

Université d'Ottawa · University of Ottawa

Faculté de génie École d'ingénierie et de technologie de l'information Faculty of Engineering School of Information Technology and Engineering

ELG 3120A

SIGNAL AND SYSTEM ANALYSIS

Final Exam – Fall 2002

Thursday 09:30 - 12:30

SITE Building, Room: B0138

Prof. Jianping Yao

Time allowed: 3 hours No calculators permitted Textbook and notes not allowed (close book exam) Attempt all the questions (50 marks)

Last name:

First name:

Student number:

```
Initial _____
```

Question 1 (6 marks)

1. Using the differentiation and shifting properties of Fourier Transform to calculate the Fourier Transform of the signal x(t) shown in Figure 1 (Do not use the direct definition of Fourier Transform to calculate the Fourier Transform of x(t)).

Figure 1

Question 2 (6 = 3 + 3)

The input and the output of a stable and causal LTI system are related by the differential equation

$$\frac{d^2 y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = 2x(t)$$

(a) Find the impulse response of the system.

(b) What is the output response if an input $x(t) = e^{-2t}u(t)$ is applied to the system?

Question 3 (6)

Find the frequency response $H(e^{jw})$ and the impulse response h[n] of the system having the output y(t) for the input x(t).

$$x[n] = \left(\frac{1}{2}^{n}\right)u[n], \text{ and } y[n] = \frac{1}{4}\left(\frac{1}{2}^{n}\right)^{n}u[n] + \left(\frac{1}{4}^{n}\right)^{n}u[n]$$

Question 4 (7 = 2 + 2 + 2 + 1)

Consider a discrete-time LTI system described by the following difference equation:

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- (a) Determine its transfer function $H(e^{jw})$ and impulse response h[n].
- (b) Find the expression for the magnitude response $|H(e^{jw})|$.
- (c) Sketch its magnitude response.
- (d) Based on the magnitude response plot, determine if the filter is a low-pass, high-pass or band-pass filter.

Question 5 (8 = 3 + 3 + 2)

Consider an RLC circuit shown in Figure 2 with input x(t) and output y(t).

- (a) Write the differential expression for this system.
- (b) Find the frequency response H(jw).
- (c) If L = 10 mH, C = 100 mF and $R = 1\Omega$, determine if the system is over-damped, critically damped or under-damped.

Figure 2

Question 6 (4)

Sketch the amplitude response as a Bode diagram (straight line approximation) for the LTI system described by the transfer function.

$$H(j\boldsymbol{w}) = \frac{(10+j\boldsymbol{w})}{(1+j\boldsymbol{w})(100+j\boldsymbol{w})}$$

Question 7 (6 = 3 + 3)

Determine the Nyquist rate for each of the following two signals x(t) and y(t).

- (a) $x(t) = 1 + \cos(100\mathbf{p}t) + \cos(200\mathbf{p}t)$
- (b) $y(t) = x^2(t)$ with the same x(t) in (a).

Page 9 of 16

Question 8 (7 =2 +2+ 3)

Consider a continuous-time LTI system for which the input x(t) and y(t) are related by the differential equation

$$\frac{d^2 y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t)$$

- (a) Determine the system transfer function H(s).
- (b) Sketch the pole-zero pattern of H(s).
- (c) Determine h(t) for each of the following cases: (i) The system is stable. (ii) The system is causal, (iii) The system is neither stable nor causal.

Initial _____

Table of Formulas

Convolutions:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t-t)dt$$
$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Continuous-time Fourier series:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk \mathbf{w}_0 t}$$
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk \mathbf{w}_0 t} dt$$
$$a_0 = \frac{1}{T} \int_T x(t) dt \qquad \mathbf{w}_0 = \frac{2\mathbf{p}}{T}$$

Discrete-time Fourier series:

$$x[n] = \sum_{k = } a_k e^{jk(\frac{2p}{N})n} a_k = \frac{1}{N} \sum_{n = } x[n] e^{-jk(\frac{2p}{N})}$$

Orthogonal function decomposition:

$$\hat{V}(t) = \sum_{j=1}^{m} \boldsymbol{a}_{j} \boldsymbol{f}_{j}(t)$$
$$\boldsymbol{a}_{j} = \frac{\langle V(t), \boldsymbol{f}_{j}(t) \rangle}{\int_{T} \left| \boldsymbol{f}_{j}(t) \right|^{2} dt} = \frac{\langle V(t), \boldsymbol{f}_{j}(t) \rangle}{\langle \boldsymbol{f}_{j}(t), \boldsymbol{f}_{j}(t) \rangle}$$
$$\langle V(t), \boldsymbol{f}_{j}(t) \rangle = \int_{T} V(t) \boldsymbol{f}_{j}^{*}(t) dt$$

Continuous-time Fourier transform and inverse Fourier transform:

$$X(j\mathbf{w}) = \int_{-\infty}^{+\infty} x(t)e^{-j\mathbf{w}t}dt$$
$$x(t) = \frac{1}{2\mathbf{p}}\int_{-\infty}^{+\infty} X(j\mathbf{w})e^{j\mathbf{w}t}d\mathbf{w}$$

