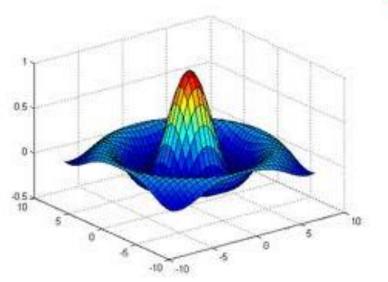
ELG3125 Signal and System Analysis

Introduction to MATLab

TA: Hiva Shahoei (hshah060@uottawa.ca) Fall, 2011



School of Electrical Engineering and Computer Science (EECS)

Outline

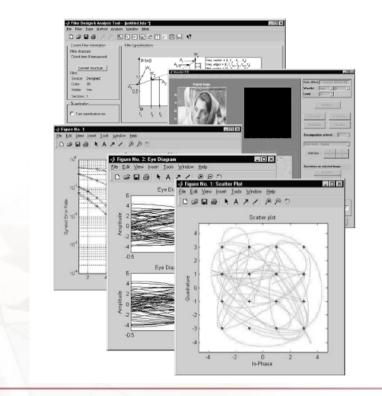
- 1. MATLab Overview
- 2. Desktop and Interfaces
- 3. Basics
- 4. Help

MATLab Overview

MATLab (MATrix LABoratory) is a high-performance language for technical computing. Typical uses include:

- Math and computation,
- Algorithm development
- Data acquisition,
- Modeling, simulation, and prototyping
- Data analysis, exploration, and visualization
- Scientific and engineering graphics

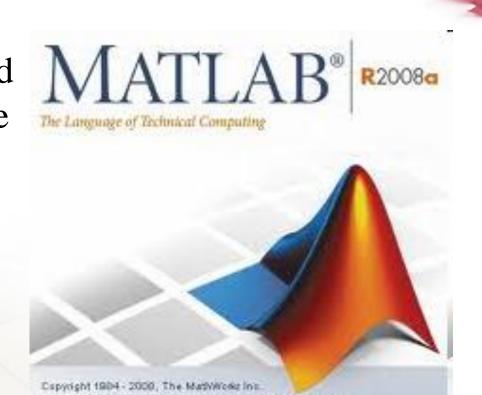
MATLab Overview


A high-level matrix/array language with

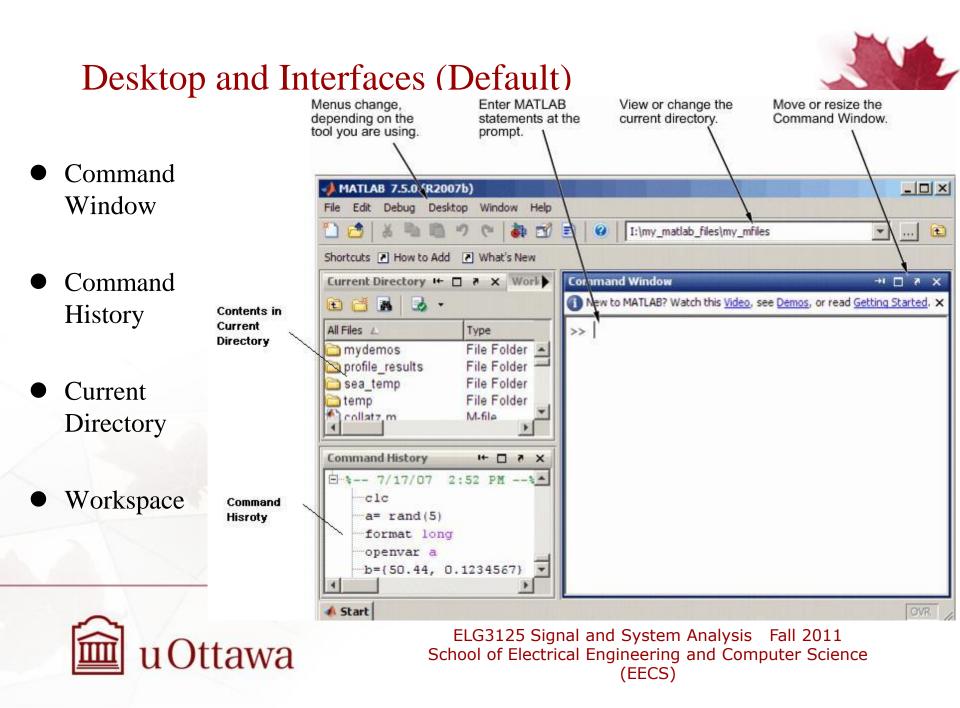
- control flow statements,
- functions,
- data structures,
- input/output,
- and object-oriented programming features.

