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6.5 FIRST-ORDER AND SECOND-ORDER CONTINUOQUS-TIME SYSTEMS

LTT systems described by linear constani-coefficient differential eguations are of great
practical importance, hecause many physical systems can be modeled by such equations
and because systems of this type can often be conveniendy implemented. For a variety
of pracrical reasons, bigh-order systems are frequently impiemented or represenied by
combining first-order and second-order systems in cascade or paraile] arrangements. Con-
sequently, the properties of first- and second-order systems play an imiportant role in an-
alyzing, designing, and understanding the time-domain and frequency-domain behavior
of higher order systems. In this section, we discuss these low-order systems in desail for
continnows time. In Section 6.6, we examine their discrete-time counterparts.

6.5.1 First-Order Continuous-Time Systems

The differemtial equation fer a first-order system is oftzn expressed in the form

”{ ) 4 w0) = (o, (6.21)

where 1 is a coefficient whose signiﬁcance will be made clear shortly. The corresponding
frequency response for the first-order system is
1

Hijw) = m, (6.2

and the impuise response is

1
hr) = —e T (1), 6.23)

which is sketched in Figure 6.19(a}. The step response of the system is
s() = R« ulz) = [1 ~— 7 w1, (6.24)

This is sketched in Figure 6.19(b). The parameter 7 is the time constant of the system, and
it contreds the rate a1 which the firsi-order system responds. For example, as illustrated in
Figure 6.19, at t = T the impulse response has reached 1/e times its value atv = 0, and
lhe step response is within 1/e of its final value. Therefore, 25 1 is decreased, the impulse
response decays mote sharply, and the rise time of the step response becomes shorter—i.e.
it rises more sharply toward its final value. Note also that the step response of 2 first-order
system does not exhibit any ringing.

Frgure 6.20 depicts the Bode plot of the frequency response of eg. {6.22), I this
ligire we illustrate one of the advantages of using a logarithmic frequency scale: We can,
without o much difficulty, obtain a useful appreximate Bade plot for a continuous-time
first-order system. To see this, let us first ¢xamine the plot of the log magnitude of the
frequency response. Specifically, from eq. {6.22), we obtain

20log, [H )| = —10logo[(w7)® + 11. {6.25)

From this, we see that for wr < 1, the log magnirude is approximately zero, while for
w7 2 1, the log magnitude is approximately a fineqr function of log,,(e). That is,
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wl

ZD]ﬂgmlH[.{m” = =~ 20108 gl T)
= —20log,y{w) = 20log,,(T) for w == L/t

{6 27)

In other words, for the first-order system, the low- and high-frequency asymptoetes of the
log magnituda are siraight hiones. The low-frequency asympiote [given by eg. (6 267] is jus
ithe 3—IB line, while the high-freguency asyvrptole [specified by eq. {6.27)] corresponds to
a decrease of 20 dB in [H{ per)| (or every decade (1.e., factor of 103 in w. This is somalimes
referred to as a “20-dB-per-decade™ asymptote.

Wote that the lwo asymptatic approximations given in egs. (6..26) and {6.27) are equai
atthe point log, o) = — g, (7, or equivalently, w = V7. Interpreted graphically, this
means that the two straight-line asymptotes meet at w = L/7, which suggests a staight-
line approximation to the magnitude plot. That is, our approximation w 20 log g [H( je)
equals 0 fore = I/7 and is given by eq. (.27} for @ = 1f7. This approximation 15 alsc
sketched (as a dashed line} in Figure 6 20. The point at which the slope of the approxima-
ticn changes is precisely w = /7, which, for this reason, is often referred to as the break
Sfrequency. Also, note that at w = 1/7 the two terms [(w7)? and 1] in the argument of the
logarithm in eq. (6.25) are equal. Thus, at this point, the actual value of the magnitude 15

0

Because of this, the point w = L{T is sometimes called the 3-dB point. From the figure,
we see that only near the break frequency is there any significant error in the straight-line
approxitnate Bode plot. Thus, if we wish to obtain a more accurate sketch of the Bode plot,
we need only modify the approximation near the break frequency.

