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Partition Testing vs. Random Testing: 
The Influence of Uncertainty 

Walter J. Gutjahr 

Abstract—This paper compares partition testing and random testing on the assumption that program failure rates are not known 
with certainty before testing and are, therefore, modeled by random variables. It is shown that under uncertainty, partition testing 
compares more favorably to random testing than suggested by prior investigations concerning the deterministic case: The restriction 
to failure rates that are known with certainty systematically favors random testing. In particular, we generalize a result by Weyuker 
and Jeng stating equal fault detection probabilities for partition testing and random testing in the case where the failure rates in the 
subdomains defined by the partition are equal. It turns out that for independent random failure rates with equal expectation, the case 
above is a boundary case (the worst case for partition testing), and the fault detection probability of partition testing can be up to k 
times higher than that of random testing, where k is the number of subdomains. Also in a related model for dependent failure rates, 
partition testing turns out to be consistently better than random testing. The dominance can also be verified for the expected 
(weighted) number of detected faults as an alternative comparison criterion. 

Index Terms—Decisions under uncertainty, fault detection, partition testing, program testing, random testing, software testing. 

—————————— F —————————— 

1 INTRODUCTION

EW topics in software testing methodology seem to be 
more controversial than the question whether it is effi-

cient or not to use randomly generated test data (Beizer [1]). 
While in the ‘70s experts tended to doubt the efficiency of 
random testing (cf. Myers’ [18] verdict that “probably the 
poorest [testing] methodology is random input testing”), 
the judgment on the random testing approach became more 
positive during the ‘80s. In theoretical research, a surprising 
defense of random testing was given by Duran and Ntafos 
[5], who put the problem on a well-defined formal base by 
comparing random testing (i.e., selection of test inputs ran-
domly from the whole input domain) to partition testing 
(i.e., dividing the input domain into nonoverlapping sub-
domains and selecting one test input from each subdo-
main). Under different model assumptions, the probabili-
ties of detecting at least one program fault were estimated 
for both approaches by means of simulation experiments, 
and compared to each other. Although partition testing 
usually requires a larger effort in test data generation, it 
produced only slightly superior results in these experi-
ments. So the outcomes suggested that random testing 
could possibly be more cost-effective. 

Hamlet and Taylor [14] considered these results counter-
intuitive. Their own simulation experiments, however, essen-
tially confirmed the observations by Duran and Ntafos. 

Weyuker and Jeng [24] compared the two testing ap-
proaches from an analytical point of view. Their results 
pointed in the same direction again: A clear superiority of 
partition testing could not be stated; instead, it turned out 

that, in effectiveness, partition testing can be better, worse 
or the same as random testing, depending on the “ade-
quacy” of the chosen partition with respect to the location 
of the failure-causing inputs. In particular, Weyuker and 
Jeng observed that if the failure rates in the subdomains 
defined by the partition are equal, then the fault detection 
probability of partition testing is always the same as that of 
random testing. 

At a first glance, these results, which are undoubtedly 
correct and formally sound, might confound the practitio-
ner: Many well-known testing methods like statement test-
ing, branch testing, path testing, all-uses, all-p-uses, certain 
variants of mutation testing, etc., are subdomain-based (cf. 
[8]), i.e., they rely on a partition of the input domain into 
nonoverlapping or overlapping subdomains. The construc-
tion of test inputs from each of these subdomains usually 
requires path sensitizing, a task which is tedious in practice 
and unsolvable by general algorithms (see [27]). Why 
should one take so much pains to construct such test in-
puts, if randomly chosen inputs possibly do just as well? 
Despite their wide-spread use, subdomain-based testing 
methods seem to lack theoretical justification, compared to 
the random testing technique. 

In the present paper, we want to show that Weyuker and 
Jeng’s analytical comparison approach can be used to con-
firm the superiority of partition testing (or, more generally, 
subdomain-based testing with more than one subdomain) 
over random testing. All we have to do is to extend their 
deterministic model for the failure rates to a probabilistic 
model. We shall argue that the number of failure-causing 
inputs in a given subdomain (and, therefore, also the failure 
rate) is never known to the tester with certainty. Following 
the traditional statistical paradigm, we shall therefore 
model this number by a random variable. (A related ap-
proach has been chosen in [11], [12].) Since deterministic 
variables are special cases of random variables, our approach 
generalizes (in some aspects) the model in [24]. 
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Interestingly enough, it turns out that this probabilistic 
consideration changes the picture in favor of partition test-
ing methods: In a certain sense, the case where the failure 
rates are known or deterministic, is the worst case for parti-
tion testing. In particular, it will be shown that for equal 
expected failure rates in the subdomains defined by a parti-
tion, the partition testing approach has in general a higher 
probability of fault detection than the random testing ap-
proach, and that the superiority of partition testing can be 
drastic. Weyuker and Jeng’s results stating equal fault de-
tection probabilities concerns the special case where the 
variances of the failure rates are zero, i.e., where there is no 
uncertainty on the failure rates at all. 

