
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999 661

Partition Testing vs. Random Testing:
The Influence of Uncertainty

Walter J. Gutjahr

Abstract—This paper compares partition testing and random testing on the assumption that program failure rates are not known
with certainty before testing and are, therefore, modeled by random variables. It is shown that under uncertainty, partition testing
compares more favorably to random testing than suggested by prior investigations concerning the deterministic case: The restriction
to failure rates that are known with certainty systematically favors random testing. In particular, we generalize a result by Weyuker
and Jeng stating equal fault detection probabilities for partition testing and random testing in the case where the failure rates in the
subdomains defined by the partition are equal. It turns out that for independent random failure rates with equal expectation, the case
above is a boundary case (the worst case for partition testing), and the fault detection probability of partition testing can be up to k
times higher than that of random testing, where k is the number of subdomains. Also in a related model for dependent failure rates,
partition testing turns out to be consistently better than random testing. The dominance can also be verified for the expected
(weighted) number of detected faults as an alternative comparison criterion.

Index Terms—Decisions under uncertainty, fault detection, partition testing, program testing, random testing, software testing.

—————————— F ——————————

1 INTRODUCTION

EW topics in software testing methodology seem to be
more controversial than the question whether it is effi-

cient or not to use randomly generated test data (Beizer [1]).
While in the ‘70s experts tended to doubt the efficiency of
random testing (cf. Myers’ [18] verdict that “probably the
poorest [testing] methodology is random input testing”),
the judgment on the random testing approach became more
positive during the ‘80s. In theoretical research, a surprising
defense of random testing was given by Duran and Ntafos
[5], who put the problem on a well-defined formal base by
comparing random testing (i.e., selection of test inputs ran-
domly from the whole input domain) to partition testing
(i.e., dividing the input domain into nonoverlapping sub-
domains and selecting one test input from each subdo-
main). Under different model assumptions, the probabili-
ties of detecting at least one program fault were estimated
for both approaches by means of simulation experiments,
and compared to each other. Although partition testing
usually requires a larger effort in test data generation, it
produced only slightly superior results in these experi-
ments. So the outcomes suggested that random testing
could possibly be more cost-effective.

Hamlet and Taylor [14] considered these results counter-
intuitive. Their own simulation experiments, however, essen-
tially confirmed the observations by Duran and Ntafos.

Weyuker and Jeng [24] compared the two testing ap-
proaches from an analytical point of view. Their results
pointed in the same direction again: A clear superiority of
partition testing could not be stated; instead, it turned out

that, in effectiveness, partition testing can be better, worse
or the same as random testing, depending on the “ade-
quacy” of the chosen partition with respect to the location
of the failure-causing inputs. In particular, Weyuker and
Jeng observed that if the failure rates in the subdomains
defined by the partition are equal, then the fault detection
probability of partition testing is always the same as that of
random testing.

At a first glance, these results, which are undoubtedly
correct and formally sound, might confound the practitio-
ner: Many well-known testing methods like statement test-
ing, branch testing, path testing, all-uses, all-p-uses, certain
variants of mutation testing, etc., are subdomain-based (cf.
[8]), i.e., they rely on a partition of the input domain into
nonoverlapping or overlapping subdomains. The construc-
tion of test inputs from each of these subdomains usually
requires path sensitizing, a task which is tedious in practice
and unsolvable by general algorithms (see [27]). Why
should one take so much pains to construct such test in-
puts, if randomly chosen inputs possibly do just as well?
Despite their wide-spread use, subdomain-based testing
methods seem to lack theoretical justification, compared to
the random testing technique.

In the present paper, we want to show that Weyuker and
Jeng’s analytical comparison approach can be used to con-
firm the superiority of partition testing (or, more generally,
subdomain-based testing with more than one subdomain)
over random testing. All we have to do is to extend their
deterministic model for the failure rates to a probabilistic
model. We shall argue that the number of failure-causing
inputs in a given subdomain (and, therefore, also the failure
rate) is never known to the tester with certainty. Following
the traditional statistical paradigm, we shall therefore
model this number by a random variable. (A related ap-
proach has been chosen in [11], [12].) Since deterministic
variables are special cases of random variables, our approach
generalizes (in some aspects) the model in [24].

0098-5589/99/$10.00 © 1999 IEEE

²²²²²²²²²²²²²²²²
� W.J. Gutjahr is with the Department of Statistics, Operations Research and

Computer Science, University of Vienna, A-1010 Vienna, Austria.
E-mail: walter.gutjahr@univie.ac.at.

Manuscript received 11 July 1995; revised 30 July 1998.
Recommended for acceptance by R. Hamlet.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 101159.

F

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

662 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999

Interestingly enough, it turns out that this probabilistic
consideration changes the picture in favor of partition test-
ing methods: In a certain sense, the case where the failure
rates are known or deterministic, is the worst case for parti-
tion testing. In particular, it will be shown that for equal
expected failure rates in the subdomains defined by a parti-
tion, the partition testing approach has in general a higher
probability of fault detection than the random testing ap-
proach, and that the superiority of partition testing can be
drastic. Weyuker and Jeng’s results stating equal fault de-
tection probabilities concerns the special case where the
variances of the failure rates are zero, i.e., where there is no
uncertainty on the failure rates at all.

Of course, we do not assert that the extent of prior
knowledge on failure rates influences the relative perform-
ance of partition testing and random testing for a fixed
given program. It influences, however, our expectation of the
performance of both methods for the program currently
under test. Therefore, also the optimal decision which
method to choose necessarily depends on what prior in-
formation is available. (As to this point, see the discussion
in Section 4.)

In management science, the representation of uncertainty
is an issue of great importance (cf. [17]), and it is well-known
that decision problems under uncertainty lead to quite dif-
ferent types of optimal solutions than decision problems un-
der certainty. For example, a usual response to uncertainty in
portfolio-split decisions is diversification. Translated to our
problem context, we could say that partition testing methods
are strategies of “forced diversification.”

The paper is organized as follows: In Section 2, the formal
framework for an analytical comparison of subdomain-based
testing methods, as it was developed in [24], [26], [8], [9], will
be recapitulated. Furthermore, basic arguments for a prob-
abilistic modeling of the failure rates will be presented.

Section 3 contains our main results: It is shown that in a
first generalization of Weyuker and Jeng’s results, namely a
replacement of the deterministic failure rates by independ-
ent random variables, equal expected failure rates in the
subdomains imply the following bounds: The fault detec-
tion probability Pr of random testing can vary between a
lower bound of order P kp / and the upper bound Pp ,
where Pp is the fault detection probability of partition test-
ing, and k is the number of subdomains. The upper bound
occurs if the failure rates are deterministic. It will be argued
that at least in some practical applications, Pr can be ex-
pected to be nearer to the lower than to the upper bound.
Moreover, a further generalization to dependent random
variables will be outlined. As alternative criteria for measur-
ing testing effectiveness, the expected number of found faults
and the expected weighted number of found faults are con-
sidered, and it is shown that also under these criteria, parti-
tion testing compares favorably with random testing.

Section 4 discusses premises and scope of our results,
considers advantages of random testing, and outlines topics
for future research.

2 THE FORMAL FRAMEWORK
2.1 Fault Detection Probabilities
The following definitions are taken from [24], [26], [8], [9]. A
test suite is a multiset (i.e., a set where elements can occur
more than once) of test cases, each of which is a possible
input to a program P. The set of all possible inputs of P is
the input domain D. A subdomain-based testing method M de-
termines, to each program P and specification S, a multiset
6'M (P, S) of subdomains of the input domain D, and re-
quires that from each subdomain contained in 6'M (P, S), a
fixed number m of test cases is selected for the test of P.
Most frequently, this number is simply chosen as m = 1. For
example, in the case of branch testing, 6'branch (P, S) con-
tains for each decision d in the program two sets of inputs:
the first set Dtrue(d) consists of those inputs that cause d to
evaluate to true at some time during the execution; the
second set Dfalse(d) consists of those inputs that cause d to
evaluate to false at some time. Branch testing requires that
for each decision d in P, there is both a test case from Dtrue(d)
and Dfalse(d) in the test suite.

To give another example: For path testing, 6'path (P, S)
contains for each path of the program the set of all inputs
that cause the program to follow the respective path.

It is usually assumed that the union of the subdomains
contained in 6'M (P, S) yields the input domain D. How-
ever, two different situations may be distinguished: The
subdomains in 6'M (P, S) may be overlapping (as in the
case of branch testing), or nonoverlapping (as in the case of
path testing). If they do not overlap, we speak of partition
testing, since then the sets in 6'M (P, S) form a partition of
the input domain in the mathematical sense of the word.