Periodic signals:

$$X(j\boldsymbol{w}) = \sum_{k=-\infty}^{+\infty} 2\boldsymbol{p} \ a_k \boldsymbol{d}(\boldsymbol{w} - k\boldsymbol{w}_0)$$

Continuous-time first and second order lowpass systems in standard form:

$$H(j\mathbf{w}) = \frac{1}{1+j\mathbf{w}t}$$
$$H(j\mathbf{w}) = \frac{\mathbf{w}_n^2}{(j\mathbf{w})^2 + 2\mathbf{z}\mathbf{w}_n(j\mathbf{w}) + \mathbf{w}_n^2}$$

Discrete-time Fourier transform and inverse Fourier transform

$$X(e^{j\boldsymbol{w}}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\boldsymbol{w}n}$$
$$x[n] = \frac{1}{2\boldsymbol{p}} \int_{2\boldsymbol{p}}^{\infty} X(e^{j\boldsymbol{w}})e^{j\boldsymbol{w}n}d\boldsymbol{w}$$

Impulse-train sampling:

$$x_{p}(t) = x(t) \times p(t)$$
$$X_{p}(j\boldsymbol{w}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\boldsymbol{w} - k\boldsymbol{w}_{s})), \ \boldsymbol{w}_{s} = \frac{2\boldsymbol{p}}{T}$$

Laplace transform

$$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$$

Section	Property	Aperiodic signal	Fourier transform
		x(t)	$X(j\omega)$
		$\mathbf{y}(t)$	$Y(j\omega)$
4.3.1	Linearity	ax(t) + by(t)	$aX(i\omega) + bY(i\omega)$
4.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
4.3.6	Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega - \omega_0))$
4.3.3	Conjugation	$x^*(t)$	$X^*(-j\omega)$
4.3.5	Time Reversal	x(-t)	$X(-j\omega)$
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\theta)Y(j(\omega-\theta))d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t) dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
4.3.6	Differentiation in Frequency	tx(t)	$j \frac{d}{d\omega} X(j\omega)$
			$\begin{cases} X(j\omega) = X^*(-j\omega) \\ (\Re e\{X(j\omega)\} = (\Re e\{X(-j\omega)\} \end{cases}) \end{cases}$
433	Conjugate Symmetry	$\mathbf{r}(t)$ real	
11010	for Real Signals	x(t) Iour	$\frac{3}{2} \frac{3}{2} \frac{3}$
			$ \mathbf{X}(\mathbf{J}\boldsymbol{\omega}) = \mathbf{X}(-\mathbf{J}\boldsymbol{\omega}) $
422	0		$\left[\langle X(j\omega) \rangle = -\langle X(-j\omega) \rangle \right]$
4.3.3	Symmetry for Real and	x(t) real and even	$X(j\omega)$ real and even
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd
		$x_e(t) = \xi \{x(t)\}$ [x(t) real]	$\Re e\{X(i\omega)\}$
4.3.3	Even-Odd Decompo- sition for Real Sig-	$x_o(t) = \mathfrak{O}d\{x(t)\} [x(t) \text{ real}]$	$j\mathfrak{Gm}\{X(j\omega)\}$

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSF
--

Sec. 4.6 Tables of Fourier Properties and of Basic Fourier Transform Pairs

329

_

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty}a_ke^{jk\omega_0t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, \ k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$)
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and x(t+T) = x(t)	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k \omega_0 T_1}{\pi} \right) = \frac{\sin k \omega_0 T_1}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$\delta(t)$	1	_
<i>u</i> (<i>t</i>)	$\frac{1}{j\omega} + \pi\delta(\omega)$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	_
$e^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	_
$te^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	_
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ (Re{a} > 0	$\frac{1}{(a+j\omega)^n}$	_

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Section	Property	Aperiodic Signal	Fourier Transform
5.3.2 5.3.3 5.3.3 5.3.4 T 5.3.6 5.3.7 5.4 5.5	Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Expansion Convolution Multiplication	$x[n]$ $y[n]$ $ax[n] + by[n]$ $x[n - n_0]$ $e^{j\omega_0 n} x[n]$ $x^*[n]$ $x[-n]$ $x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$ $x[n] * y[n]$ $x[n]y[n]$	$X(e^{j\omega}) \text{ periodic with} Y(e^{j\omega}) \text{ period } 2\pi aX(e^{j\omega}) + bY(e^{j\omega}) e^{-j\omega n_0}X(e^{j\omega}) X(e^{j(\omega-\omega_0)}) X^*(e^{-j\omega}) X(e^{-j\omega}) X(e^{-j\omega}) X(e^{j\omega}) X(e^{j\omega}) \frac{1}{2\pi} \int X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
5 .3.5 5 .3.5	Differencing in Time Accumulation	$x[n] - x[n-1]$ $\sum_{k=-\infty}^{n} x[k]$	$\frac{2\pi J_{2\pi}}{(1-e^{-j\omega})X(e^{j\omega})}$ $\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]	$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\} \\ \Im m\{X(e^{j\omega})\} = -\Im m\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \measuredangle X(e^{j\omega}) = -\measuredangle X(e^{-j\omega}) \end{cases}$
5.3.4	Symmetry for Real, Even	x[n] real an even	$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$x_e[n] = \delta v\{x[n]\} [x[n] real]$ $x_o[n] = Od\{x[n]\} [x[n] real]$	$\Re e\{X(e^{j\omega})\}$ jIm{ $X(e^{j\omega})$ }
5.3.9	Parseval's Re $\sum_{n=-\infty}^{+\infty} x[n] $	elation for Aperiodic Signals $ ^{2} = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^{2} d\omega$	