Of course, we do not assert that the extent of prior 
knowledge on failure rates influences the relative perform-
ance of partition testing and random testing for a fixed 
given program. It influences, however, our expectation of the 
performance of both methods for the program currently 
under test. Therefore, also the optimal decision which 
method to choose necessarily depends on what prior in-
formation is available. (As to this point, see the discussion 
in Section 4.) 

In management science, the representation of uncertainty 
is an issue of great importance (cf. [17]), and it is well-known 
that decision problems under uncertainty lead to quite dif-
ferent types of optimal solutions than decision problems un-
der certainty. For example, a usual response to uncertainty in 
portfolio-split decisions is diversification. Translated to our 
problem context, we could say that partition testing methods 
are strategies of “forced diversification.” 

The paper is organized as follows: In Section 2, the formal 
framework for an analytical comparison of subdomain-based 
testing methods, as it was developed in [24], [26], [8], [9], will 
be recapitulated. Furthermore, basic arguments for a prob-
abilistic modeling of the failure rates will be presented. 

Section 3 contains our main results: It is shown that in a 
first generalization of Weyuker and Jeng’s results, namely a 
replacement of the deterministic failure rates by independ-
ent random variables, equal expected failure rates in the 
subdomains imply the following bounds: The fault detec-
tion probability Pr  of random testing can vary between a 
lower bound of order P kp /  and the upper bound Pp , 
where Pp  is the fault detection probability of partition test-
ing, and k is the number of subdomains. The upper bound 
occurs if the failure rates are deterministic. It will be argued 
that at least in some practical applications, Pr  can be ex-
pected to be nearer to the lower than to the upper bound. 
Moreover, a further generalization to dependent random 
variables will be outlined. As alternative criteria for measur-
ing testing effectiveness, the expected number of found faults 
and the expected weighted number of found faults are con-
sidered, and it is shown that also under these criteria, parti-
tion testing compares favorably with random testing. 

Section 4 discusses premises and scope of our results, 
considers advantages of random testing, and outlines topics 
for future research. 

2 THE FORMAL FRAMEWORK 
2.1 Fault Detection Probabilities 
The following definitions are taken from [24], [26], [8], [9]. A 
test suite is a multiset (i.e., a set where elements can occur 
more than once) of test cases, each of which is a possible 
input to a program P. The set of all possible inputs of P is 
the input domain D. A subdomain-based testing method M de-
termines, to each program P and specification S, a multiset 
6'M (P, S) of subdomains of the input domain D, and re-
quires that from each subdomain contained in 6'M (P, S), a 
fixed number m of test cases is selected for the test of P. 
Most frequently, this number is simply chosen as m = 1. For 
example, in the case of branch testing, 6'branch (P, S) con-
tains for each decision d in the program two sets of inputs: 
the first set Dtrue(d) consists of those inputs that cause d to 
evaluate to true at some time during the execution; the 
second set Dfalse(d) consists of those inputs that cause d to 
evaluate to false at some time. Branch testing requires that 
for each decision d in P, there is both a test case from Dtrue(d) 
and Dfalse(d) in the test suite. 

To give another example: For path testing, 6'path (P, S) 
contains for each path of the program the set of all inputs 
that cause the program to follow the respective path. 

It is usually assumed that the union of the subdomains 
contained in 6'M (P, S) yields the input domain D. How-
ever, two different situations may be distinguished: The 
subdomains in 6'M (P, S) may be overlapping (as in the 
case of branch testing), or nonoverlapping (as in the case of 
path testing). If they do not overlap, we speak of partition 
testing, since then the sets in 6'M (P, S) form a partition of 
the input domain in the mathematical sense of the word. 

Now, some of the inputs in D may be correctly processed 
by program P with respect to specification S, while other 
inputs may be failure-causing. In this article, we shall call 
the set of failure-causing inputs the failure domain of P with 
respect to S. The main goal of all testing methods is to hit 
the failure domain (provided that it is not empty) by some 
test case: If there is a fault in P, at least one of the test cases 
should unveil it. So testing methods can be compared ac-
cording to their fault detection ability. In Section 3.2, we 
shall also use other comparison criteria. 

Obviously, a subdomain-based testing method does not 
completely specify a test suite for each given program P and 
specification S. There is still the freedom which test inputs 
are to be selected from each subdomain. This leads to a 
definition problem, if testing methods are to be compared 
on the base of their fault detection abilities. In an early ana-
lytical comparison framework for testing methods by Gour-
lay [10], the problem was solved by a worst-case-
consideration: Since the worst case for testing is the case 
where faults are not found, Gourlay took as a representative 
of each subdomain one of those test inputs (if present) that 
are not contained in the failure domain. He could show 
that, under this assumption, subsumes-relations between 
testing methods (e.g., branch testing subsumes statement 
testing) can be translated into assertions on higher fault 
detection ability. 

