Initials _____

Université d'Ottawa · University of Ottawa

Faculté de génie École d'ingénierie et de technologie de l'information Faculty of Engineering School of Information Technology and Engineering

ELG 3120C

Signals and Systems

Midterm Exam

Friday, 15 February 2001

Time: 10:00 am - 11:20 am

CBY B202

Prof. Jianping Yao

Calculator not allowed. Textbook and notes not allowed (close book exam).

Last name:

First name:

Student number:

Question 1

Determine if the following systems are: causal, stable, time invariant and linear. Justify your answers.

(a) y(t) = x(t-1) + x(2-t) (10 marks)

(b) $y[n] = [\cos(3n)]x[n]$

(10 marks)

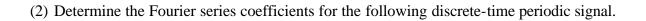
Question 2

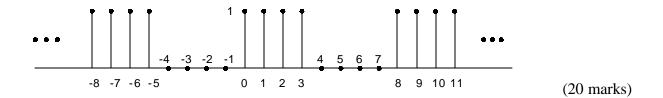
(1) Calculate the following convolution: y(t) = x(t) * h(t) with $x(t) = e^{-at}u(t)$, a > 0 and h(t) = u(t) - u(t-4). (20 marks)

(2) Consider a causal LTI system whose input x[n] and output y[n] are related by the difference equation

$$y[n] = \frac{1}{4}y[n-1] + x[n]$$

Determine y[n] if x[n] = u[n] - u[n-2].


(20 marks)


Initials _____

Question 3

- (1) Let $x(t) = \begin{cases} t & 0 \le t \le 1 \\ -t & -1 \le t \le 0 \end{cases}$ be a periodic signal with fundamental period of T = 2 and Fourier series coefficients a_k .
- (a) Sketch the waveform of x(t) and dx(t)/dt.
- (b) Calculate a_0 .
- (c) Determine the Fourier series representation of g(t) = dx(t)/dt.
- (d) Using the results from Part (c) and the property of continuous-time Fourier series to determine the Fourier series coefficients of x(t).

(20 marks)

Initials _____

Convolutions:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
$$x(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t-t)dt$$

The Fourier series of a periodic continuous-time signal:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\mathbf{w}_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\mathbf{p}/T)t}$$
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\mathbf{w}_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\mathbf{p}/T)t} dt$$

The Fourier series of a periodic discrete-time signal:

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk(2\mathbf{p}/N)n}$$

$$a_k = \frac{1}{N} \sum_{k = \langle N \rangle} x[n] e^{-jk(2\mathbf{p}/N)n}$$

Property	Periodic Signal	Fourier Series Coefficients
	x(t) Periodic with period T and	
	$y(t)$ fundamenta 1 frequency $\mathbf{w}_0 = 2\mathbf{p}/T$	b_k
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time Shifting	$x(t-t_0)$	$\frac{Aa_k + Bb_k}{e^{-jk\mathbf{w}_0 t}a_k}$
Frequency shifting	$e^{jM\mathbf{w}_0t}x(t)$	a_{k-M}
Conjugation	$x^{*}(t)$	$a *_{-k}$
Time Reversal	x(-t)	ak
Time Scaling	x(at), $a > 0$ (Periodic with period T/a)	
Periodic Convolution	$\int_T x(t) y(t-t) dt$	$Ta_k b_k$
Multiplication	x(t)y(t)	$\sum_{l=-\infty}^{\infty} a_l b_{k-l}$
Differentiation	$\frac{dx(t)}{dt}$	$\sum_{l=-\infty} a_l b_{k-l}$ $jk \mathbf{w}_0 a_k = jk \frac{2\mathbf{p}}{T} a_k$
Integration	$\int_{-\infty}^{\infty} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\boldsymbol{w}_0}\right)a_k = \left(\frac{1}{jk(2\boldsymbol{p}/T)}\right)a_k$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} a_{k} = a^{*}_{-k} \\ \operatorname{Re}\{a_{k}\} = \operatorname{Re}\{a_{-k}\} \\ \operatorname{Im}\{a_{k}\} = -\operatorname{Im}\{a_{-k}\} \\ a_{k} = a_{-k} \\ \angle a_{k} = -\angle a_{-k} \end{cases}$
RealandEvenSignalsAndOddSignalsSignalsAndEven-OddAndAndDecompositionAnd	$x(t) \text{ real and even}$ $x(t) \text{ real and odd}$ $\begin{cases} x_e(t) = Ev\{x(t)\} & [x(t) \text{ real}] \\ x_e(t) = Od\{x(t)\} & [x(t) \text{ real}] \end{cases}$	a_k real and even a_k purely imaginary and odd $\operatorname{Re}\{a_k\}$ $j\operatorname{Im}\{a_k\}$
Real Signals	Parseval's Relation for Periodic Signals $\frac{1}{T} \int_{T} x(t) ^{2} dt = \sum_{k=1}^{\infty} a_{k} ^{2}$	

Properties of the Continuous-Time Fourier Series