MATLab Overview

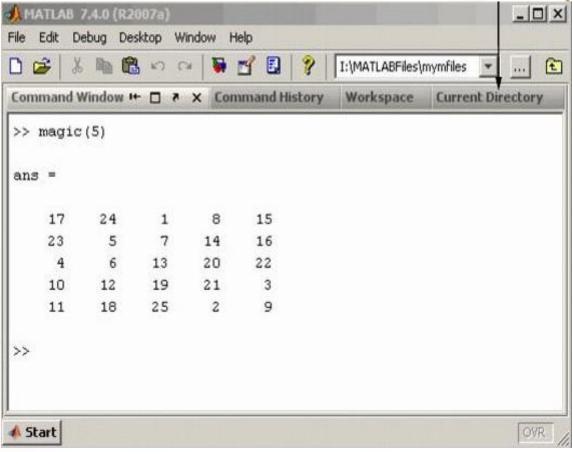
Toolboxes


- Signal Processing
- Communications
- Filter Design
- Wavelet Analysis
- Statistics
- Optimization
- Image Processing
- Others...

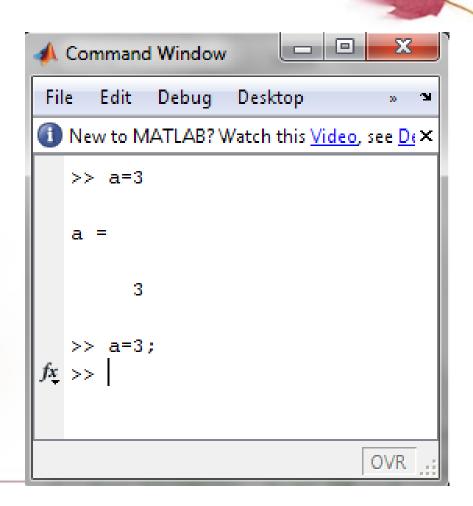
Start to run MATLab.....


 Starting MATLab and a screen similar to the right one appears, followed by the desktop interface.

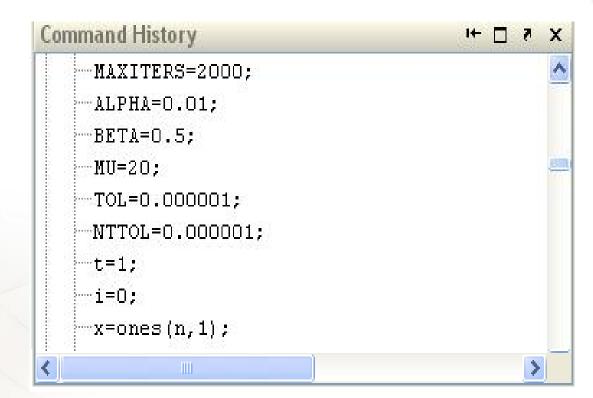
Protected by U.S. patents: See www.matheories.com/patents



Desktop and Interfaces


• Rearrange the desktop, for example one layout like the left one. It gives more space for each window.

Command Window


- Prompt >> appears and Matlab command can be entered.
- Press <ENTER> to execute the Matlab command and next prompt >> appears.
- If a command is terminated with a semicolon (;), no results will be displayed.
- Otherwise results will be displayed before next prompt appears.

Command History

- Command History store the commands entered previously.
- Provide an easy way to repeat a command later on.

Current Directory

• Show all the folders and files in the current directory

Current Directory 🗠 🗖 🍺 🗙 Worksp	oace
🖻 🛃 🛃 -	
All Files 🔺	Туре
🛅 matlab6	File Folder 🔼
🛅 sdpt3	File Folder
🛅 sedumi	File Folder
🛅 sets	File Folder
🛅 structures	File Folder 📥
🖺 Contents.m	M-file
🖺 COPYING.txt	Text Docum
🞦 cvx_setup.m	M-file
🔁 cvx_usrguide.pdf	Adobe Acrol
Y cvx_version.m	M-file
🗐 GPL.txt	Text Docum
🞦 Network Rate Optimization.m	M-file
🖺 README.txt	Text Docum 🔽
<	>

Workspace

- The Workspace browser shows the name of each variable, its value, and the Min and Max calculations
- The MATLAB
 workspace consists of the set of variables
 (named arrays) built up during a MATLAB
 session