In the late ‘80s it was recognized that such worst-case 
comparisons can be misleading (see Hamlet [15]). Since 
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then, average-case comparison models were developed. The 
basic assumption is the following ([26], [8]: From each sub-
domain, test cases are selected according to a certain prob-
ability distribution. Most investigations are based on the 
uniform distribution: It is supposed that each test input con-
tained in a subdomain has the same probability of being 
selected for the test. Let us mention that in practice, not 
only the uniform distribution is applied. One may prefer to 
use some other strategy, either for practical reasons (easy 
test case generation) or in view of a further optimization of 
the testing effectiveness. Throughout this article, however, 
we confine ourselves exclusively to the uniform model. 

Under the assumption above, random testing with inputs 
selected at equal probabilities becomes a special subdomain-
based testing method: Let, in general, D1, ¡, Dk be the sub-
domains contained in 6'M (P, S), with D1 < ¡ < Dk = D. In 
the special case k = 1, we have D1 = D, such that (random) 
selection of a test input from the only existing subdomain is 
just random selection of any test input. In order to draw a 
clear distinction between random testing and partition test-
ing, we shall always assume in the sequel that for partition 
testing, the partition {D1, ¡, Dk} of the input domain con-
tains at least two subsets, i.e., that k � 2. 

For a given partition {D1, ¡, Dk}, one test case per subdo-
main, and uniform selection from each subdomain, the fault 
detection probability of partition testing is given by (cf. [24]) 

P f dp
i

k

i i= - -
=

1 1
1

P ( / ) .                            (1) 

Therein, di = |Di| is the number of elements in subdomain 
Di, and fi = |Di > Dfail| is the number of failure-causing 
inputs in Di, where Dfail denotes the failure domain. 

On the other hand, the fault detection probability of ran-
dom testing with k test inputs (selected independently at 
random from D, with replacement) is given by 

P f dr
k= - -1 1( / ) ,                           (2) 

where d d D
i
k

i= ==1S , and f f D
i
k

i
fail= ==1S .  

Note that we have chosen the sample size k in the case of 
random testing equal to the number of subdomains in the 
case of partition testing. Thus, the numbers of test cases for 
both methods are equal, which allows a fair comparison. 

Equations (1) and (2) can be abbreviated by introducing 

the failure rates q = f/d and qi = fi / di in the whole input 

domain D and in subdomain Di, respectively. We have then 

Pp i
k

i= - -=1 1
1P ( )q  and Pr

k= - -1 1( )q . A failure rate of 

q means that, given the operational profile is the uniform 
distribution, 100 ¼ q percent of all inputs lead to program 
failures. (The reader should notice that other operational 
profiles entail other failure rates. In [24], however, the au-
thors argue that for a comparison between partition testing 
and random testing, it is appropriate to consider the case of 
a uniform profile.) 

2.2 Random Failure Rates 
In Section 2.1, we have adopted a “modern” viewpoint for 
analytical comparisons of subdomain-based testing meth-
ods, considering the test case selected from a subdomain no 

longer as deterministic, but as a random variable. In the 
following, a further generalization step will be suggested: 
Not only the input from Di, but also the failure domain Dfail 
should be considered as a random variable. 

This approach is simply motivated by the fact that we 
never know the failure domain. If the failure domain was 
known, testing would be unnecessary. In practice, we do 
not even know the failure rate for the program under test. 
All that is possibly known are mean values (or other statisti-
cal characteristics) of failure rates for particular classes of 
programs, either won explicitly from empirical investiga-
tions, or implicitly from the tester’s professional experience. 

So, a tester can never say: 

“The program currently to be tested has, with certainty, a 
failure rate of 2 percent,” 

but he can possibly state: 

“The given program is one of a larger class of similar pro-
grams (with respect to size, type, programming language, 
environment etc.), a class for which empirical information 
on failure rates is available, including statistical parameters 
such as mean value and standard deviation.” 

Then, however, the failure rate of the concrete program un-
der test becomes a random variable, the expected value of 
which can be obtained from the statistics. 

We take account of this viewpoint by replacing the de-

terministic variables f and fi (i = 1, ¡, k) by random vari-

ables F and Fi (i = 1, ¡, k), such that also the failure rates 
become random. Consequently, instead of the failure rates q 

and qi, their expected values q  and q i  will be considered as 
given: 

q q=
�
��
�
�� =

�
��
�
�� =E

F
d E

F
d i ki

i

i
, ( , , )1 K .         (3) 

Performing this probabilistic generalization, one obtains 
instead of (1) and (2) the following formulas for the fault 
detection probability of partition testing, respectively, ran-
dom testing: 

P E F dp
i

k

i i= - -
�
��

�
��=

1 1
1

P ( / )                       (4) 

respectively, 
P E F dr

k= - -1 1( / )4 9  ,                    (5) 

where the expectation E is taken with respect to the prob-
ability distributions of the random variables Fi and F. 

