_, = -.

1
Ki=3 4

Now hypothesizing that y,(t) = Ade~%, we get
1 oae 1,9 -2
ya(t) = gae” + a—ﬁe + Ae™%

for t > 0. Assuming initial rest,

us(0)=0=A+a/5+4/4 = A=*(§+§)-



Therefore,
1 1 a =
ya(t) = {gae“ + 4—,862‘ - (g + g) e 2’} u(t).

Clearly, y3(t) = ay1(t) + By2(t).
(iv) For the input-output pair z;(t) and y;(t), we may use eq. (P2.33-1) and the initial
rest condition to write

dy:(t)
dt

+2y(t) =z1(t), wnt)=0fort<t.
(52.33-1)

For the input-output pair z(t) and y2(t), we may use eq. (P2.33-1) and the initial
rest condition to write g

dyd?t(t) +2y2(t) = z2(t),  12(t) =0 for t <t
(S2.33-2)

Scaling eq. (S2.33-1) by a and eq. (S2.33-2) by 8 and summing, we get

Edz{ayl(i) + Bya(t)} + 2{ay1(t) + Bya2(t)} = azi(t) + Bz2(t),
and
y1(t) + y2(t) = 0 for t < min(t1,22).

By inspection, it is clear that the output is y3(t) = ayi(t) + By2(t) when the input
is z3(t) = az1(t) + Bz2(t). Furthermore, y3(t) = 0 for ¢ < t3, where t3 denotes the
time until which z3(t) = 0.

(b) (i) Using the result of (a-ii), we may write
n(t) = 1:— [ez" - e'm] u(t).
(ii) We solve this along the lines of Example 2.14. First assume that yp(t) is of the

form KYe2t=T) for t > T. Then using eq. (P2.33-1), we get for t > T

2Ke2t-T) 4 og2t-T) = 2 o K= %.

We now know that yp(t) = £eX¢=T) for t > T. We may hypothesize the homoge-
neous solution to be of the form

un(t) = Ae™™.

Therefore, o
yo(t) = Ae™® + Ie?("T), for t > T.




Assuming initial rest, we can conclude that yo(t) = 0 for ¢ < T. Therefore,

¥2(T)=0= AE_H-F-I} = A= —%en.

Then,

n(t) = [— Kewen  Egoen) ye-m,

Clearly, y2(t) = y1(t - T).
(iii) Consider the input-output pair z,(t) = y;(t) where z;(¢) = 0 for ¢ < t5. Note that

dy,(t
yt;t( ) +2y1(t) = z1(t), yi1(t) =0, for t < 1.
Since the derivative is a time-invariant operation, we may now write
dy(t - T)

7 +2y1(t-T)=x,(t-T), w(t)=0, fort < t,.
This suggests that if the input is a signal of the form z5(t) = z;(¢ — T'), then the
output is a signal of the form y(t) = y;(t — T'). Also, note that the new output
y2(t) will be zero for t < to + T. This supports time-invariance since z,(t) is zero
for t < to + T. Therefore, we may conclude that the system is time-invariant.