It is also possible to obtain a useful straight-line approximation to < H{ jo):

LHjw) = ~rtan {wr)

20log = —10log4(2) = 3 dB 16.28)

0, w = 0.1 (6.29)
=¢ —{m/)logp{wr}+ 1], 0ir = w = 10/,
—7f2, w = [{/r

Note thal this approximation decreases linearly {from ¢to —7/2) a~ a function of log,le)
in the range

0.1 10

— = w o= —,

T T

t.e., in the range from one decade below the break frequency e one decade ubove the break
frequency. Also, zero is the correct asymptotic value of ¥H{jw) for w <2 1/7, and ~wf2
is the correct asymptotic value of <H{jw} for e > 1/7. Farthermorz, the approximation
agrees with the actual value of < H( je) at the break frequency w = 17+, a1 which point

R w
This asymptotic approximation is also plotted in Figure 6.20, and from it we can see how,
if desired, we can modify the straight-line approximation to obtain a more accurate sketch
of < H( jur).
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From this first-order system, we can gagain see the inverse relationship between time
and frequency. As we make + smaller, we spzed up the lime respotse of the systemn li.e.,
#(#) becomes more compressed toward the origin, and the rise time of the step respeonse
is» reduced] and we simultaneousty make the break frequency large [ie., f( jw} becomes
broader, since |H(jwl = | for a larger range of frequencies). This can also be seen by
multiplying the impulse response by 7 and obscrving the refationship between Th(7) and
H{ fur);

Thity = ¢ "Tuin, Filjw = —! -
JwT %1

Thus, Thii1 is a funcnon of ¢+ and H{ jw} 15 a fanction of ¢ 7, and from this we see that
changing 7 is essentially equivalent to a scaling in ume and frequency.

6.5.2 Second-Order Continuous-Time Systems

"The linear constant-coefficient differential equation for a second-order system is

v i vir} o3
s + 2w, TH + wi vy = W), (031}

Exquations of this type arise in many physical systems, including RLC circuits and me-
chamical systems, such as the one illistrated in Figure 6.21, composed of a spring, a mass,
and 4 viscous damper or dashpot. In the figure, the input is the applied force x{r) and the
output 15 the displacement of the mass »(¢) from some equilibrum position at which the
spring exerts ne restering force. The equation of motion for this sysiem is

nE0 _ iy oy <20,

{iT

Ay | fhdwny (kY]
G @) po = o

Comparing this to eq (0.31), we see that if we identify

'k
. X
and
b
; = et
2V Em
I-—b- Wit} {displacernent;
Spring k
i Mass | it (appliad fores)  Figure 6.21  Second-order sysiem
E m consisting of a spring and dashpot
Dashpot b O O attached to a moveable mass and a
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then [except for a scale factor of & on xi#)| the equation of motiou for the system of Figure
6.21 reduces to eq. (6.31).
The frequency response for the second-order system of eq. (6.31} iy
2
L1

HU@Y = o7 ¥ Banw) + w2 (639

The denorunator of A pw) can be factored 10 yield

wz

HUe) = e oK — o

where

L —{wy, + e JE_ZTL

{6.34)
1= Lty — m.‘:'\'{ﬁ

For £ # 1, ) and ¢ are unegual. and we can perform a partial-fraction expansion of the
form

M M

Rjwy= —— — ———, (6,35
L Jw o~ L
where
M= _Ha_ (6.36)
2./87 -
-~

From eq. {6.33), the corresponding 1mpulse response ior the system is

iy = M[e" — e uit) 1837
It = l.thenc| = 3 = —dw,, and
Hijw) = —n (6.38)

(jea + wn)t
From Table 4.2, we find that in thus cuse the impulse response is
B = wire™ ™ uls). (6.39}

Note from eqgs. (6.37) and (6.39), thal Alf¥w, is a function of /. Furthermore,
eq. (6.33) can be rewritten as

HG@) = —— o

(jwlwnf + 2 (joloa) + 1

from which we see that the frequency response is a function of whw,. Thus, changing w.,
is essentially identical to a time and frequency scaling.