Observe that (contrary to Pp and Pr) the numbers Pp  and 

Pr  do not depend on a fixed program and specification, but 
on a class of programs and specifications with an associated 
probability distribution. (This approach is quite similar to 
Gourlay’s analysis of mutation testing in [10].) 

In order to avoid technical complications and to exploit as 
much information on the program under test as possible, we 
adopt a concept chosen by Eckhardt and Lee [6, p. 1,512], 
restricting ourselves to a (hypothetical) reference class of 
programs with the following property: All programs in 
the reference class have the same input domain D as the 
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program to be tested, and refer to the same specification.1 
This implies that the input domain of any program in the 
reference class can be subdivided into disjoint subsets Di 
just in the same way as the chosen subdivision strategy 
prescribes it for the program under test. Especially, the 
numbers di are fixed, deterministic quantities, contrary to the 
failure rates Fi. The following simple example illustrates this 
point of view: 

EXAMPLE 1. Consider the following program, assuming that 
the input domain is D = {1, ¡, 20}: 
var x: integer; 
begin read (x); 
      if (x < = 10) then write (“small”) 
          else write (“large”) 
end; 

The path testing strategy subdivides D into the two 
subdomains D1 = {1, ¡, 10} and D2 = {11, ¡, 20}. In 
the reference class of programs, we stick to this parti-
tion. Suppose that the program under test is correct, 
and the reference class contains a program written to 
the same specification, but with a domain error: 
var x: integer; 
begin read (x); 
      if (x < 10) then write (“small”) 
          else write (“large”) 
end; 

Then, the incorrect processing of input x = 10 
would not be contributed to D2, but still to D1 (yield-

ing a failure rate q1 = 0.1 for this program), although 
in the last program, input 10 is processed by the sec-
ond path. Suppose that the reference class only con-
sists of the two indicated programs. Then the ex-
pected failure rates for the subdomains are q1 0 05= .  
and q2 0= . 

In Duran’s and Ntafos’ paper [5], there is already an 
implicit probabilistic consideration of the failure rates in 
the subdomains, since in their simulation experiments, 
the authors have assigned failure rates to the subdo-
mains according to carefully selected distributions on the 
interval [0, 1]. Nevertheless, their results are more favor-
able for random testing than ours. A possible explanation 
will be discussed after the presentation of our results in 
the next section. 

For an illustration of the fact that deterministic assump-
tions on the failure rates entail essentially different optimal 
decisions than probabilistic assumptions, even if the ex-
pected failure rates are the same, the following example 
might be helpful: 

EXAMPLE 2. Let us consider two extreme situations, one 
with maximum, the other with minimum certainty on 
failure rates: 

Situation 1. A program with a single integer input 
variable between 1 and 20 is presented to a tester, 
and she/he is told that in the subdomain of inputs 

 
1. Note that this reference class of programs can be realized physically by 

n-version-programming ([19], [6]). So, in principle, the distribution of the 
failure rates could be measured empirically to any desired degree of accu-
racy in a quite objective way. 

between one and 10, there are six failure-causing and 
four correctly processed integers, while in the sub-
domain of inputs between 11 and 20, there are five 
failure-causing and five correctly processed integers. 
Hence, the failure rates are 0.6 and 0.5 for the two 
subdomains, and are, in this situation, known with 
certainty. The tester is allowed to test two inputs, ei-
ther both from the same subdomain, or one input 
from each subdomain, and obtains a certain amount 
of money, if she/he finds at least one failure-causing 
input. There are two reasonable options: 

1) Option 1. Test two inputs from subdomain {1, ¡, 10}. 
The probability of success turns out as 1 - (4/10 
¼ (3/9) = 0.866... in this case. 

2) Option 2. Test one input from subdomain {1, ¡, 
10} and one input from subdomain {11, ¡, 20}. 
The probability of success is then 1 - (4/10) ¼ 
(5/10) = 0.8. 

So, option 1 is preferable to option 2. 

Situation 2. In this situation, the tester is told that 
the code for inputs from subdomain {1, ¡, 10} has 
been written by one of 10 persons. She/he knows all 
these 10 programmers and is sure that six of them are 
totally incompetent, such that all inputs processed by 
their program parts will be failure-causing (failure 
rate 1), while the other four programmers are ex-
tremely competent, such that all inputs for their pro-
gram parts will be correctly processed (failure rate 0). 
Moreover, she/he is informed that the code for sub-
domain {11, ¡, 20} has been written by one of ten 
other programmers; five of them are known as totally 
incompetent (failure rate 1), the other five as ex-
tremely competent (failure rate 0). However, the tester 
does not know which person from each team has been 
selected for implementing the corresponding part of 
the program. 

Now, the actual failure rates for the program under 
test are not known, but their expected values are known: 
The expected value of a failure rate is the average of the 
possible actual failure rates, so it turns out to be (6/10) ¼ 
1 + (4/10) ¼ 0 = 0.6 for subdomain {1, ¡, 10} and (5/10) ¼ 
1 + (5/10) ¼ 0 = 0.5 for subdomain {11, ¡ , 20}. These are 
the same values as in situation 1. 

In situation 2, however, the probability of success 
for option 1 (two test inputs from {1, ¡, 10}) is 6/10 
= 0.6, while the probability of success for option 2 
(one test input from each subdomain) is still 1 - (4/10) 
¼ (5/10) = 0.8. 

So, in situation 2, option 1 is preferable to option 2. 
We see that uncertainty on the actual failure rates fa-
vors the diversification strategy of option 2. 

Of course, this is an extreme example, since it 
merges (in situation 2) only failure rates of 0 and 100 
percent. But even if the actually possible failure rates 
are less diverse, their deviation from their mean value 
effects a shift of the optimal selection strategy to-
wards diversification. 
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3 EXPECTED TESTING EFFECTIVENESS UNDER 
UNCERTAINTY 

3.1  Comparison Under the Fault Detection 
Probability Criterion 

In order to investigate the effect of random (i.e., uncertain) 
failure rates on the relative performance of random testing 
vs. partition testing, let us compare the situation where the 
tester knows that all subdomains have the same failure rate, 
with the situation where the tester has no prior information 
on especially error-prone subdomains and therefore esti-
mates the same failure rates for all subdomains. In the first 
case, we have 

q q1 = =K k  .                                      (6) 

Observation 7 in [24] states that (6) entails equality of the 
two fault detection probabilities: Pp = Pr . 

In the second case, the absence of concrete information 
on subdomain failure rates can be expressed by the as-
sumption of equal expected failure rates: 

q q1 = =K k  ,                                     (7) 

where q i  is defined by (3). Contrary to (6), assumption (7) 
does not imply that the failure rates themselves are equal. 

The assumption of equal expected failure rates is, in a 
certain sense, the natural one for all applications of parti-
tion testing where an equal number of test cases is selected 
from each subdomain. If we should expect that a special 
subdomain is more error-prone than another, say, q qi j> , 

then we could use this information by selecting more test 

cases from Di than from Dj. (This intuitive consideration can 
be quantified, cf. [11].) So partition testing with equal num-
bers of test cases from each subdomain seems to be based 
on the implicit assumption that particularly error-prone 
subdomains are not identified in advance. 

In other words, the standard application type of a parti-
tion testing technique treats each subdomain in the same 
way by selecting the same number of test cases, no matter 
which special properties the respective subdomain has. In 
such a situation of equal status for all subdomains, it evi-
dently does not matter which subdomain is denoted by D1, 
which by D2, etc. So we can assume that the labeling of the 
subdomains by the indices 1, ¡, k is performed at random: A 
fixed subdomain has the same probability 1/k of getting the 
index 1, 2, ¡, k, respectively; conversely, a fixed integer i (1 
� i � k) has, for each of the k subdomains, the same 
probability 1/k of being the index of this particular subdo-
main. Then, by symmetry, the expected value of the failure 
rate Fi/di (and even the distribution of Fi/di) must be the 
same for each i. Let us illustrate this consideration again by 
Example 2: If we do not know which of both subdomains 
has been treated by a programmer from the first and which 
by a programmer from the second team, then the expected 
value of the failure rate has to be set to (0.6 + 0.5)/2 = 0.55 
for both subdomains. 

We start our investigation by assuming that the numbers 
Fi of failure-causing inputs in the subdomains (and there-
fore also the failure rates) are independent random variables. 
This is a (first) generalization of the deterministic case: It is 
well-known that deterministic numbers f1, ¡, fk can be 

considered as a special case of independent random vari-
ables, having variances equal to zero. In technical terms, Fi 
is independent of Fj if the (unconditional) distribution of Fi 
is the same as the distribution of Fi conditional on the event 
that Fj has some fixed value fj. So, informally, the independ-
ence assumption means that finding out the failure rate in 
one subdomain does not change our estimates of the failure 
rates in other subdomains. 

The following theorem shows that on the assumptions 
above, Pp  is an upper bound for Pr . (The proofs of the theo-

rems can be found in Appendix A.) 

THEOREM 1. For independent failure rates with equal expected 
value q , partition testing is better or the same as random 
testing: 

P Pr p�  . 

Next, we derive a tight lower bound for Pr : 

THEOREM 2. On the conditions of Theorem 1, the fault detection 
probability Pr  of random testing is bounded below by 

P Pr k p�
- -

q

q1 1( )
 ,                           (8) 

and there are special cases for which Pr  gets arbitrarily 
close to the lower bound on the right-hand side of (8). 

REMARK 1. For (compared to 1/k) small expected failure rate 
q , 

q

q

q
q1 1 1 1

1

- -
 

- -
=

( ) ( )k k k  , 

so the tight lower bound for Pr  is approximately P kp / . In 

other words: If a partition consists of, say, 100 subdomains, 
then the fault detection probability of partition testing can 
be up to about 100 times higher than that of random test-
ing! This result is in a distinct contrast with its deterministic 

counterpart, Weyuker and Jeng’s observation Pr = Pp for 
equal failure rates. 

REMARK 2. The special instance constructed in the second 
part of the proof of Theorem 2 (Appendix A) indicates 
under which circumstances Pr  will approach the 
lower bound. This will be the case whenever 

1) there are many small subdomains and one (or few) 
large subdomains, 

2) the subdomains are (near to) revealing in the sense 
of [25]; a subdomain is called revealing if either all 
inputs contained in it are correctly processed, or 
they are all failure-causing (i.e., the failure rate is 
zero or one). 

The upper bound Pp  for Pr , on the other hand, occurs in 

the “antirevealing” case, where the failure rate in each sub-
domain exactly mimics the overall failure rate. 

There are arguments for the conjecture that, in some 
practical applications, both steps 1 and 2 are at least ap-
proximately satisfied, such that Pr  can be expected to be 
closer to the lower than to the upper bound in these cases. 
Let us present these arguments in the following discussion 
of how the subdivision of the input domain is usually done: 
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Argument 1: Subdomain size. Most structural partition 
testing techniques define subdomains (directly or indi-
rectly) on the base of predicates occurring in the program. 
Essentially, predicates may contain equality or inequality 
conditions, and equality conditions lead to extremely un-
balanced subdomain sizes. Thus it may happen that there is 
a majority of subdomains with negligible size, compared to 
the size of one or a few “giant” subdomain(s), such that 
condition 1 is approximately satisfied. 

EXAMPLE 3. Consider the simple “triangle-classification” 
procedure in Fig. 1, a traditional example in the soft-
ware testing literature ([18]). There are three paths in 
this procedure, generating three subdomains D1 , D2 , 
D3 for the path testing strategy, where Ds contains the 
inputs leading to output s (s = 1, 2, 3). If N is the num-
ber of representable integers, we have 

d N

d N N N

d N N N

1

2
2 2

3
3 2

3 3 3

3 2

=

= - -

= - + ,

 

so both D1 and D2 are of negligible size, compared to 
the D3. (Of course, this effect is still more dramatic, if 
i,j,k are declared as reals instead of integers.) 

The choice of subdomain sizes of nearly the same order 
of magnitude might be the main reason why a clear superi-
ority of partition testing did not show in Duran and Ntafo’s 
simulation experiments [5], although their failure-rate dis-
tributions for the subdomains were chosen in a very realis-
tic way: In [5], operational probabilities pi were selected 
randomly according to a uniform distribution on [0, 1]. In 
terms of the Weyuker-Jeng-model, this would mean that the 
subdomain sizes di are uniformly distributed. Then, how-
ever, most of the subdomains will have sizes of a compara-
ble order of magnitude: If the values di vary, for example, 
between 1 and 108, about 90 percent of all subdomain sizes 
di will be integers with exactly eight decimal digits. Com-
pared to Example 3, this is still a “relatively balanced” 
situation, where a significant dominance of partition testing 
is not yet to be expected. 

Our analytical results are partially supported by the out-
comes of the experimental study by Loo and Tsai [16]. They 
experimented with unbalanced (although not extremely 
unbalanced) subdomain sizes and found out that in this 
situation, random testing reaches the performance of parti-
tion testing only in particular cases where there are high 
failure rates in large subdomains or low failure rates in 
small subdomains. 

ocedure triangle-classification; 
var i, j, k: integer; 
begin read (i, j, k); 
      if (i = j) and (j = k) 
      then write (1) 
      else if (i = j) or (j = k) or (k = i) 
           then write (2) {else} write (3) 
end; 

Fig. 1. Example program for path testing. 

Argument 2: Revealing domains. A partition testing 
method where each subdomain is revealing cannot be 
hoped for. In the case of path testing, for example, already 
single bit differences in inputs processed along the same 
path can lead to radically different behavior in failure. Nev-
ertheless, reasonable subdivision techniques tend to bundle 
up such inputs to subdomains that are processed by the 
program in a similar way. So, if one input in a subdomain 
Di is recognized as failure-causing, this knowledge un-
doubtedly increases at least the probability that also the 
other inputs in Di are failure-causing, and, conversely, if 
one input in Di is recognized as correctly processed, then 
the other inputs in Di have an increased probability of being 
correctly processed as well. As a consequence, in some sub-
domains, the failure rate will be zero or low, in others it will 
possibly be far above the overall failure rate F/d of the pro-
gram (cf. the basic failure rate distribution assumed in 
Duran and Ntafo’s simulations [5]). Therefore, it can be 
hoped that failure rate distributions obtained by the practi-
cal application of “clever” partition testing techniques tend 
to be rather U-shaped (and hence similar to the “revealing” 
case) than centered near q  (i.e., similar to the “antireveal-
ing” case). So, condition 2 above can often be expected to be 
approximately satisfied. 

REMARK 3. Possibly, one might object our treatment of the 
numbers di as fixed, deterministic quantities: For ex-
ample, it may be felt that, if two programs of the ref-
erence class contain corresponding then branches 
with assigned subdomains of different sizes, the re-
spective variable di should be allowed to take differ-
ent values (contrary to our treatment in Example 1). If 
this point of view is taken, each di gets a random vari-
able, since the selection of the program from the refer-
ence class is assumed to be random. It can be shown 
that this extended model does not essentially modify 
our main results: 

THEOREM 3. The assertions of Theorem 1 and Theorem 2 remain 
valid, if the numbers di are considered as random variables. 

Let us study the influence of the distributions of the fail-

ure rates Fi/di on the effectiveness of random testing, com-
pared to partition testing, in more detail by considering the 
special case k = 2 of only two subdomains. In this case 
(which is also the prototype for branch testing and some 
other subdomain-based testing methods that finally gener-
ate overlapping subdomains), the difference Pp  - Pr  can be 

represented explictly. We give a general result for (possibly) 

dependent F1, F2. For the sake of simplicity, the numbers di 
are considered as deterministic again. 

THEOREM 4. For k = 2 subdomains and failure rates with expected 
value equal to q , the difference of the fault detection prob-
abilities for partition testing and random testing is given by 

P P
d

Var F Var F
d d

d d Cov F Fp r- = + -
+�

!
  

"
$
##

1
2 1 2

1
2

2
2

1 2
1 2( ) ( ) ( , ) ,  (9) 

where Var(X) and Cov(X, Y) denote the variance of X and 
the covariance between X and Y, respectively. 
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COROLLARY. For k = 2 subdomains and independent failure rates 
with equal expected value q , 

P P d Var F Var Fp r- = + �( / ) ( ) ( )1 02
1 22 7  .         (10) 

PROOF. Follows immediately from the fact that independent 
random variables F1, F2 are uncorrelated: 

Cov(F1, F2) = 0 .                                      u 

Equation (10) shows very clearly that P Pp r=  is that 

boundary case where both failure rates have variance zero, 
i.e., are deterministically known. As soon as there is any 
uncertainty on the current failure rates, the stricter diversi-
fication strategy, partition testing, begins to dominate. 
Maximal variance is obtained in the case of revealing sub-

domains, where the failure rates Fi/di can only assume the 
extreme values 0 or 1. 

Now let us turn to the situation where the variables Fi 
are dependent. It is clear from (9) that P Pr p�  still holds 

when F1 and F2 are negatively correlated, i.e., Cov(F1, F2) < 0. 
Unfortunately, this is not the relevant case for practice, as 
the following intuitive consideration shows: If, for example, 
our a priori estimate for the expected failure rate has been 
q = 0 1. , and for the subdomain D1 corresponding to a path 1 
of the program, a failure rate of, say, 0.2 is observed during 
the test, then we shall not be inclined to decrease our esti-
mate for the subdomain D2 corresponding to path 2 from 
0.1 to a lower value, but either to increase it (e.g., if path 2 
has been implemented by the same programmer as path 1), 
or to leave it at the value of 0.1 (e.g., if path 2 has been im-
plemented by another programmer.) So, inputs in different 
subdomains of a program may be expected to be positively 
correlated or not correlated at all with respect to their fail-
ure behavior, and an eventual positive correlation can be 
assumed to be much smaller than the positive correlation 
within the subdomains which frequently produces a “near-
to-revealing” behavior. 

The next theorem shows that also for positively corre-
lated failure rates, (9) always leads to P Pr p� , provided that 

not only the expectations, but also the variances of the fail-
ure rates are equal. (Remember that for random labelings of 

the subdomains, all failure rates Fi/di are identically dis-
tributed and have therefore the same variance.) 

THEOREM 5. On the conditions of Theorem 4 and with 
Var(F1/d1) = Var(F2/d2), partition testing is better or the 
same as random testing: 

P Pr p�  . 

It is difficult to find conditions under which a generali-
zation of the last result to the case k > 2 holds. The reason is 
that for k > 2 not only the variance, but also higher mo-
ments enter into the formulas. Also simulation is of little 
help in this context, as long as it is not clear how the com-
mon distribution of the variables should be modeled in the 
general case. We confine ourselves here to the following, 
conceptually simple model assumption for more than two 
positively correlated failure rates: 

Let us assume that the influence of randomness on the 
rate of correctly processed inputs in a subdomain can be 
decomposed into two factors as: 

� factor 1, which influences all subdomains to the same 
extent (say, the professional skill of the programmers 
team or the dependence on the used programming 
language), 

� factor 2, which is specific for the considered subdo-
main. 

Factor 1 results in a positive correlation of the failure rates; 
factor 2 depends only on the particularities of the subdo-
main under consideration, so it can be assumed to be inde-
pendent of factor 1 and of the values of factor 2 for other 
subdomains. 