Now, some of the inputs in D may be correctly processed
by program P with respect to specification S, while other
inputs may be failure-causing. In this article, we shall call
the set of failure-causing inputs the failure domain of P with
respect to S. The main goal of all testing methods is to hit
the failure domain (provided that it is not empty) by some
test case: If there is a fault in P, at least one of the test cases
should unveil it. So testing methods can be compared ac-
cording to their fault detection ability. In Section 3.2, we
shall also use other comparison criteria.

Obviously, a subdomain-based testing method does not
completely specify a test suite for each given program P and
specification S. There is still the freedom which test inputs
are to be selected from each subdomain. This leads to a
definition problem, if testing methods are to be compared
on the base of their fault detection abilities. In an early ana-
lytical comparison framework for testing methods by Gour-
lay [10], the problem was solved by a worst-case-
consideration: Since the worst case for testing is the case
where faults are not found, Gourlay took as a representative
of each subdomain one of those test inputs (if present) that
are not contained in the failure domain. He could show
that, under this assumption, subsumes-relations between
testing methods (e.g., branch testing subsumes statement
testing) can be translated into assertions on higher fault
detection ability.

In the late ‘80s it was recognized that such worst-case
comparisons can be misleading (see Hamlet [15]). Since

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

GUTJAHR: PARTITION TESTING VS. RANDOM TESTING: THE INFLUENCE OF UNCERTAINTY 663

then, average-case comparison models were developed. The
basic assumption is the following ([26], [8]: From each sub-
domain, test cases are selected according to a certain prob-
ability distribution. Most investigations are based on the
uniform distribution: It is supposed that each test input con-
tained in a subdomain has the same probability of being
selected for the test. Let us mention that in practice, not
only the uniform distribution is applied. One may prefer to
use some other strategy, either for practical reasons (easy
test case generation) or in view of a further optimization of
the testing effectiveness. Throughout this article, however,
we confine ourselves exclusively to the uniform model.

Under the assumption above, random testing with inputs
selected at equal probabilities becomes a special subdomain-
based testing method: Let, in general, D1, ¡, Dk be the sub-
domains contained in 6'M (P, S), with D1 < ¡ < Dk = D. In
the special case k = 1, we have D1 = D, such that (random)
selection of a test input from the only existing subdomain is
just random selection of any test input. In order to draw a
clear distinction between random testing and partition test-
ing, we shall always assume in the sequel that for partition
testing, the partition {D1, ¡, Dk} of the input domain con-
tains at least two subsets, i.e., that k � 2.

For a given partition {D1, ¡, Dk}, one test case per subdo-
main, and uniform selection from each subdomain, the fault
detection probability of partition testing is given by (cf. [24])

P f dp
i

k

i i= - -
=

1 1
1

P (/) . (1)

Therein, di = |Di| is the number of elements in subdomain
Di, and fi = |Di > Dfail| is the number of failure-causing
inputs in Di, where Dfail denotes the failure domain.

On the other hand, the fault detection probability of ran-
dom testing with k test inputs (selected independently at
random from D, with replacement) is given by

P f dr
k= - -1 1(/) , (2)

where d d D
i
k

i= ==1S , and f f D
i
k

i
fail= ==1S .

Note that we have chosen the sample size k in the case of
random testing equal to the number of subdomains in the
case of partition testing. Thus, the numbers of test cases for
both methods are equal, which allows a fair comparison.

Equations (1) and (2) can be abbreviated by introducing

the failure rates q = f/d and qi = fi / di in the whole input

domain D and in subdomain Di, respectively. We have then

Pp i
k

i= - -=1 1
1P ()q and Pr

k= - -1 1()q . A failure rate of

q means that, given the operational profile is the uniform
distribution, 100 ¼ q percent of all inputs lead to program
failures. (The reader should notice that other operational
profiles entail other failure rates. In [24], however, the au-
thors argue that for a comparison between partition testing
and random testing, it is appropriate to consider the case of
a uniform profile.)

2.2 Random Failure Rates
In Section 2.1, we have adopted a “modern” viewpoint for
analytical comparisons of subdomain-based testing meth-
ods, considering the test case selected from a subdomain no

longer as deterministic, but as a random variable. In the
following, a further generalization step will be suggested:
Not only the input from Di, but also the failure domain Dfail
should be considered as a random variable.

This approach is simply motivated by the fact that we
never know the failure domain. If the failure domain was
known, testing would be unnecessary. In practice, we do
not even know the failure rate for the program under test.
All that is possibly known are mean values (or other statisti-
cal characteristics) of failure rates for particular classes of
programs, either won explicitly from empirical investiga-
tions, or implicitly from the tester’s professional experience.

So, a tester can never say:

“The program currently to be tested has, with certainty, a
failure rate of 2 percent,”

but he can possibly state:

“The given program is one of a larger class of similar pro-
grams (with respect to size, type, programming language,
environment etc.), a class for which empirical information
on failure rates is available, including statistical parameters
such as mean value and standard deviation.”

Then, however, the failure rate of the concrete program un-
der test becomes a random variable, the expected value of
which can be obtained from the statistics.

We take account of this viewpoint by replacing the de-

terministic variables f and fi (i = 1, ¡, k) by random vari-

ables F and Fi (i = 1, ¡, k), such that also the failure rates
become random. Consequently, instead of the failure rates q

and qi, their expected values q and q i will be considered as
given:

q q=
�
��
�
�� =

�
��
�
�� =E

F
d E

F
d i ki

i

i
, (, ,)1 K . (3)

Performing this probabilistic generalization, one obtains
instead of (1) and (2) the following formulas for the fault
detection probability of partition testing, respectively, ran-
dom testing:

P E F dp
i

k

i i= - -
�
��

�
��=

1 1
1

P (/) (4)

respectively,
P E F dr

k= - -1 1(/)4 9 , (5)

where the expectation E is taken with respect to the prob-
ability distributions of the random variables Fi and F.

Observe that (contrary to Pp and Pr) the numbers Pp and

Pr do not depend on a fixed program and specification, but
on a class of programs and specifications with an associated
probability distribution. (This approach is quite similar to
Gourlay’s analysis of mutation testing in [10].)

In order to avoid technical complications and to exploit as
much information on the program under test as possible, we
adopt a concept chosen by Eckhardt and Lee [6, p. 1,512],
restricting ourselves to a (hypothetical) reference class of
programs with the following property: All programs in
the reference class have the same input domain D as the

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

664 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999

program to be tested, and refer to the same specification.1
This implies that the input domain of any program in the
reference class can be subdivided into disjoint subsets Di
just in the same way as the chosen subdivision strategy
prescribes it for the program under test. Especially, the
numbers di are fixed, deterministic quantities, contrary to the
failure rates Fi. The following simple example illustrates this
point of view:

EXAMPLE 1. Consider the following program, assuming that
the input domain is D = {1, ¡, 20}:
var x: integer;
begin read (x);
 if (x < = 10) then write (“small”)
 else write (“large”)
end;

The path testing strategy subdivides D into the two
subdomains D1 = {1, ¡, 10} and D2 = {11, ¡, 20}. In
the reference class of programs, we stick to this parti-
tion. Suppose that the program under test is correct,
and the reference class contains a program written to
the same specification, but with a domain error:
var x: integer;
begin read (x);
 if (x < 10) then write (“small”)
 else write (“large”)
end;

Then, the incorrect processing of input x = 10
would not be contributed to D2, but still to D1 (yield-

ing a failure rate q1 = 0.1 for this program), although
in the last program, input 10 is processed by the sec-
ond path. Suppose that the reference class only con-
sists of the two indicated programs. Then the ex-
pected failure rates for the subdomains are q1 0 05= .
and q2 0= .

In Duran’s and Ntafos’ paper [5], there is already an
implicit probabilistic consideration of the failure rates in
the subdomains, since in their simulation experiments,
the authors have assigned failure rates to the subdo-
mains according to carefully selected distributions on the
interval [0, 1]. Nevertheless, their results are more favor-
able for random testing than ours. A possible explanation
will be discussed after the presentation of our results in
the next section.

For an illustration of the fact that deterministic assump-
tions on the failure rates entail essentially different optimal
decisions than probabilistic assumptions, even if the ex-
pected failure rates are the same, the following example
might be helpful:

EXAMPLE 2. Let us consider two extreme situations, one
with maximum, the other with minimum certainty on
failure rates:

Situation 1. A program with a single integer input
variable between 1 and 20 is presented to a tester,
and she/he is told that in the subdomain of inputs

1. Note that this reference class of programs can be realized physically by

n-version-programming ([19], [6]). So, in principle, the distribution of the
failure rates could be measured empirically to any desired degree of accu-
racy in a quite objective way.

between one and 10, there are six failure-causing and
four correctly processed integers, while in the sub-
domain of inputs between 11 and 20, there are five
failure-causing and five correctly processed integers.
Hence, the failure rates are 0.6 and 0.5 for the two
subdomains, and are, in this situation, known with
certainty. The tester is allowed to test two inputs, ei-
ther both from the same subdomain, or one input
from each subdomain, and obtains a certain amount
of money, if she/he finds at least one failure-causing
input. There are two reasonable options:

1) Option 1. Test two inputs from subdomain {1, ¡, 10}.
The probability of success turns out as 1 - (4/10
¼ (3/9) = 0.866... in this case.

