Initials

Université d'Ottawa

Faculté de Génie, École d'Ingénierie et des Technologies de l'Information

University of Ottawa

Faculty of Engineering, School of Information Technology and Engineering

ELG 3120 A

Signal and System Analysis

Midterm

Wednesday, 30 Octobre 2002

MCD 146, 10:00 am-11:25 am

Professer: Jianping Yao

- No calculators
- No textbook and notes (close-book exam)
- Initial on the top of each page.

Last name:		
First name:		
Student numbe	ar•	

Summations:

$$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a} \qquad |a| < 1$$

$$\sum_{k=n_1}^{\infty} a^k = \frac{a^{n_1}}{1-a} \qquad |a| < 1$$

$$\sum_{k=n_1}^{n_1} a^k = \frac{1-a^{n_1+1}}{1-a} \quad a \neq 1$$

$$\sum_{k=0}^{n_2} a^k = \frac{a^{n_1} - a^{n_2+1}}{1-a} \quad a \neq 1$$

Convolutions:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\mathbf{t}) h(t - \mathbf{t}) d\mathbf{t}$$
$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] h[n - k]$$

Continuous-time Fourier Series:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\mathbf{w}_0 t}$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\mathbf{w}_0 t} dt$$

$$a_0 = \frac{1}{T} \int_T x(t) dt \qquad \mathbf{w}_0 = \frac{2\mathbf{p}}{T}$$

Discrete-time Fourier Series:

$$x[n] = \sum_{k=< N>} a_k e^{jk(\frac{2\mathbf{p}}{N})n}$$

$$a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk(\frac{2\mathbf{p}}{N})n}$$

initials	Initials	
----------	----------	--

Question 1: /5

Determine if the following systems are: causal or non-causal, stable or instable, time invariant or time variant, and linear or nonlinear. Justify your answers.

(a)
$$y(t) = (t+5)\cos(\frac{1}{x(t)})$$

(b)
$$y[n] = \log(x[2n-4])$$

Initials

Question 2:

A causal LTI system is described by the following differential equation:

$$4\frac{dy(x)}{dt} - 2y(t) = x(t)$$

- (a) Calculate the impulse response h(t) of the system by solving the differential equation. (Do not use the transforms for this question, such as Fourier transform or Laplace transform).
- (b) Based on h(t), determine if the system is stable or not.
- (c) If the input is $x(t) = \mathbf{d}(t+5) + e^{-5t}u(t-4)$, calculate the output y(t) using convolution y(t) = x(t) * h(t). (Note: if you cannot find h(t) in (a), then you may use $h(t) = e^t u(t)$ to calculate the convolution).

Initials	
----------	--

Question 3:

(a) Calculate the Fourier Series coefficients of the following discrete-time signal.

$$x[n] = \sum_{m=-\infty}^{+\infty} \mathbf{d}(n-6m-4) + 3\mathbf{d}(n-6m-1)$$

Initials	
----------	--

(b) Calculate the continuous-time signal x(t) with fundamental period T=2. Find the expression which is pure real (i.e. simplified). The Fourier series coefficients a_k are:

$$a_0 = 10$$

$$a_3 = 2j$$

$$a_{-3} = -2j$$

$$a_5 = 5$$

$$a_{-5} = 5$$

$$a_k = 0$$
 others

Initials	
----------	--

Initials _____

Question 4:

Calculate the convolution sum y[n] = x[n] * h[n] with $x[n] = (-4)^n u[-n]$ and $h[n] = 2^n u[-n+5]$.

Initials _	
------------	--