Current Direct	tory	Workspace	× s ⊡ →
۵ 🖬 🖻 🛍		 Stack: Base 	~
Name 🗻	Value	Min	Max
🗄 MU	20	20	20
H NTTOL	1.0000e-06	1.00	1.00
Η TOL	1.0000e-06	1.00	1.00
🛨 i	0	0	0

Matlab Symbols

- >> Command prompt
- ... Continue statement in next line
- , Separate statements and data, e.g.,
 A = [5.92, 8.13, 3.53]
- % Start comment which ends at the end of line, e.g.,
 % The purpose of this routine is to compute
 % the value of ...
- ; Suppress output or used as row separator in a matrix
- : Specify a range and generates a sequence of numbers that you can use in creating or indexing into arrays. For example, N = 6:17.

MATLab Variables

Variable name

- CASE SENSITIVE. e.g., x and X are two different variables
- up to 63 characters (as of MATLAB 6.5 and newer)
- must start with a letter and can be followed by letters, digits, or underscores. e.g.,x3_2, but 2_x3 is not correct.

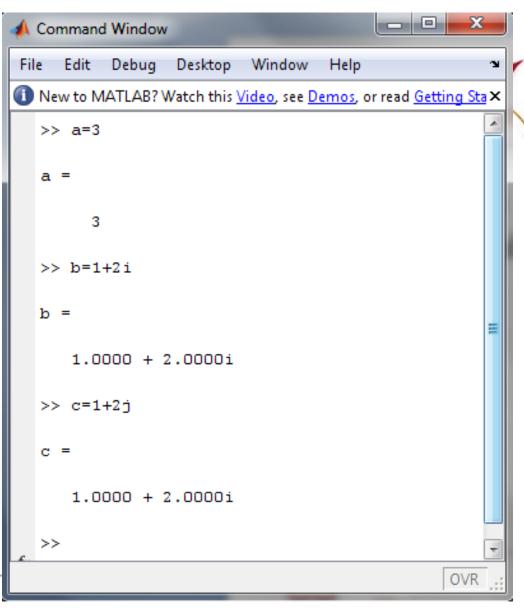
MATLab Variables

• Variables are stored in Matlab in the form of matrices

which are generally of size MxN.

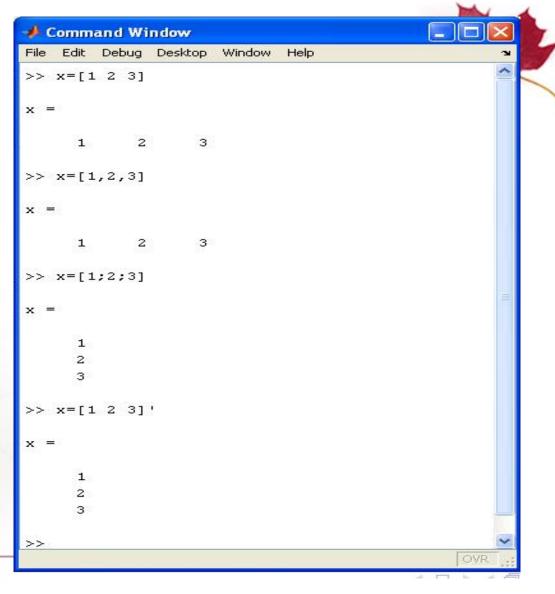
- Elements of matrix can be real or complex numbers.
- A scalar is a 1x1 matrix.
- A row vector is a 1xN matrix.
- A column vector is a Mx1 matrix.

MATLab Variables


Special variables

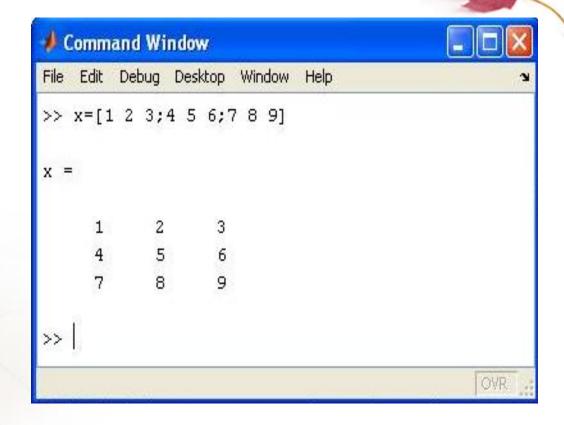
- ans Default variable name for results
- **pi** Value of π
- eps Smallest incremental number
- inf Infinity
- NaN Not a number e.g. 0/0
- i and j i = j = square root of -1
- realmin The smallest usable positive real number
- realmax The largest usable positive real number