2) Option 2. Test one input from subdomain {1, ¡,
10} and one input from subdomain {11, ¡, 20}.
The probability of success is then 1 - (4/10) ¼
(5/10) = 0.8.

So, option 1 is preferable to option 2.

Situation 2. In this situation, the tester is told that
the code for inputs from subdomain {1, ¡, 10} has
been written by one of 10 persons. She/he knows all
these 10 programmers and is sure that six of them are
totally incompetent, such that all inputs processed by
their program parts will be failure-causing (failure
rate 1), while the other four programmers are ex-
tremely competent, such that all inputs for their pro-
gram parts will be correctly processed (failure rate 0).
Moreover, she/he is informed that the code for sub-
domain {11, ¡, 20} has been written by one of ten
other programmers; five of them are known as totally
incompetent (failure rate 1), the other five as ex-
tremely competent (failure rate 0). However, the tester
does not know which person from each team has been
selected for implementing the corresponding part of
the program.

Now, the actual failure rates for the program under
test are not known, but their expected values are known:
The expected value of a failure rate is the average of the
possible actual failure rates, so it turns out to be (6/10) ¼
1 + (4/10) ¼ 0 = 0.6 for subdomain {1, ¡, 10} and (5/10) ¼
1 + (5/10) ¼ 0 = 0.5 for subdomain {11, ¡ , 20}. These are
the same values as in situation 1.

In situation 2, however, the probability of success
for option 1 (two test inputs from {1, ¡, 10}) is 6/10
= 0.6, while the probability of success for option 2
(one test input from each subdomain) is still 1 - (4/10)
¼ (5/10) = 0.8.

So, in situation 2, option 1 is preferable to option 2.
We see that uncertainty on the actual failure rates fa-
vors the diversification strategy of option 2.

Of course, this is an extreme example, since it
merges (in situation 2) only failure rates of 0 and 100
percent. But even if the actually possible failure rates
are less diverse, their deviation from their mean value
effects a shift of the optimal selection strategy to-
wards diversification.

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

GUTJAHR: PARTITION TESTING VS. RANDOM TESTING: THE INFLUENCE OF UNCERTAINTY 665

3 EXPECTED TESTING EFFECTIVENESS UNDER
UNCERTAINTY

3.1 Comparison Under the Fault Detection
Probability Criterion

In order to investigate the effect of random (i.e., uncertain)
failure rates on the relative performance of random testing
vs. partition testing, let us compare the situation where the
tester knows that all subdomains have the same failure rate,
with the situation where the tester has no prior information
on especially error-prone subdomains and therefore esti-
mates the same failure rates for all subdomains. In the first
case, we have

q q1 = =K k . (6)

Observation 7 in [24] states that (6) entails equality of the
two fault detection probabilities: Pp = Pr .

In the second case, the absence of concrete information
on subdomain failure rates can be expressed by the as-
sumption of equal expected failure rates:

q q1 = =K k , (7)

where q i is defined by (3). Contrary to (6), assumption (7)
does not imply that the failure rates themselves are equal.

The assumption of equal expected failure rates is, in a
certain sense, the natural one for all applications of parti-
tion testing where an equal number of test cases is selected
from each subdomain. If we should expect that a special
subdomain is more error-prone than another, say, q qi j> ,

then we could use this information by selecting more test

cases from Di than from Dj. (This intuitive consideration can
be quantified, cf. [11].) So partition testing with equal num-
bers of test cases from each subdomain seems to be based
on the implicit assumption that particularly error-prone
subdomains are not identified in advance.

In other words, the standard application type of a parti-
tion testing technique treats each subdomain in the same
way by selecting the same number of test cases, no matter
which special properties the respective subdomain has. In
such a situation of equal status for all subdomains, it evi-
dently does not matter which subdomain is denoted by D1,
which by D2, etc. So we can assume that the labeling of the
subdomains by the indices 1, ¡, k is performed at random: A
fixed subdomain has the same probability 1/k of getting the
index 1, 2, ¡, k, respectively; conversely, a fixed integer i (1
� i � k) has, for each of the k subdomains, the same
probability 1/k of being the index of this particular subdo-
main. Then, by symmetry, the expected value of the failure
rate Fi/di (and even the distribution of Fi/di) must be the
same for each i. Let us illustrate this consideration again by
Example 2: If we do not know which of both subdomains
has been treated by a programmer from the first and which
by a programmer from the second team, then the expected
value of the failure rate has to be set to (0.6 + 0.5)/2 = 0.55
for both subdomains.

We start our investigation by assuming that the numbers
Fi of failure-causing inputs in the subdomains (and there-
fore also the failure rates) are independent random variables.
This is a (first) generalization of the deterministic case: It is
well-known that deterministic numbers f1, ¡, fk can be

considered as a special case of independent random vari-
ables, having variances equal to zero. In technical terms, Fi
is independent of Fj if the (unconditional) distribution of Fi
is the same as the distribution of Fi conditional on the event
that Fj has some fixed value fj. So, informally, the independ-
ence assumption means that finding out the failure rate in
one subdomain does not change our estimates of the failure
rates in other subdomains.

The following theorem shows that on the assumptions
above, Pp is an upper bound for Pr . (The proofs of the theo-

rems can be found in Appendix A.)

THEOREM 1. For independent failure rates with equal expected
value q , partition testing is better or the same as random
testing:

P Pr p� .

Next, we derive a tight lower bound for Pr :

THEOREM 2. On the conditions of Theorem 1, the fault detection
probability Pr of random testing is bounded below by

P Pr k p�
- -

q

q1 1()
 , (8)

and there are special cases for which Pr gets arbitrarily
close to the lower bound on the right-hand side of (8).

REMARK 1. For (compared to 1/k) small expected failure rate
q ,

q

q

q
q1 1 1 1

1

- -

- -
=

() ()k k k ,

so the tight lower bound for Pr is approximately P kp / . In

other words: If a partition consists of, say, 100 subdomains,
then the fault detection probability of partition testing can
be up to about 100 times higher than that of random test-
ing! This result is in a distinct contrast with its deterministic

counterpart, Weyuker and Jeng’s observation Pr = Pp for
equal failure rates.

REMARK 2. The special instance constructed in the second
part of the proof of Theorem 2 (Appendix A) indicates
under which circumstances Pr will approach the
lower bound. This will be the case whenever

1) there are many small subdomains and one (or few)
large subdomains,

2) the subdomains are (near to) revealing in the sense
of [25]; a subdomain is called revealing if either all
inputs contained in it are correctly processed, or
they are all failure-causing (i.e., the failure rate is
zero or one).

The upper bound Pp for Pr , on the other hand, occurs in

the “antirevealing” case, where the failure rate in each sub-
domain exactly mimics the overall failure rate.

There are arguments for the conjecture that, in some
practical applications, both steps 1 and 2 are at least ap-
proximately satisfied, such that Pr can be expected to be
closer to the lower than to the upper bound in these cases.
Let us present these arguments in the following discussion
of how the subdivision of the input domain is usually done:

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

666 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999

Argument 1: Subdomain size. Most structural partition
testing techniques define subdomains (directly or indi-
rectly) on the base of predicates occurring in the program.
Essentially, predicates may contain equality or inequality
conditions, and equality conditions lead to extremely un-
balanced subdomain sizes. Thus it may happen that there is
a majority of subdomains with negligible size, compared to
the size of one or a few “giant” subdomain(s), such that
condition 1 is approximately satisfied.

EXAMPLE 3. Consider the simple “triangle-classification”
procedure in Fig. 1, a traditional example in the soft-
ware testing literature ([18]). There are three paths in
this procedure, generating three subdomains D1 , D2 ,
D3 for the path testing strategy, where Ds contains the
inputs leading to output s (s = 1, 2, 3). If N is the num-
ber of representable integers, we have

d N

d N N N

d N N N

1

2
2 2

3
3 2

3 3 3

3 2

=

= - -

= - + ,

so both D1 and D2 are of negligible size, compared to
the D3. (Of course, this effect is still more dramatic, if
i,j,k are declared as reals instead of integers.)