 TABLE 5.1
 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta\left(\omega-rac{2\pi k}{N} ight)$	a_k
e ^{jw} n	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, k = m, m \pm N, m \pm 2N, \dots \\ 0, \text{ otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
cos ω ₀ n	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $\omega_0 = a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{2\pi}{2\pi}$ irrational \Rightarrow The signal is aperiodic
sin w ₀ n	$\frac{\pi}{j}\sum_{l=-\infty}^{+\infty} \{\delta(\omega-\omega_0-2\pi l)-\delta(\omega+\omega_0-2\pi l)\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi\sum_{l=-\infty}^{+\infty}\delta(\omega-2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \\ and \\ x[n+N] = x[n] \end{cases}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta\bigg(\omega-\frac{2\pi k}{N}\bigg)$	$a_{k} = \frac{\sin[(2\pi k/N)(N_{1} + \frac{1}{2})]}{N \sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_{k} = \frac{2N_{1} + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	_
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_
$\frac{\sin w_n}{\pi n} = \frac{w}{\pi} \operatorname{sinc} \left(\frac{w_n}{\pi} \right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W\\ 0, & W < \omega \le \pi\\ X(\omega) \text{ periodic with period } 2\pi \end{cases}$	_
δ[n]	1	—
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	_
$\delta[n-n_0]$	$e^{-j\omega n_0}$	—
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	_

 TABLE 5.2
 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Section	Property	Signal	Laplace Transform	ROC	
		x(t)	X(s)	R R.	
		$x_1(t)$ $x_2(t)$	$X_2(s)$	R_2	
9.5.1	Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$	
9.5.2	Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R	
9.5.3	Shifting in the s-Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)	
9.5.4	Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)	
9.5.5	Conjugation	$x^*(t)$	$X^*(s^*)$	R	
9.5.6	Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$	
9.5.7	Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R	
9.5.8	Differentiation in the s-Domain	-tx(t)	$\frac{d}{ds}X(s)$	R	
9.5.9	Integration in the Time Domain	$\int_{-\infty}^{t} x(\tau) d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{ \mathfrak{Re}\{s\} > 0 \}$	
	• • • • • • • • • • • • • • • • • • • •	Initial- and Fi	nal-Value Theorems	L	
9.5.10	9.5.10 If $x(t) = 0$ for $t < 0$ and $x(t)$ contains no impulses or higher-order singularities at $t = 0$, then				
	$x(0^+) = \lim sX(s)$				
	If $x(t) = 0$ for $t < 0$ and x	(t) has a finite limi	$s \rightarrow \infty$ t as $t \longrightarrow \infty$, then		
$\lim_{t \to \infty} x(t) = \lim_{s \to \infty} sX(s)$					

TABLE 9.1 PROPERTIES OF THE LAPLACE TRANSFORM

9.6 SOME LAPLACE TRANSFORM PAIRS

As we indicated in Section 9.3, the inverse Laplace transform can often be easily evaluated by decomposing X(s) into a linear combination of simpler terms, the inverse transform of each of which can be recognized. Listed in Table 9.2 are a number of useful Laplace

Transform pair	Signal	Transform	ROC
1	$\delta(t)$	1	All s
2	<i>u</i> (<i>t</i>)	$\frac{1}{s}$	$\Re e\{s\} > 0$
3	-u(-t)	$\frac{1}{s}$	$\Re e\{s\} < 0$
4	$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
5	$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\Re e\{s\} < 0$
6	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} > -lpha$
7	$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} < -\alpha$
8	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} > -\alpha$
9	$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$(\operatorname{Re}\{s\} < -\alpha)$
10	$\delta(t-T)$	e^{-sT}	All s
11	$[\cos\omega_0 t]u(t)$	$\frac{s}{s^2+\omega_0^2}$	$\Re e\{s\} > 0$
12	$[\sin \omega_0 t] u(t)$	$\frac{\boldsymbol{\omega}_0}{s^2+\boldsymbol{\omega}_0^2}$	$\Re e\{s\} > 0$
13	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
14	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
15	$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s ⁿ	All s
16	$u_{-n}(t) = \underbrace{u(t) \ast \cdots \ast u(t)}_{}$	$\frac{1}{s^n}$	${ m Re}\{s\}>0$
	n times		

TABLE 9.2 LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS