Université d'Ottawa Faculté de Génie, École d'Ingénierie et des Technologies de l'Information

University of Ottawa Faculty of Engineering, School of Information Technology and Engineering

ELG 3120

Signal and System Analysis

Midterm

Saturday, 22 October 2005

13:00 - 14:30

Professor: Jianping Yao

- No calculators
- No textbook and notes (close-book exam)
- Initial on the top of each page.

Last name: _____

First name:

Student number: _____

Summations :

$$\sum_{k=0}^{\infty} a^{k} = \frac{1}{1-a} \qquad |\mathbf{a}| < 1$$

$$\sum_{k=n_{1}}^{\infty} a^{k} = \frac{a^{n_{1}}}{1-a} \qquad |\mathbf{a}| < 1$$

$$\sum_{k=0}^{n_{1}} a^{k} = \frac{1-a^{n_{1}+1}}{1-a} \quad \mathbf{a} \neq 1$$

$$\sum_{k=n_{1}}^{n_{2}} a^{k} = \frac{a^{n_{1}}-a^{n_{2}+1}}{1-a} \quad \mathbf{a} \neq 1$$

Convolutions :

 $y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$ $y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$

Continuous-time Fourier Series:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$
$$a_0 = \frac{1}{T} \int_T x(t) dt \qquad \omega_0 = \frac{2\pi}{T}$$

$$x(t) = a_0 + 2\sum_{k=1}^{\infty} A_k \cos(k\omega_0 t + \theta_k),$$
$$a_k = A_k e^{j\theta_k} \quad k \ge 1$$

Discrete-time Fourier Series:

$$x[n] = \sum_{k=}^{jk(\frac{2\pi}{N})n} a_k = \frac{1}{N} \sum_{n=}^{jk(\frac{2\pi}{N})n} \sum_{n=}^{jk(\frac{2\pi}{N})n} a_k = \frac{1}{N} \sum_{n=$$

Other:

$$\int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k
Linearity Time Shifting Frequency Shifting	3.5.1 3.5.2	Ax(t) + By(t) $x(t - t_0)$ $e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M}
Conjugation Time Reversal Time Scaling	3.5.6 3.5.3 3.5.4	$x^{*}(t)$ x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	$a^*_{-k} \\ a_{-k} \\ a_k$
Periodic Convolution		$\int_T x(\tau) y(t-\tau) d\tau$	$Ta_k b_k$
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0a_k = jk\frac{2\pi}{T}a_k$
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\left\{egin{array}{l} a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ \measuredangle a_k &= -\measuredangle a_{-k} \end{array} ight.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	3.5.6 3.5.6	$ \begin{aligned} x(t) \text{ real and even} \\ x(t) \text{ real and odd} \\ \begin{cases} x_e(t) = \delta v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = Od\{x(t)\} & [x(t) \text{ real}] \end{aligned} $	a_k real and even a_k purely imaginary and odd $\Re e\{a_k\}$ $j \Im m\{a_k\}$
	Pa	arseval's Relation for Periodic Signals	
		$\frac{1}{T}\int_{T} x(t) ^{2}dt = \sum_{k=-\infty}^{+\infty} a_{k} ^{2}$	

 TABLE 3.1
 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Initials _____

/20

Question 1:

(a) A continuous-time system is defined by the input-output relationship

$$y(t) = \cos(\omega t)x(t)$$

State and justify whether the system is (i) linear or non-linear; (ii) time-invariant or timevariant; (iii) memoryless or with memory; (iv) causal or non-causal; (v) stable or unstable; (vi) invertible or non-invertible.

(b) A discrete-time system is defined by the input-output relationship

y[n] = u(x[n]) - u(x[n] - 1)

Where $u(\cdot)$ is the unit-step function. State and justify whether the system is (i) linear or non-linear; (ii) time-invariant or time-variant; (iii) memoryless or with memory; (iv) causal or non-causal; (v) stable or unstable; (vi) invertible or non-invertible.

Initials _____

Question 2:

Let
$$x[n] = \sin\left(\frac{2\pi n}{4}\right)u[n]$$
.

(a) Carefully sketch the following signals for $-10 \le n \le 10$:

(i) *x*[*n*]

(ii) x[-n+3]

- (iii) $\operatorname{Ev}\{x[n]\}$
- (iv) $Od\{x[n]\}$

(b) For each of the signals in (i)-(iv), state if it is periodic or non-periodic. If it is periodic, give the fundamental period.

Question 3:

/20

Find the overall impulse response of two LTI systems connected in cascade. The impulse responses of the two subsystems are $h_1(t) = e^{-3t}u(t) + \delta(t-2)$ and $h_2(t) = u(t-3) - u(t-5)$.

Solution:

 $h(t) = h_1(t) * h_2(t)$

Question 4:

Consider a causal LTI system whose input x[n] and output y[n] are related by the difference equation $y[n] - \frac{1}{3}y[n-1] = x[n]$

(1) Find the impulse response of the system.
 (2) Determine y[n] using convolution if x[n]=u[n]-u[n-8].

Initials	
----------	--

Question 5:

/20

(1) Calculate the Fourier series coefficients of the following continuous-time signal: $x(t) = \begin{cases} 1 & 0 \le t \le 1 \\ -1 & 1 \le t \le 2 \end{cases}$ with a fundamental period of 2. (2) A discrete-time periodic signal x[n] is real valued and has a fundamental period N = 5. The nonzero Fourier series coefficients for x[n] are

$$a_0 = 2, \ a_2 = a_{-2}^* = 2e^{j\pi/6}, \ a_4 = a_{-4}^* = e^{j\frac{\pi}{3}}, \text{ express } x[n] \text{ in the form of}$$

 $x[n] = A_0 + \sum_{k=1}^{\infty} A_k \sin(\omega_k n + \phi_k)$