The choice of subdomain sizes of nearly the same order
of magnitude might be the main reason why a clear superi-
ority of partition testing did not show in Duran and Ntafo’s
simulation experiments [5], although their failure-rate dis-
tributions for the subdomains were chosen in a very realis-
tic way: In [5], operational probabilities pi were selected
randomly according to a uniform distribution on [0, 1]. In
terms of the Weyuker-Jeng-model, this would mean that the
subdomain sizes di are uniformly distributed. Then, how-
ever, most of the subdomains will have sizes of a compara-
ble order of magnitude: If the values di vary, for example,
between 1 and 108, about 90 percent of all subdomain sizes
di will be integers with exactly eight decimal digits. Com-
pared to Example 3, this is still a “relatively balanced”
situation, where a significant dominance of partition testing
is not yet to be expected.

Our analytical results are partially supported by the out-
comes of the experimental study by Loo and Tsai [16]. They
experimented with unbalanced (although not extremely
unbalanced) subdomain sizes and found out that in this
situation, random testing reaches the performance of parti-
tion testing only in particular cases where there are high
failure rates in large subdomains or low failure rates in
small subdomains.

ocedure triangle-classification;
var i, j, k: integer;
begin read (i, j, k);
 if (i = j) and (j = k)
 then write (1)
 else if (i = j) or (j = k) or (k = i)
 then write (2) {else} write (3)
end;

Fig. 1. Example program for path testing.

Argument 2: Revealing domains. A partition testing
method where each subdomain is revealing cannot be
hoped for. In the case of path testing, for example, already
single bit differences in inputs processed along the same
path can lead to radically different behavior in failure. Nev-
ertheless, reasonable subdivision techniques tend to bundle
up such inputs to subdomains that are processed by the
program in a similar way. So, if one input in a subdomain
Di is recognized as failure-causing, this knowledge un-
doubtedly increases at least the probability that also the
other inputs in Di are failure-causing, and, conversely, if
one input in Di is recognized as correctly processed, then
the other inputs in Di have an increased probability of being
correctly processed as well. As a consequence, in some sub-
domains, the failure rate will be zero or low, in others it will
possibly be far above the overall failure rate F/d of the pro-
gram (cf. the basic failure rate distribution assumed in
Duran and Ntafo’s simulations [5]). Therefore, it can be
hoped that failure rate distributions obtained by the practi-
cal application of “clever” partition testing techniques tend
to be rather U-shaped (and hence similar to the “revealing”
case) than centered near q (i.e., similar to the “antireveal-
ing” case). So, condition 2 above can often be expected to be
approximately satisfied.

REMARK 3. Possibly, one might object our treatment of the
numbers di as fixed, deterministic quantities: For ex-
ample, it may be felt that, if two programs of the ref-
erence class contain corresponding then branches
with assigned subdomains of different sizes, the re-
spective variable di should be allowed to take differ-
ent values (contrary to our treatment in Example 1). If
this point of view is taken, each di gets a random vari-
able, since the selection of the program from the refer-
ence class is assumed to be random. It can be shown
that this extended model does not essentially modify
our main results:

THEOREM 3. The assertions of Theorem 1 and Theorem 2 remain
valid, if the numbers di are considered as random variables.

Let us study the influence of the distributions of the fail-

ure rates Fi/di on the effectiveness of random testing, com-
pared to partition testing, in more detail by considering the
special case k = 2 of only two subdomains. In this case
(which is also the prototype for branch testing and some
other subdomain-based testing methods that finally gener-
ate overlapping subdomains), the difference Pp - Pr can be

represented explictly. We give a general result for (possibly)

dependent F1, F2. For the sake of simplicity, the numbers di
are considered as deterministic again.

THEOREM 4. For k = 2 subdomains and failure rates with expected
value equal to q , the difference of the fault detection prob-
abilities for partition testing and random testing is given by

P P
d

Var F Var F
d d

d d Cov F Fp r- = + -
+�

!

"
$
##

1
2 1 2

1
2

2
2

1 2
1 2() () (,) , (9)

where Var(X) and Cov(X, Y) denote the variance of X and
the covariance between X and Y, respectively.

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

GUTJAHR: PARTITION TESTING VS. RANDOM TESTING: THE INFLUENCE OF UNCERTAINTY 667

COROLLARY. For k = 2 subdomains and independent failure rates
with equal expected value q ,

P P d Var F Var Fp r- = + �(/) () ()1 02
1 22 7 . (10)

PROOF. Follows immediately from the fact that independent
random variables F1, F2 are uncorrelated:

Cov(F1, F2) = 0 . u

Equation (10) shows very clearly that P Pp r= is that

boundary case where both failure rates have variance zero,
i.e., are deterministically known. As soon as there is any
uncertainty on the current failure rates, the stricter diversi-
fication strategy, partition testing, begins to dominate.
Maximal variance is obtained in the case of revealing sub-

domains, where the failure rates Fi/di can only assume the
extreme values 0 or 1.

Now let us turn to the situation where the variables Fi
are dependent. It is clear from (9) that P Pr p� still holds

when F1 and F2 are negatively correlated, i.e., Cov(F1, F2) < 0.
Unfortunately, this is not the relevant case for practice, as
the following intuitive consideration shows: If, for example,
our a priori estimate for the expected failure rate has been
q = 0 1. , and for the subdomain D1 corresponding to a path 1
of the program, a failure rate of, say, 0.2 is observed during
the test, then we shall not be inclined to decrease our esti-
mate for the subdomain D2 corresponding to path 2 from
0.1 to a lower value, but either to increase it (e.g., if path 2
has been implemented by the same programmer as path 1),
or to leave it at the value of 0.1 (e.g., if path 2 has been im-
plemented by another programmer.) So, inputs in different
subdomains of a program may be expected to be positively
correlated or not correlated at all with respect to their fail-
ure behavior, and an eventual positive correlation can be
assumed to be much smaller than the positive correlation
within the subdomains which frequently produces a “near-
to-revealing” behavior.

The next theorem shows that also for positively corre-
lated failure rates, (9) always leads to P Pr p� , provided that

not only the expectations, but also the variances of the fail-
ure rates are equal. (Remember that for random labelings of

the subdomains, all failure rates Fi/di are identically dis-
tributed and have therefore the same variance.)

THEOREM 5. On the conditions of Theorem 4 and with
Var(F1/d1) = Var(F2/d2), partition testing is better or the
same as random testing:

P Pr p� .

It is difficult to find conditions under which a generali-
zation of the last result to the case k > 2 holds. The reason is
that for k > 2 not only the variance, but also higher mo-
ments enter into the formulas. Also simulation is of little
help in this context, as long as it is not clear how the com-
mon distribution of the variables should be modeled in the
general case. We confine ourselves here to the following,
conceptually simple model assumption for more than two
positively correlated failure rates:

Let us assume that the influence of randomness on the
rate of correctly processed inputs in a subdomain can be
decomposed into two factors as:

� factor 1, which influences all subdomains to the same
extent (say, the professional skill of the programmers
team or the dependence on the used programming
language),

� factor 2, which is specific for the considered subdo-
main.

Factor 1 results in a positive correlation of the failure rates;
factor 2 depends only on the particularities of the subdo-
main under consideration, so it can be assumed to be inde-
pendent of factor 1 and of the values of factor 2 for other
subdomains.

More formally, we assume that the rate (di - Fi)/di of cor-
rectly processed inputs in subdomain Di can be decom-
posed as follows:

(di - Fi)/di = H ¼ Hi ,

where the (random) factor H � 1 is the same for all subdo-
mains, while the (random) factor Hi � 1 is specific for Di,
and H, H1, ¡, Hk are independent. It is easy to check that
for Var(H) > 0 and E(Hi) > 0 (i = 1, ¡, k), the rates of cor-
rectly processed inputs, and therefore also the failure rates,
are indeed positively correlated (see Appendix A). Never-
theless, for equal expected failure rates, the dominance of
partition testing can be verified again:

THEOREM 6. On the conditions above and with E F di i(/) = q for
all i, partition testing is better or the same as random testing:

P Pr p� .

REMARK 4. Our results should not be interpreted in the way
that subdividing the input domain anyhow and select-
ing test cases from each subdomain is a cheap method
to increase the effectiveness of testing. According to
the bounds in Theorems 1 and 2, the gain of subdivid-
ing can be negligible as well as significant, depending
on how appropriate the subdivision strategy is. In
particular, random partitions are (nearly) useless, as
the following example illustrates:

EXAMPLE 4. Let the following program with input domain
D = {1, ¡, 100} be given:

var x: integer;
begin read (x);
 if (x >= 1 and x <= 50) then proc1 (x);
 if (x >= 51 and x <= 100) then proc2 (x)
end;

We make the assumption that procedure proc1 ei-
ther treats all values x correctly or none, and the same
for proc2. Then both D1 = {1, ¡, 50} and D2 = {51, ¡,
100} are revealing subdomains. Furthermore, we as-
sume that both proc1 and proc2 are correct with
probability 1/2 each, independently from each other,
such that there are four equiprobable situations:
proc1 and proc2 correct; proc1 correct and proc2
incorrect; proc1 incorrect and proc2 correct; proc1
and proc2 incorrect.

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

668 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999

Let the number of test inputs be k = 2. Since the
number F of failure-causing inputs is 0, 50, and 100
with probabilities 0.25, 0.5, and 0.25, respectively, we
obtain from (5):

P d E F
d

E Fr = -

= -

=

¼ ¼

2 1

2
100 50

1

100
3750

0 625

2
2

2

() ()

.

 .

Next, consider any partition of the input domain D into
two subdomains D1, D2. Let m = |D1 > {1, ¡, 50}| be
the number of integers smaller or equal 50 in D1. One
finds

q1
1

1

1
50

1
4 0 50 50]

0 5

=
�
��

�
��

= + + - +

=

¼ ¼

E
F
d

m m[()

.

 ,

and analogously, q2 0 5= . . So both subdomains have
the same expected failure rates. From (4), we get

P E
F
d E

F
d E

F F
d d

m m m m

m m

p =
�
��

�
�� +

�
��

�
�� -

�
��

�
��

= - ¼ ¼ + - + - +�
!

"
$#

= + ¼ - -

1

1

2

2

1 2

1 2

1
1

502
1
4 0 50 50 502

1 104 2 2 100 2500

() ()

().

It is easy to see that the last expression takes its mini-
mum for m = 25 and its maximum for m = 0 or m = 50.
Therefore, e.g., the partition

D1 = {1, ¡, 25} < {50, ¡, 75},

 D2 = {26, ¡, 50} < {76, ¡, 100}

is a worst case with respect to Pp ; we obtain

P Pp r= =0 625. , i.e., the lower bound of Pp according

to Theorem 1. On the other hand, the partition

D1 = {1, ¡, 50},

 D2 = {51, ¡, 100}

(or vice versa) is the best case with respect to Pp ; one

computes Pp = 0 75. , which is equal to the probability

that the program is incorrect at all, and significantly
larger than Pr .

Now let us turn to the interesting question which
value Pp will take in the average case, when the subdivi-

sion is performed randomly. Short reflection, using the
equal status of all integers in D, shows the following: A
random partition of D into two disjoint subsets D1, D2

with |D1| = |D2| = 50 (where all such partitions are

equiprobable) gives rise to two test inputs X1 ³ D1, X2

³ D2 in such a way that all unordered pairs {X1, X2}

with X1, X2 ³ D and X1 � X2 have the same probability.

Therefore, distinguishing the four possible combina-
tions of correct or incorrect behavior of proc1 and
proc2, we obtain for the random partition:

Pp = + -
�
��

�
�� +

�
!

"
$##

=

¼ ¼ ¼1
4 0 2 1

50
100

49
99 1

0 6262. K

This value is only slightly larger than that for ran-
dom testing. The (minimal) advantage is here only
due to the fact that partition testing prevents a double
test of the same input.

The observation in Example 4 that random subdividing
provides no essential advantage, compared to random test-
ing, can be made quite general: Let Pp random() denote the av-

erage value of Pp , if the partition of D into k subdomains is

performed randomly (giving each input the same probabil-

ity of being put into a specific subdomain Di), and let
Pr without replacement() denote the failure detection probability of

random testing with k test inputs selected randomly from D
without replacement. (Note that in Section 2, we have defined
Pr as the failure detection probability of random testing
with k test inputs selected randomly with replacement). Then

P Pp random r without replacement() ()= ,

since the effect of first distributing the elements of D ran-
domly into k subdomains and then selecting one element
from each subdomain is just the same as selecting k differ-
ent random elements from D with equal probabilities at
once. On the other hand,

P P Pr without replacement r with replacement r() ()� = ,

as it is evident from the observation that selecting test in-
puts with replacement may produce the same test input
more than once, which reduces the test input set and hence
also the failure detection probability. In total,

P Pp random r() � ,

in accordance with Theorem 1. (For k > 1, even
P Pp random r() � can be shown.) It should be noticed, however,

that the difference between Pr without replacement() and

Pr with replacement() is small for large input domain size d. There-

fore, Pr is usually only slightly worse than Pp random() , but, as

Theorem 2 shows, it can be considerably worse than Pp for

a suitably chosen partition.

3.2 Extension to Other Comparison Criteria
Until now, we have used the fault detection probability as a
comparison criterion for testing methods. It may be argued
that this criterion is not the only interesting one: In many
cases of application, testers will rather consider the number
of faults found as a measure of effectiveness than the prob-
ability of finding any fault. On the other hand, also the
number of detected fault may sometimes be misleading:
Not all faults have the same severity; some of them may be
that insignificant that it does not even pay to remove them,
while other faults cause eminent financial loss (or even

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

GUTJAHR: PARTITION TESTING VS. RANDOM TESTING: THE INFLUENCE OF UNCERTAINTY 669

harm to human life). The most adequate criterion in such
situations seems to be the weighted number of detected
faults, where the weights are chosen proportional to the
failure severities. In total, our results stating superiority of
partition testing over random testing would surely be ques-
tionable if they should depend exclusively on the special
criterion of fault detection probabilities.

However, it turns out that this is not the case: Roughly
speaking, all the three indicated criteria (fault detection
probability, expected number of detected faults, expected
weighted number of detected faults) lead, in our frame-
work, to the same order of testing methods. To verify this
formally, we need some further notation.

First, in order to be able to speak of the number of faults,
one must be in the position to distinguish between different
faults. Let us assume that this can be done by some mean or
other, such that there is a list of (possible) faults: fault 1,
fault 2, etc., and for each input for the given program, one
may determine by testing which fault(s), if any at all, this
input exposes. Let dfail

1 , dfail
2 , ¡ be the failure domains cor-

responding to fault 1, fault 2, ¡, respectively. The set Dj
fail

consists of all inputs that cause fault j to be exposed during
the execution of the program. Of course, the sets dfail

1 , dfail
2 ,

¡ may be overlapping, and some or all of these sets may be
empty as well. The failure domain Dfail considered in Sec-
tion 2 is the union of all sets dj

fail

Moreover, let Pp
j() and Pr

j() denote the fault detection

probabilities of partition testing and random testing, re-
spectively, for a program with failure domain dj

fail (i.e., a

program where only fault j occurs, but none of the other
faults). Pp

j() and Pr
j() can be interpreted as the probabilities

of detecting fault j in the given program by partition testing
and by random testing, respectively. They are computed in

a formally analogous way as Pp and Pr:

P F dp
j

i

k

i
j

i
() ()(/)= - -

=
1 1

1
P

and
P F dr

j j k() ()(/)= - -1 1 ,

where F D Di
j

i j
fail() = < and F Dj

j
fail() = . So we obtain a

straightforward generalization of the framework in Section 2.
If all possibly occurring failures are considered as identical,
then D Dfail fail

1 = , P Pp p
()1 = and P Pr r

()1 = . Otherwise, the

formalism of Section 2 has to be applied for each fault j
separately.

Analogously as in Section 2.2, we introduce the expected
values of Pp

j() and Pr
j() in the considered reference class of

programs, which yields the quantities P E Pp
j

p
j() ()()= and

P E Pr
j

r
j() ()()= .

In a consequent continuation of the analogy, the ex-
pected failure rate q i

j() in subdomain i with respect to fault j

is defined as E F di
j

i(/)() . Again by the argument that the

labels of the subdomains Di are arbitrary or random (cf.

Section 3.1), it is reasonable to assume that the values q i
j()

do not depend on the subdomain Di, i.e., that q qi
j j() ()= for

all i. So, provided that the other respective conditions are
also satisfied, we are within the premises of Theorems 1, 5,
and 6, and may conclude that

P Pr
j

p
j() ()�

for each j.
By I(A), we denote the indicator of the event A, i.e., I(A)

= 1 if A occurs, and I(A) = 0 otherwise. Using this notation,
the number of detected faults is given by

j

I jÊ (fault is detected) ,

and the weighted number of detected faults is given by

j
jw I jÊ (fault is detected) ,

where wj � 0 is the weight (or severity) of fault j.
Now we can state the announced theorem which makes

it possible to derive dominance with respect to expected
(weighted) numbers of found faults from dominance with
respect to fault detection probabilities:

THEOREM 7. Whenever P Pr
j

p
j() ()� for each j, then also the fol-

lowing two assertions hold:

1) The expected number of detected faults under random
testing is smaller or equal to that under partition testing.

2) The expected weighted number of detected faults under
random testing is smaller or equal to that under parti-
tion testing.

This result is especially instructive for the case of pro-
grams with a large number of faults. For such programs, Pr
and Pp are close to one anyway, so the assertion P Pr p� is

here of little practical relevance. The expected (weighted)
number of faults found by random testing and partition
testing, however, may nevertheless differ considerably:
Note that the probabilities Pr

j() and Pp
j() for special (severe)

faults j may be essentially smaller than one. For the final
test of safety-critical applications, e.g., where the occurrence
of a severe fault has to be considered as a rare event, our
last derivations may be combined with Theorem 2, yielding
the assertion that on these premises the expected value of
the weighted number of found faults can be up to k times
higher for partition testing than for random testing.

4 CONCLUDING REMARKS
We have shown that in a comparison between random test-
ing and partition testing, deterministic assumptions on the
failure rates systematically favor random testing, and that
this effect is especially strong, if a partition consists of few
large and many small subdomains. As a consequence, the
fault detection ability of partition testing, compared to that
of random testing, seems to be better than suggested by
some prior investigations. In particular, it was demon-
strated that, for example, independent failure rates with
identical expected value in the subdomains guarantee a

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

670 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999

higher fault detection probability for partition testing, ex-
ceeding that of random testing up to a factor of about k,
where k is the number of subdomains.

Some readers might wonder how prior information or
assumptions on failure rates can influence the fault detec-
tion probabilities of partition testing and random testing: It
could be argued that, as soon as a concrete program is
given (together with its specification), there will be certain
fault detection probabilities for partition testing and ran-
dom testing, which are independent of what we know about
the program. Let us make this point quite clear. It is true

that the fault detection probabilities Pr and Pp for the given
program are independent of our prior information. How-
ever, they are unknown to us, and there is no way to de-
termine them before testing! So our decision cannot be

based on the values Pr and Pp themselves, but only on our
expectation of what these values will be, i.e., on Pr and Pp .

This expectation may be established by objective informa-
tion on failure rates in a programs similar to the program
under test. Also concrete information on the program under
test could be exploited; this would be a Bayesian approach.
The only condition for our results is that there is any way of
assigning probability distributions to the failure rates, no
matter whether an objective (frequentist) or subjective (Baye-
sian) interpretation of “probability” is chosen (cf. [17], [20]).

As to the interpretation of our results, let us add a warn-
ing remark. Partition testing strategies may be roughly classi-
fied into clear box and black box strategies, according to the
criterion used for subdividing, which can be structural or
functional. Our formal results hold for both types of partition
testing strategies. Nevertheless, some of our informal argu-
ments (especially in Remark 2, Section 3) rather refer to struc-
tural subdivision criteria, so their validity should be carefully
checked when a special black box strategy is considered. Ex-
ample 4 shows that at least random subdividing, which is a
black box subdivision strategy, does not produce essentially
better outcomes than random testing.

The presented results might lead to the impression that
random testing is a technique of low value and should not
be applied. In the author’s opinion, however, more cautious
conclusions should be drawn. There are some aspects still
to be considered:

Aspect 1. First of all, the reader should remember that we
have investigated a particular type of random testing, using
a uniform distribution on the input domain. (The same
holds for the investigations in [24].) Using other distribu-
tions has already been discussed in [5]. Appropriate non-
uniform distributions may lead to significantly higher fault
detection probabilities. Of course, there is a price to be paid
for such improvements: the advantage that for test case
generation, one does not need any information on the pro-
gram except the knowledge of the input domain, gets lost.

Aspect 2. Secondly, there seems to be a broad consensus
in the literature that random testing (e.g., with the opera-
tional distribution) can provide quantitative reliability es-
timates, while deterministic testing (e.g., deterministic path
testing) cannot (see [21], [5], [14], [22], [7], [23]). In particu-
lar, random testing allows a quantitative judgment of the

achieved reliability in the form of statistical confidence
bounds (see [14], [22]).

Aspect 3. Third, random test data generators, where they
can be applied, are able to produce very large test data sets.
(Of course, not every application is well suited for the
automated generation of test inputs.) On the additional
condition that a test oracle, an automated or at least partially
automated tool for the evaluation of test results, is available
(the development of such a test oracle may be a very diffi-
cult task, cf. [4]!), random testing may win against partition
testing simply by means of an overwhelming number of
test cases. This effect, which has already been discussed by
other authors, deserves some closer inspection in future
research. It would be desirable to have necessary and/or
sufficient conditions indicating under what circumstances K
random test cases are better than k partition test cases. To
give an example for such a condition: It is possible to show,
using Theorem 2, that for very small independent failure
rates with equal expectation, K = k2 random test cases have
always a higher fault detection probability than k partition
test cases from k subdomains. Conditions of this type could
be helpful for the comparison of random and partition test-
ing on the base of cost-effectiveness. (Incidentally, let us
mention that random test data generation is not the only
way to produce large test data sets. In [13], e.g., a method
for improving the fault detection probability of random
testing for a class of numerical programs, using an appro-
priate “derandomization” of the generation process, was
outlined.)

Let us discuss a few special questions left open by our
results. Some of them may possibly be attacked by analyti-
cal methods, others are obvious candidates for simulation
experiments and/or empirical studies.

Question left open 1. We have assumed that in partition
testing, only one test case is selected from each subdomain.
A more general assumption would be the following: From

each subdomain Di , exactly m � 1 test cases have to be se-
lected. It is not clear whether in such a situation our result
P Pr p� for independent failure rates with identical expecta-

tion remains valid, and how multiple selection of test in-
puts from subdomains influences the lower bound on Pr .
An analytical treatment of this question is difficult, so simu-
lation results would be of great value. Of course, also vary-

ing numbers mi of test cases selected from the subdomains

Di may be investigated, as they have already been consid-

ered in [5], [24]. Chen and Yu ([2], [3]) have shown that if mi

is chosen proportional to di (“proportional sampling”), then
partition testing is always better than random testing. The

difficulty lies in achieving an exact proportion between mi

and di. Our approach might possibly be applied for judging
approximations to proportional sampling.

Question left open 2. Our results were based on the as-
sumption of equal expected failure rates in the subdomains
defined by the partition. As it was stated in Section 3, this
assumption is almost inevitable for the standard applica-
tion type of a partition testing technique, where subdo-
mains are not distinguished according to prior information

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

GUTJAHR: PARTITION TESTING VS. RANDOM TESTING: THE INFLUENCE OF UNCERTAINTY 671

on their error-proneness or other criteria. Of course, also the
opposite case may be studied, where such information is
taken into account. In this case, it is obviously more effi-
cient to select varying numbers mi of test cases from the
subdomains Di. To have a fair comparison, also the distri-
bution of the test cases selected by random testing should
then be changed from a uniform distribution on D to a
nonuniform distribution giving more weight to the (pre-
sumably) more error-prone subdomains. This is again a
possible topic for simulation experiments.

Question left open 3. By restricting ourselves to partition
testing instead of the more general case of subdomain-
based testing methods, we have assumed that all subdo-
mains are nonoverlapping. For practical applications, it
would be very interesting to have results concerning the
“overlapping” case (cf. the discussions in [14], [24]), since
many well-established subdomain-based testing techniques
(like, e.g., branch testing) define subdomains that are not
pairwise disjoint. Intuitively, one can expect that the trends
outlined in this paper are still valid for overlapping sub-
domains, but weaker: The extreme case for overlapping
subdomains is D1 = ¡ = Dk = D, and in this case, partition
testing coincides with random testing. So one may conjec-
ture that the behavior of the techniques that do not define
proper partitions lies somewhere between partition testing
and random testing. Mathematical results making this con-
sideration precise and/or simulation results would be
worthwhile.

Question left open 4. The aspect of varying failure costs
should be investigated in more detail than in Section 3.2. In
the discussion on the relative performance of partition and
random testing, this aspect was studied by Tsoukalas,
Duran and Ntafos [22]. As one of their results, they stated
that in an extended model where varying degrees of failure
severity are distinguished, the superiority of partition test-
ing over random testing is more pronounced than in the
model investigated in [5]. Although the criterion of com-
parison in [22] is not the fault detection probability or the
expected weighted number of detected faults, but the ob-
tained confidence bound on reliability estimates, it can be
conjectured that for varying failure costs, an investigation
along the lines of our derivations in Section 3.1 would un-
veil an even stronger advantage for partition testing. This
conjecture could possibly be accessible to an analytical
treatment.

Finally, let us briefly summarize consequences of our re-
sults for the work of a practicing test engineer:

� In spite of (erroneous) conclusions that might possi-
bly be drawn from previous investigations, partition–
based testing techniques are well-founded. Even if no
especially error-prone subdomains of the input do-
main can be identified in advance, partition testing
can provide substantially better results than random
testing.

� Because of the close relations between partition testing
and other subdomain-based testing methods (branch
testing, all-uses, mutation testing etc.), also the superior-
ity of the last-mentioned methods over random testing
can be justified. The wide-spread practice of spending
effort for satisfying diverse coverage criteria instead of

simply choosing random test cases is not a superstitious
custom; it is a procedure the merits of which can be un-
derstood by sufficiently subtle, but formally precise
models.