Scalars examples


- Real numbers
- Complex numbers

Vectors examples

- Row vector x=[1 2 3]
- Column vector x=[1;2;3]



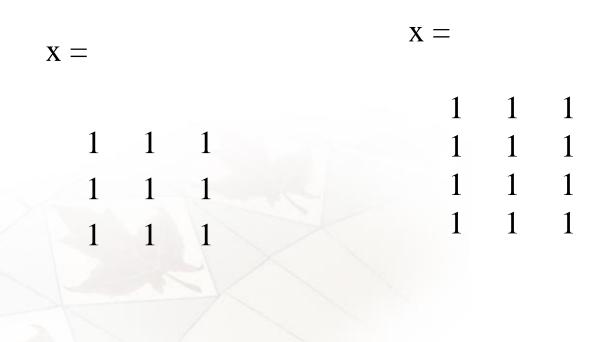
Matrix example

x=[1 2 3;4 5 6;7 8 9]

- Matrix is input row by row.
- Row elements are separated by space or comma
- Different rows are separated by semicolon.

Zero matrix

ullet


- >> x=zeros(3) >> x=zeros(2,3)

One Matrix

• >> x=ones(3) >> x=ones(4,3)

Identity Matrix (Unit Matrix)

>> x=	eye(3)	>> y=	eye((5)		
x =			y =				
			1	0	0	0	0
1	0	0	0	1	0	0	0
0	1	0	0		1	0	0
0	0	1	0	0	0	1	0
0	9		0	0	0	0	1

Matrix Operation	
>> A=[10 20 30;11 21 31]	>> a2=A(:,2)
A =	a2 =
10 20 30 11 21 31	20 21
>> a=A(1,2)	>>A1=A(1:2,1:2)
a =	A1 =
20	10 20
>>a1=A(1,:)	11 21
a1 =	
10 20 30	

Arithmetic Operator

Matrix Operation:

- + Addition
- Subtraction
- * Multiplication
- / Right division
- \ Left division
- ^ Power
- ' Conjugate transpose

A=[10 20 30;11 21 31] B=[1 1; 1 1; 1 1]

>> A*B

Arithmetic Operator

Element-by-element operations.

- . * Multiplication
- . / Right division
- . \ Left division
- . ^ Power
- .' Transpose (unconjugated)

A=[10 20 30;11 21 31] C=[1 1 1;1 1 1]

>>A.*C

ans =

102030112131

Relational operators

- == equal
- ~= not equal
- < less than
- <= less than or equal
- > greater than
- >= greater than or equal

Flow control

- if-elseif-else statements
- switch-case statements
- for loops
- while loops

Basic Math Functions

- abs(x)
- exp(x)
- sin(x), cos(x)
- $\log(x),\log 10(x)$
- sqrt(x)
- sign(x)
- round(x),fix(x)
- floor(x),ceil(x)
- size(x), length(x)

absolute value exponential sine, cosine natural logarithm, common logarithm square root signum round towards nearest integer, round towards zero round towards negative infinity, round towards plus infinity size of array, length of vector

Two types of M-Files

M-files are used to execute a series of commands.

- Script: Running with No Input Arguments;
- Function: Running with Input Arguments;

✓ Both have a .m extension.✓ Created in Editor Window.

Creating a New Script M-File

- click the New M-file button on the MATLAB desktop toolbar;
- or select File > New > M-File from the MATLAB desktop.

	A MATLAB 7.8.0 (R2 A MATLAB 7.8.0 (R2009		-		
	File Edit View Gra	phics Debug Paral	lel D)eskt	top Window Help
	1 6 🕺 🖞	୬ ୯ 👌 🛃 🗐	0	Curr	rent Directory: C:\Users\Public\Documents\Ia
	Shortcuts 🗷 How to A	dd 🖪 What's New			
/	Current Directory	•← 🗖	× ×	C	Command Window
	🗢 🔹] « matlab file	s ► bragg -	- @-	0	New to MATLAB? Watch this <u>Video</u> , see <u>Der</u>
	🗋 Name 🔺	Date Modified	_		ans =
	🖆 dtd.m 🐔 dtdt.m 🎒 lpc.m	21/04/05 1:50 PM 21/04/05 2:01 PM 02/06/11 9:42 PM			-1 1 0
	Iptd.m Readme.txt	15/04/05 1:44 PM 21/04/05 2:14 PM			>> size(a)
	 test.asv test.m tmmcalc.m 	02/06/11 10:12 PM 02/06/11 10:15 PM 15/04/05 1:22 PM			ans = 1 3
					>> length(a)
					ans =
		Curry			3 >> a=[a; 2 3 4]

Open an Existing M-File

• File>Open

The * after the filename indicates the file has not been saved since it was last modified.