The parameter { is referred to as the damping rario and the parameter w,, as the
undamped natural frequency. The motivation for this terminclogy becomes clear when
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we take a more detailed lock ac the impulse respense and the step response of a secand-
order system. First, from eq. {(6.35), we see that for0 <. { < 1. ¢) and ¢z are complex, and
we can rewrite the impuise response in eq. (6.37) in the form

—{an
ey = 22— fexpl jlen 1T — I — expl= jlewn /T~ L20Thu(t)
'2.3\” — &
Pt | [ {64&}
= %ﬁsin(m,.ﬁ — IOy ulo.
vi-¢g?

Thus, for 0 << { < I, the second-order system has an impulse response that has
damped oscillatory behavior, and in this case the system is referred to as being under-
damped, If { = 1, both ¢ and ¢; are real and negative, and the impulse response 1s the
difference between two decaying exponenials. In this case, the system is overdamped The
case of { = 1, when ¢; = ¢, is called the critically damped case. The impulse responses

(multiplied by 1/w,) for second-order systems with different values of { are plotted in
Figure 6.22{a).
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The step response of a second-order system can be caleulated from eg. £6.37) for
{ # 1. This vields the expression

s(1) = A(6 % ul(p) = {1 +M[f:'i - {I—;]} uit). (6.41)

[ [
For { = 1, we can use eq. (6.39} to obtain
slt) = [1 — 7= = te” " Julr), (b4

The step response of a second-order system is plotted in Figure 6.22(h) tor several values
of {. From this figure, we see that in the underdamped case, the step response exhibits
both overshoot (i.e.. the step response exceeds its final value) and ringing (i.c., oscillatory
behavior). For{ = 1, the step response has the fastest response {i.e., the shortest rise 1ime)
that is possible without overshoot and thus has the shontest seriling time As § increases
beyond 1, the response becomes slawer, This can be seen from egs. (6.34) and (6,411 As{
increases, oy becomes smaller in magnitude, while ¢7 increases in magnitude. Therefore,
although the time constant (1/|¢1|) associated with ' decreases, the time consiant (1fe 1
asseciated with ' increases. Consequently the term involving ¢'' ineq. (641} takes a
longer time o decay to 7ero, and thus it is the time constant associated with this term that
derermines the settling time of the step response. Ay a result the step response akes longer
to settle for large values of £ [n terms of our spring-dashpot example, as we mcrease the
magnitude of the damping coefficient # beyond the critical valug at which £ ip eq. 16.3%)
equals 1, the motion of the mass becomes increasingly sluggish.

Finally, note that, as we have said, the value of w, essentially controls the time scale
of the responses A1) and s(¢). For example, in the underdamped case, the larger @, is, the
more compressed 15 the impulse respanse as a function of £, and the higher is the frequency
of the osciliations or ringing n both Af#} and sir). In fact, from eq. (6.40), we see that
the frequency of the oscillations in Aif) and s(r) 15 @, /1 — 2, which does increase with
increasing o2, Note, however, that this frequency depends explicitly on the damping ratio
and does not equal (and is in fact smaller than) w,, except in the sndamped case, & = 0.
{It is for this reason that the parameter ey 15 traditionally referred to as the undamped
natural frequency.) For the spring-dashpot example, we therefore conclude that the rate of
oscillation of the mass equals w, when no dashpot is present, and the oscillation frequency
decreases when we include the dashpot.

In Figure 6.23, we have depicted the Bode plot of the frequency response given in
ed. (6.33) far several values of {. As in the first-order case, the logarthmic frequency scale
leads to linear high- and low-frequency asymptotes for the log magnitude Specifically,
from eq. (£.33),

2 lag,, [ (jw)l = —W0iog,, ll - (wﬂ)-j}’ + 4{2(5’—)_}. A X

H Loy,

From this expression, it follows that

rn .
20logp |[H{jw)| = 1|. forw = w, {544}

cdliog e +4log pw,a fore Fw,
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Figure 6.23 Bode piots for second-order systems with several different
values of-damping ratio ;.