� The effort for satisfying partition-based coverage cri-
teria is particularly well spent, whenever the partition
leads to subdomains of largely varying sizes, each of
which is processed by the program or system in a
rather homogeneous way (i.e., the processing steps
are similar for all inputs of a given subdomain). Con-
trary, the advantages of partition testing are only
marginal in the case of subdomains of comparable
sizes and heterogeneous treatment by the program. In
any case, the partition should not be arbitrarily cho-
sen, but carefully derived from the structure or func-
tion of the program.

We admit that the main intention of this article was to
get more clarity in regard to the question whether partition-
testing techniques should be applied or not and not how
they can be applied in a more effective way. Since partition
testing techniques are expensive, such that doubts whether
they are really superior to arbitrary (“random”) choice of
test cases would drastically discourage their application,
we think that our results are also of considerable practical
interest. Nevertheless, some readers might desire more con-
crete hints on how their partition testing strategies could be
improved. This question exceeds the scope of this article,
but we are optimistic that further investigations along the
lines of the presented approach will also produce results of
this type.

APPENDIX A

PROOF OF THEOREM 1. Induction with respect to k. For k = 1,
we obtain P Pr p= = q . Let k > 1. By (5),

P E F dr
k= - -1 1(/)4 9 .

We use the stochastic inequality

E Y E Y E Y a b Ya b a b() () () (, ;)+ � � �0 0 (11)

which follows from Lyapunov’s inequation

 E U E U U() () (;)
/ /a a b b

a b
1 1

0 0� < � � .

Setting Y := 1 - F/d, a := k - 1 and b := 1 in (11), we
obtain

P E F d E F d

E F d

r
k

k

� - - ¼ -

= - - ¼ -

-

-

1 1 1

1 1 1

1

1

(/) (/)

(/) () .

4 9
4 9 q

(Observe that E F d d E d F d(/) (/) (/= +1 1 1 1 K + d Fk k
/) .)dk = q

On the other hand, by (4) we find

P E F dp
i

k

i i
k= - - = - -

=
1 1 1 1

1
P (/) ()q , (12)

using the independence of the failure rates Fi/di. So it
remains to show that

E F d k k(/) () .1 11 1- � -- -1 6 q (13)

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

672 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999

For that purpose, define a partition of D by joining
subdomains Dk-1 and Dk in the given partition:

~

: (, ,),
~

:D D i k D D Di i k k k= = - =- -1 2 1 1K < .

The corresponding numbers of failure-causing inputs
are then

~

(, ,),
~

F F i k F F Fi i k k k= = - = +- -1 2 1 1K ,

and analogous equations hold for the subdomain
sizes

~
di .

~
, ,

~
F Fk1 1K - are independent random vari-

ables, and it is easy to verify that all expected failure
rates E F di i(

~
/

~
) are again equal to q . By induction as-

sumption and with the use of (12), we obtain

 1 1 1 11 1

1 1

1

1- -
+ +

+ +

�
��

�
��

�

�
��

�

�
�� � - --

-

-
-E

F F

d d
k

k

k

k
~ ~

~ ~ ()
K

K
q .

Hence

E F d E
F F

d d
k k

k

k

k

(/)
~ ~

~ ~

() ,

1 1

1 1

1 1 1

1 1

1

1

- = -
+ +

+ +

�
��

�
��

�

�
��

�

�
��

� - -

- -

-

-

-

1 6 K

K

q

,

which yields (13). o

PROOF OF THEOREM 2.
Case 1. We show the inequation. Since 0 � 1 - F/d �

1, one has (1 - F/d)k � 1 - F/d, and therefore

1 1 1- = - � - =P E F d E F dr
k(/) (/)1 6 q . (14)

Thus, Pr � q . Because of (12), this implies

P

P
r

p
k�

- -

q

q1 1()
 .

Case 2. We show that the lower bound is tight in
the sense indicated in the theorem, i.e., that the bound
cannot be improved. Consider the following case:

 d1 = d - k, di = 1 (i = 2, ¡, k) ,

and

 F
di

i
= -%&'

0 1with probability ,
with probability ,

q
q

for i = 1, ¡, k, where F1, ¡, Fk are independent. It is

immediate that E F di i(/) = q (i = 1, ¡, k). Since F1 = 0

with probability 1 - q , it follows that F = F1 + ¡ + Fk �

k - 1 with probability � -1 q , i.e., (1 - F/d)k � (1 - (k

- 1)/d)k with probability� -1 q . Therefore,

P E F d k dr
k k= - - � - - - -1 1 1 1 1 1(/) ()(()/)4 9 q . 15)

For fixed k and d � �, one has (1 - (k - 1)/d)k � 1, so
the expression on the right-hand side of (15) tends to
q for growing d. Together with the inequation Pr � q
derived above, we obtain the result that for appropri-
ate special cases, {P}r gets arbitrarily close to q , which
proves the assertion, again because of (12). o

PROOF OF THEOREM 3. Let d = (, ,)d dk1 K be the vector of

random variables di. Now consider any fixed vector

d() () ()(, ,)0
1
0 0= d dkK of values di

()0 of the random vari-

ables di. Let

P E
F

dp
i

k
i

i

()()
()d 0

1
01 1= - -

�
��

�
��

�
��

�
��=

P

(cf. (4)). By E(d), we denote the expectation with respect
to the distribution of d = (, ,)d dk1 K , such that now

P E Pp
d

p= () ()d4 9 .

Pr is still given by (5). Theorem 1 yields P Pr p� ()()d 0

for each d()0 . Because of the monotonicity of the ex-

pectation operator E(d), this implies P Pr p� , thus the

generalization of Theorem 1 to random subdomain

sizes di is proved. The generalization of the inequation
in Theorem 2 is demonstrated in a quite analogous
way. The tightness of the lower bound in the generali-
zation of Theorem 2 follows immediately, since for
showing it, it is sufficient to indicate special cases, and
these are provided by the deterministic construction
in the proof of Theorem 2, case 2. o

PROOF OF THEOREM 4. By (4),

P E F d F d

E F d E F d E F F d d

E F F d d

p = - - -

= + -

= -

1 1 1

2

1 1 2 2

1 1 2 2 1 2 1 2

1 2 1 2

(/)(/)

(/) (/) () / ()

() / () .

2 7
2 7

q

By (5),

P E F d

E F d E F d

E F d

r = - -

= - - +

= -

1 1

1 1 2

2

2

2 2

2 2

(/)

(/) (/)

() / ,

4 9
4 9

q

hence

P P E F d E F F d d

d
E F E F E F F d d E F F

d
E F E F

d
d d E F F

p r- = -

= + + -

= + + -
�
��

�
��

�
!

"
$
##

() / () / ()

() () () ()

() () () .

2 2
1 2 1 2

2 1
2

2
2

1 2
1 2

1 2

2 1
2

2
2

2

1 2
1 2

1
2

1

1
2

4 9 (16)

Using

E F Var F E F

Var F d i

i i i

i i

() () ()

() (,)

2 2

2 2 1 2

= +

= + =

2 7
q

and
E F F Cov F F E F E F

Cov F F d d

() (,) () ()

(,) ,
1 2 1 2 1 2

1 2 1 2
2

= +

= + q

we finally obtain (9) by insertion into (16). o

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

GUTJAHR: PARTITION TESTING VS. RANDOM TESTING: THE INFLUENCE OF UNCERTAINTY 673

PROOF OF THEOREM 5. Let Var F di i(/) = s 2 . We obtain

Var F d ii i() (,)= =2 2 1 2s ,

and

Cov F F Var F Var F d d(,) [()] [()]/ /
1 2 1

1 2
2

1 2
1 2

2� = s .

This yields

d P P d d d dp r
2

1
2 2

2
2 2

1
2

2
2 2 0() ()- � + - + =s s s . o

PROOF OF THE ASSERTION BEFORE THEOREM 6. We have to
show that for i � j, the random variables (di - Fi)/di
and (dj - Fj)/dj are positively correlated, provided that
Var(H) > 0, E(Hi) > 0 (i = 1, ¡, k), and H, H1, ¡, Hk
are independent. For that purpose, we show that the
covariance of the two random variables is strictly
positive:

Cov
d F

d
d F

d Cov HH HH

E HH HH E HH E HH

E H E H E H E H E H E H

Var H E H E H

i i

i

j j

j
i j

i j i j

i j i j

i j

- -�
��

�
�� =

= ¼ - ¼

= -

= >

, (,)

() () ()

() () () [()] () ()

() () () .

2 2

0

 o
PROOF OF THEOREM 6. One finds

1

1

1

1

1

1

1

- =
-�

��
�
��

�
���

�
���

= -
�
��

�
��

�
�
��

�
�
��

=
�
��

�
��

�
�
��

�
�
��

=
�
��

�
��

�
�
��

�
�
��

=

=

=

Ê

Ê

Ê

P E
d F

d

d
E d F

d
E d HH

d
E H E d H

r

k

k i i
i

k k

k i i
i

k k

k
k

i i
i

k k

()

() ,

and

1
1

1

1

- =
-�

��
�
��

=
�
!