Set the right-hand text limit (red line) using Preferences -> Display.

	Image: Second atz.m* Image: Second atz.m* File Edit Text Go Cell Tools Debug Desktop Window Help Image: Second atz Ima
Toolbar for cell	¹ 2 3 3 8 1 1 1 2 2 2 3 4 4 5 2 4 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
features.	1 function sequence=collatz(n) 2 % Collatz problem. Generate a sequence of integers resolving to 1 3 % For any positive integer, n:
Set breakpoints in —	4 % Divide n by 2 if n is even 5 % Multiply n by 3 and add 1 if n is odd
the alley.	6 % Repeat for the result 7 % Continue until the result is 1
<u>.</u>	8 9 - sequence = n;
Colors highlight	<pre>10 - next_value = n; 11 - while next_value > 1 10 - while next_value > 1</pre>
syntax elements.	12 - if rem(next_value,2)==0 13 - next_value = next_value/2; 14 - else
	collatz Ln 9 Col 12 OVR

Status bar information includes cursor line and column numbers.

Example of a Script M-File

a=pi/3; %60 degrees x=sin(a); b=pi/4; %90 degrees y=cos(b); c=x*y

c =

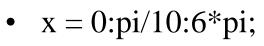
0.6124

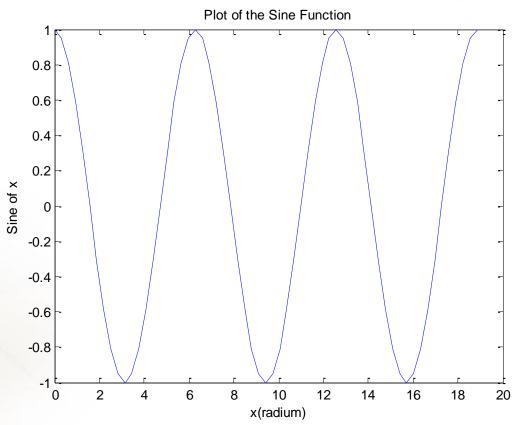
Example of a function M-File

Editor - Untitled3*	ettin 🔳 🗖 🔀
File Edit Text Go Cell Tools Debug Desktop 🤉 🔌 🛪 🗙	ebug » 🛚 🗖 🗙
: 🗋 😂 🛃 🔏 🐚 🛍 🤊 🕲 🍓 🖅 - 🗛 🖛 🗭 🔽 - 🖃 💭 🗖	
· + - 1.0 + ÷ 1.1 × ‰ * ∞ 0	× % % 0
1 - function [output] = Untitled3(input) 2 - %UNTITLED3 Summary of this function goes here	name (a)
3 -% Detailed explanation goes here	
4 5	
6 end	grees
7 8	
Untitled2 × Untitled3* ×	
Untitled3 Ln 1 Col 40 OVR	Col 1 OVR

MATLab Graphing

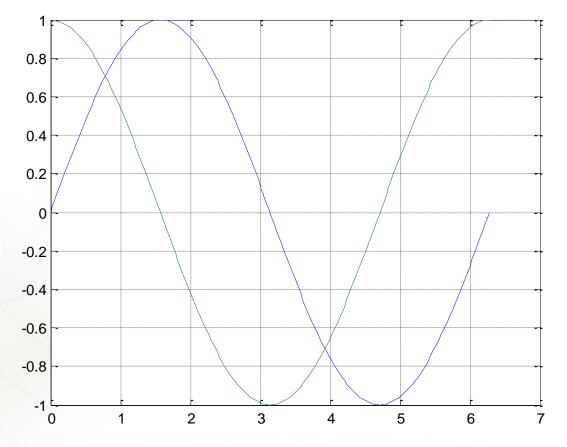
- plot Plot in linear coordinates as a continuous function
- stem Plot in linear coordinates as discrete samples
- loglog Logarithmic x and y axes
- semilogx Linear y and logarithmic x axes
- semilogy Linear x and logarithmic y axes
- xlabel Label x-axis
- ylabel Label y-axis
- title Put a title on the plot


MATLab Graphing (cont.)


- grid Add a grid to the plot
- text Allow placing text at specified coordinates of the plot
- axis Control axis scaling and appearance
- figure Create a figure for plotting
- hold Hold current graph
- subplot Divide figure window and select figure position

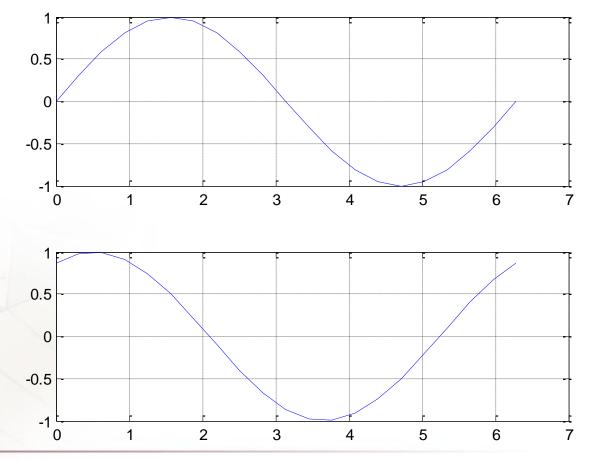
Plot

- y = cos(x);
- plot(x,y)
- xlabel('x(radium)')
- ylabel('Sine of x')
- title('Plot of the Sine Function')



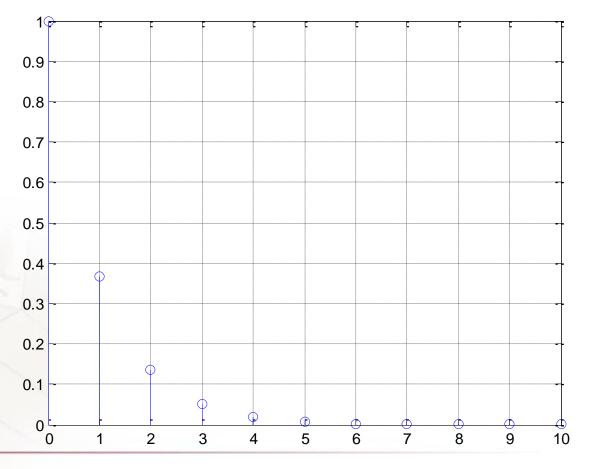
Usage of hold

x=0:pi/100:2*pi; y1=sin(x); y2=sin(x+pi/2); plot(x,y1,'b'); hold on; plot(x,y2,'g'),grid



Usage of subplot

x=0:pi/10:2*pi; y1=sin(x); y2=sin(x+pi/3); subplot(2,1,1); plot(x,y1),grid; subplot(2,1,2); plot(x,y2),grid;



Stem

 $y[n] = e^{-n}$

- n=0:10;
- y=exp(-n);
- stem(n,y),grid;

How to get help?

• help

Display help text in Command Window. e.g.,

>>help plot

Command Window

>> help plot PLOT Linear plot.

PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix, then the vector is plotted versus the rows or columns of the matrix, whichever line up. If X is a scalar and Y is a vector, disconnected line objects are created and plotted as discrete points vertically at X.

PLOT(Y) plots the columns of Y versus their index. If Y is complex, PLOT(Y) is equivalent to PLOT(real(Y), imag(Y)). In all other uses of PLOT, the imaginary part is ignored.

Various line types, plot symbols and colors may be obtained with PLOT(X, Y, S) where S is a character string made from one element from any or all the following 3 columns:

b	blue		point	() - - (solid
g	green	o	circle	1	dotted
r	red	х	x-mark		dashdot
С	cyan	+	plus	3.000	dashed
m	magenta	*	star	(none)	no line
У	yellow	3	square		
k	black	d	diamond		
W	white	v	triangle (down)		
		^	triangle (up)		
		<	triangle (left)		
		< >	triangle (right)		
		р	pentagram		
		h	hexagram		

For example, PLOT(X,Y,'c+:') plots a cyan dotted line with a plus at each data point; PLOT(X,Y,'bd') plots blue diamond at each data point but does not does not does line.

Exercise

- ✓ Set up matrix A of 4x5, matrix B of 5x3;
 do multiplication C=A*B with comma and without comma behind.
- ✓ Set up two matrices of 4x3, do multiplication, addition, subtraction with element-by-element operaton;
- ✓ Plot x=sin(x)+cos(x+pi/3) specify the range of x with colon. the plot needs x label, y label, title, green color, grid.

Enjoy signals.....