Therefore, the low-frequency asymptote of the log magnitude is the 0-dB line, while the
high-frequency asympiote [given by eq. (6.44)] has 2 slope of —40 dB per decade, i.e.,
|H jw)) decreases by 40 dB for every increase in w of a facior of 10. Alse, note that the
wo straight-line asymptotes meet at the point @ = w,. Thus, we obtain a straight-line
approximation ta the log magnitude by using the approximation given in eq. (6.44) for
@ = wy, For this reason, w,. is referred to as the break frequency of the second-order
system. This approximation is also plotted (as a dashed line) in Figure 6.23.

We can, in addition, obtain a straight-line approximation to £H{ jo), whose exact
expression can be obtained from eq. (6.33):

(6.45)

L H(jw) = —tan” ( % (@iwy) )

T — (wfw, :'2
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The approximation is
[H o = ([,
IH(jw) =< ~% [lag.ﬂ[ﬂi""u 1], Clw, < @ = 10w, (5.46)
-, w = 1k,

which 15 also plotted in Figure &.23. Note that the approaimation and the actaal value again
are equal at the break frequency w = w,, where

w
{H[jmﬂ} = E .

Itis important io obsgrve (hat the asymptotic approximations, eqs. (6.44) and (6.46),
we have obtained for a second-order system 4o not depend on ¢, while the actual plots of
|H i jeu )| and 4H( jw) certainly do, and thus, to obtain an accurate sketch, especially near
the break frequency @ = w,, we must take this into account by modifying the approxi-
mations to conform more closely to the actual plots The discrepancy is most pronounced
for small values of {. In particular, note that in this case the actual log magmtude has a
peak around @ = @, In fact, straightforward calculanons using eq. (6.43) show that, for
L < 202 = 0.707, \H( jw)| has a maximum value at

@Wmay = Wa 1 = 282 (6.47)

and the value at this maximum point is

]

H{jopnl = ———. o4

H ol = o (6.48)
For { = 0.707, however, H{ jw) decreases monotonically as w increases from zero, The
fact that A jw) can have a peak is exzemely important in the design of frequency-selective
filters and amplifiers. In some applications, sne may want to design such a circuit so
that it has a sharp peak in the magnitude of its frequency response at some specified
frequency, therchy providing large frequency-selective amplification for sinusoids at fre-
quencies within a narrow band. The gualiry ¢ of such a circuit is defined to be a measure
of the sharpness of the peak. For a second-order circuit described by an equation of the
form of eq. (6.31), the quality is usualiy taken to be

1
¢ =
37
and from Figure 6.23 and eq. (6.48), we see that this definition has the preper behavior:
The less damping there is in the system, the sharper is the peak in |[H( je)|

6.5.3 Bode Plots for Rational Frequency Responses

At the start of this section, we indicated that first- and second-order systems can be used
as basic building hlocks for more complex LTI systems with rational frequency responses.
One consequence of this is that the Bode plats presented here essentially provide us with
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al! of the information we need to construct Bode plois for arbitrary rational frequency
responses. Specifically, we have described the Bode plots for the frequency responses
given by egs. (6.22) and (6.33). In addition, we can readily obtain the Bode plots for
frequency responses of the forms

Hijwy =1+ jor {5.4%)
and

- f 2
Hijw) =1+ zg(i-‘f)+ (J—‘") (6.50
@, ti
The Bode plots for egqs. (649) and (6.50) fcllow directly from Figures 6 20 and 6 23 and
from the fact that

201log,y |[H(jw)| = 201log,, Hija)

and

o
T(H o)) = _{(H[jw])'

Also, consider a system function that s a constant gain
Hijw} = K
Since K = [Kie/Pif K > 0and K = [K|e/™ if K < 0, we see that

20log,, [H{jw)| = 20log 4 |K]|

. 0, ifK =0
THjw) = ['nr :fK <0

Since a rational frequency response can be factored into the product of a constant gain and
first- and second-order terms, its Bode plot can be obtained by summing the plots for each
of the terms. We illustrate further the construction of Bode plots in the next two examples,

Example 6.4
Let us gbtaut the Bode plot for the frequency respense

210
{Jour¥ + 100 far + 104

Hijw} =

First, we note that
Hjw) = 28 o),

where H( jw ) has the same Form as the standard second-erder frequency response spec-
ified by eq. (6.33). It follows that