"
$#

=

=

=

=

P E
d F

d

E HH

E H E H

p
i

k
i i

i

i

k

i

k

i

k

i

P

P

P() () .

Hence

1 1

1 1E H
P P

d
E d H E Hk p r k i i

i

k k

i

k

i()
() () .- =

�
��

�
��

�
�
��

�
�
�� -

= =
Ê P (17)

Set Gi = di(1 - Hi) (i = 1, ¡, k). Then G1, ¡, Gk are in-
dependent random variables, and the “rates” Gi/di
have equal expectation:

E G d E H

E H
i i i(/) (

() / () .

= -

= - -

1

1 1 q

(The last equation follows from E H E H E HHi i() () ()=

= -1 q) Using the variables Gi, the right-hand side of
(17) can be represented (after a short calculation) as

1 1
1

1
1 1

- -
�
��

�
��

�
�
��

�
�
�� - -

�
��

�
��

�
��

�
��= =

ÊE d G E
G
di

i

k k

i

k
i

i
P . (18)

It is not difficult to see that the assertion

1 1
1

1 1
1 1

- -
�
��

�
��

�
�
��

�
�
�� � - -

�
��

�
��

�
��

�
��= =

ÊE d F E
F
di

i

k k

i

k
i

i
P

of Theorem 1 can be generalized from integer vari-
ables Fi to real-valued variables Gi. As a consequence,
the expression (18) and hence also the expressions in
(17) are nonnegative. This yields the theorem because
of E H k() > 0 . o

PROOF OF THEOREM 7. It is sufficient to prove assertion 2, since
assertion 1 is only the special case of identical weights
w1 = w2 = ¡ = 1. Let, for a fixed given program with
known failure rates, Ep and Er denote the expectation of
a quantity in the case when partition testing and ran-
dom testing is applied, respectively. We obtain

E w I j

w E I j

w P

p j
j

j
j

p

j
j

p
j

Ê

Ê

Ê

�
���

�
���

=

=

(fault is detected)

(fault is detected)

,()

2 7

and

E w I j

w E I j

w P

r j
j

j
j

r

j
j

r
j

Ê

Ê

Ê

�
���

�
���

=

=

(fault is detected)

(fault is detected)

,()

2 7

In the second step, we take the expected value E in the
considered reference class of programs. This yields

E w P w P

w P

j
j

p
j

j
j

p
j

j
j

p
j

Ê Ê

Ê

�
���

�
���

=

=

() ()

()

()

as the expected weighted number of detected faults
for partition testing, and

E w P w E P

w P

j
j

r
j

j
j

r
j

j
j

r
j

Ê Ê

Ê

�
���

�
���

=

=

() ()

()

()

as the expected weighted number of detected faults
for random testing. The assertion follows now from

P Pr
j

p
j() ()� and wj � 0. o

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999

ACKNOWLEDGMENTS
The author wishes to thank I. Bomze, A. Futschik, and E.J.
Weyuker for valuable hints and comments. Furthermore,
the author is indebted to the anonymous referees for their
profound and helpful remarks on the first versions. In par-
ticular, the content of Theorem 3 was suggested by one of
the referees.

REFERENCES
[1] B. Beizer, Software Testing Techniques. New York: Van Nostrand

Reinhold, 1990.
[2] T.Y. Chen and Y.T. Yu, “On the Relationship between Partition

and Random Testing,” IEEE Trans. Software Eng., vol. 20, pp. 977–
980, 1994.

[3] T.Y. Chen and Y.T. Yu, “A More General Sufficient Condition for
Partition Testing to be Better than Random Testing,” Information
Processing Letters, vol. 57, pp. 145–149, 1996.

[4] J.D. Day and J.D. Gannon, “A Test Oracle Based on Formal Speci-
fications,” Softfair, A Second Conf. Software Development Tools, Tech-
niques, and Alternatives, pp. 126–130, San Francisco, Dec. 1985.

[5] J.W. Duran and S.C. Ntafos, “An Evaluation of Rrandom Testing,”
IEEE Trans. Software Eng., vol. 10, pp. 438–444, 1984.

[6] D.E. Eckhardt and L.D. Lee, “A Theoretical Basis for the Analysis
of Multiversion Software Subject to Coincident Errors,” IEEE
Trans. Software Eng., vol. 11, pp. 1,511–1,517, 1985.

[7] W.D. Ehrenberger, “Combining Probabilistic and Deterministic
Verification Efforts,” Proc. SAFECOMP‘92, H. Frey, ed., Oxford,
England: Pergamon, pp. 299–304, 1992.

[8] P.G. Frankl and E.J. Weyuker, “A Formal Analysis of the Fault-
Detecting Ability of Testing Methods,” IEEE Trans. Software Eng.,
vol. 19, pp. 202–213, 1993.

[9] P.G. Frankl and E.J. Weyuker, “Provable Improvements on Branch
Testing,” IEEE Trans. Software Eng., vol. 19, pp. 962–975, 1993.

[10] J.S. Gourlay, “A Mathematical Framework for the Investigation of
Testing,” IEEE Trans. Software Eng., vol. 9, pp. 686–709, 1983.

[11] W.J. Gutjahr, “Optimal Test Distributions for Software Failure Cost
Estimation,” IEEE Trans. Software Eng., vol. 21, pp. 219–228, 1995.

[12] W.J. Gutjahr, “Importance Sampling of Test Cases in Markovian
Software Usage Models,” Probability in the Eng. and Informational
Sciences, vol. 11, pp. 19–36, 1997.

[13] W.J. Gutjahr and G. Danninger, “Efficient Selection of Test Data
from a Polyhedral Input Domain,” Operations Research Proc. 1994,
U. Derigs et al., eds., pp. 233–238, Berlin: Springer, 1995.

[14] R. Hamlet and R. Taylor, “Partition Testing Does Not Inspire Con-
fidence,” IEEE Trans. Software Eng., vol. 16, pp. 1,402–1,411, 1990.

[15] R. Hamlet, “Theoretical Comparison of Testing Methods,” Proc.
Third Symp. Testing, Analysis and Verification, pp. 28–37, 1989.

[16] P.S. Loo and W.K. Tsai, “Random Testing Revisited,” Information
and Software Technology, vol. 30, pp. 402–417, 1988.

[17] P.G. Moore, The Business of Risk. Cambridge: Cambridge Univ.
Press, 1993.

[18] G.J. Myers, The Art of Software Testing. New York: Wiley, 1979.
[19] B. Randell, “System Structure for Software Fault Tolerance,” IEEE

Trans. Software Eng., vol. 1, pp. 220–232, 1975.
[20] M. Smithson, Ignorance and Uncertainty. New York: Springer, 1988.
[21] T.A. Thayer, M. Lipow, and E.C. Nelson, Software Reliability. Am-

sterdam, The Netherlands: North-Holland, 1978.
[22] M.Z. Tsoukalas, J.W. Duran, and S.C. Ntafos, “On Some Reliabil-

ity Estimation Problems in Random and Partition Testing,” IEEE
Trans. Software Eng., vol. 19, pp. 687–697, 1993.

[23] G.H. Walton, J.H. Poore, and C.J. Trammell, “Statistical Testing of
Software Based on a Usage Model,” Software–Practice and Experi-
ence, vol. 25, pp. 97–108, 1995.

[24] E.J. Weyuker and B. Jeng, “Analyzing Partition Testing Strate-
gies,” IEEE Trans. Software Eng., vol. 17, pp. 703–711, 1991.

[25] E.J. Weyuker and T.J. Ostrand, “Theories of Program Testing and
the Application of Revealing Subdomains,” IEEE Trans. Software
Eng., vol. 6, pp. 236–245, 1980.

[26] E.J. Weyuker, St. N. Weiss, and R. Hamlet, “Comparison of Pro-
gram Testing Strategies,” Proc. Fourth Symp. Testing, Analysis and
Verification, pp. 1–10, 1991.

[27] E.J. Weyuker, “The Applicability of Program Schema Results to
Programs,” Int. J. Computing Information Sciences, vol. 8, pp. 387–
403, 1979.

Walter J. Gutjahr received his MSc and PhD
degrees in mathematics from the University of
Vienna, Austria, in 1980 and 1985, respec-
tively. From 1980–1988 he was with Siemens
Corporate, working on diverse program and
system development projects and was head of
a software testing group. Currently, he is a
professor of computer science and applied
mathematics at the University of Vienna. His
interests include analysis of algorithms, opti-
mization, and software engineering (especially

testing and reliability).

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:35:00 UTC from IEEE Xplore. Restrictions apply.