2010p,y |1 jer)| = 20leg,5 2 + 201og | jw)].
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By companng i jw) with the frequency response in oq {6.33), we conclude thatw,, =
100 and £ = 142 for H{pw). Using eq. {6.44), we may now speafy the asympiotes for
20Hog [ |-

200og, A jw) =0 fore =< 100,
anid
2log,, |[Hije) = - 40log,, w0 + 80 Torw = 100

It follows that 20log,, |A{ jwi| wall have the same asymptotes, except for a constant
offser at all frequencies due 10 the addinen of the 20log,, 2 term {(which approxi-
mnately equuls 6 dB). The dashed lines m Figure 6.241a) represent these asymptotes,
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The sohd curve in the same figure represents the acteal compuler-gencrated Bode
plot for 201og,, 1A{ jew)|- Since the value of & For H(jw) is less than ' 2/2. the actual
Bade plot has a slight peak newr w = 100,

To ohtain a plot of € H{ jw), we note that

THjw) = <H{jw}

and thal < f( Jw) has its asymptotes specified in accordance with eg. (6.46); that is,

0, w = 19
LH(ju) = < —(m2flog /1000 + 1], 10 = w = 1,00
-1, w = 1000,

‘The asympioics and the acinal values for < {jw) are plotied with dashed and solid
lines, respectively, in Figure 6.24(b).

Exampie 6.5

Consider the frequency responsz

10001 + jeo)
{0 + Ja)(100 + jw)

Hi jaw) =

To obtarn the Bode plot for H(jw), we rewrite it in the following factored form:

_ 1 1 1 _
Hje) = (m)(l ¥ ju.-fm)('i'+ jmflm)“ * gk

Here, the first factor is a constant, the next two factors have the standard fortr for a Arst-
order frequency response as specified in eq. (5.22), and the fourth factor iy the reciprocal
of the same first-order standlurd form. The Bode plot for 20 log,, |H( jw)| is therefore the
sum of the Bode plots corresponding to each of the factors. Furthermore. the asympiotes
corresponding to each factor may be summed to obtain the asymptotes for the overall
Bode plot. These asymptotes and the actual values of 20 log,, l{ jar) are displayed in
Figure 6.25(a). Note that the coastant factor of 1/10 accounts for an offset of — 20 dB ut
each frequency. The break frequency at w = 1 corresponds to the {1 + jw) Faclor, which
produces the 20 dBfdecade rise that starts at @ = 1 and is canceled by the 20 dB/decade
decay that starts at the break frequency at w = 10 and is due to the 141 + ja!10) factor.
Finally, the 1/(]1 + fe/100) factor contributes another break frequency at o = 100 and
a subsequent decay at the rate of 24 dB/decade.

Similarly we can construct the asymptotic approximation for H( je) fiom the in-
dividual asymptotes for each factor, as illusiraied, topether with a plot of the exact value
of the phase, in Figure 6.25(h). In paricula, the constant factor 1410 contmbuies 0 to
the phase. while the factor (1 + jo) contribntes an asymptotic approximation that 1s €
for i < (11, and rises lincarly as a function of log|,{w) from 2 value of zero at i = 0.1
to a value of /2 radians al w = 10. However, this nse is canceled at &0 = 1 by the
asympiotic approximation for the angle of 141 + fwf10) which contributes 3 linear de-
creuse in angle of #/2 adians over the mnge of frequencies fromw = T tow = 100
Finally, the asympiotic approximation for the angle of 141 + jw/100) contribuates an -
other hnear decrease in angle of w72 radians over the range of frequencies from w = 10
e = 000
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In our discussion of first-order systems in this section, we resmicted our atten-
tion to values of ¥ > 0. In fact, ir is not difficult to check that if v - 0, then the
causal first-order systern described by eq. (621} has an impulse vesponse that is not
absolutely integrable, and consequently, the systern is unstable. Similarly, in analyzing
the second-order causal system i eq. (6.31), we reguired that both ¢ and &’ be pos-
itive pumbers. If either of these is not positive, the resulting impulse response is not
absolutely integrable. Thus, in this section we have restricted attention to those causal

first- and second-order systems that are stable and for which we can define frequency
Tesponses.