More formally, we assume that the rate (di - Fi)/di of cor-
rectly processed inputs in subdomain Di can be decom-
posed as follows: 

(di - Fi)/di = H ¼ Hi , 

where the (random) factor H � 1 is the same for all subdo-
mains, while the (random) factor Hi � 1 is specific for Di, 
and H, H1, ¡, Hk are independent. It is easy to check that 
for Var(H) > 0 and E(Hi) > 0 (i = 1, ¡, k), the rates of cor-
rectly processed inputs, and therefore also the failure rates, 
are indeed positively correlated (see Appendix A). Never-
theless, for equal expected failure rates, the dominance of 
partition testing can be verified again: 

THEOREM 6. On the conditions above and with E F di i( / ) = q  for 
all i, partition testing is better or the same as random testing: 

P Pr p�  . 

REMARK 4. Our results should not be interpreted in the way 
that subdividing the input domain anyhow and select-
ing test cases from each subdomain is a cheap method 
to increase the effectiveness of testing. According to 
the bounds in Theorems 1 and 2, the gain of subdivid-
ing can be negligible as well as significant, depending 
on how appropriate the subdivision strategy is. In 
particular, random partitions are (nearly) useless, as 
the following example illustrates: 

EXAMPLE 4. Let the following program with input domain 
D = {1, ¡, 100} be given: 

var x: integer; 
begin read (x); 
      if (x >= 1 and x <= 50) then proc1 (x); 
      if (x >= 51 and x <= 100) then proc2 (x) 
end; 

We make the assumption that procedure proc1 ei-
ther treats all values x correctly or none, and the same 
for proc2. Then both D1 = {1, ¡, 50} and D2 = {51, ¡, 
100} are revealing subdomains. Furthermore, we as-
sume that both proc1 and proc2 are correct with 
probability 1/2 each, independently from each other, 
such that there are four equiprobable situations: 
proc1 and proc2 correct; proc1 correct and proc2 
incorrect; proc1 incorrect and proc2 correct; proc1 
and proc2 incorrect. 
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Let the number of test inputs be k = 2. Since the 
number F of failure-causing inputs is 0, 50, and 100 
with probabilities 0.25, 0.5, and 0.25, respectively, we 
obtain from (5): 

P d E F
d

E Fr = -

= -

=

¼ ¼

2 1

2
100 50

1

100
3750

0 625

2
2

2

( ) ( )

.

 . 

Next, consider any partition of the input domain D into 
two subdomains D1, D2. Let m = |D1 > {1, ¡, 50}| be 
the number of integers smaller or equal 50 in D1. One 
finds 

q1
1

1

1
50

1
4 0 50 50]

0 5

=
�
��

�
��

= + + - +

=

¼ ¼

E
F
d

m m[ ( )

.

 , 

and analogously, q2 0 5= . . So both subdomains have 
the same expected failure rates. From (4), we get 

P E
F
d E

F
d E

F F
d d

m m m m

m m

p =
�
��

�
�� +

�
��

�
�� -

�
��

�
��

= - ¼ ¼ + - + - +�
! 

"
$#

= + ¼ - -

1

1

2

2

1 2

1 2

1
1

502
1
4 0 50 50 502

1 104 2 2 100 2500

( ) ( )

( ).

 

It is easy to see that the last expression takes its mini-
mum for m = 25 and its maximum for m = 0 or m = 50. 
Therefore, e.g., the partition 

D1 = {1, ¡, 25} < {50, ¡, 75},  

   D2 = {26, ¡, 50} < {76, ¡, 100} 

is a worst case with respect to Pp ; we obtain 

P Pp r= =0 625. ,  i.e., the lower bound of Pp  according 

to Theorem 1. On the other hand, the partition 

D1 = {1, ¡, 50},  

   D2 = {51, ¡, 100} 

(or vice versa) is the best case with respect to Pp ; one 

computes Pp = 0 75. , which is equal to the probability 

that the program is incorrect at all, and significantly 
larger than Pr . 

Now let us turn to the interesting question which 
value Pp  will take in the average case, when the subdivi-

sion is performed randomly. Short reflection, using the 
equal status of all integers in D, shows the following: A 
random partition of D into two disjoint subsets D1, D2 

with |D1| = |D2| = 50 (where all such partitions are 

equiprobable) gives rise to two test inputs X1 ³ D1, X2 

³ D2 in such a way that all unordered pairs {X1, X2} 

with X1, X2 ³ D and X1 � X2 have the same probability. 

Therefore, distinguishing the four possible combina-
tions of correct or incorrect behavior of proc1 and 
proc2, we obtain for the random partition: 

Pp = + -
�
��

�
�� +

�
!  

"
$##

=

¼ ¼ ¼1
4 0 2 1

50
100

49
99 1

0 6262. K

 

This value is only slightly larger than that for ran-
dom testing. The (minimal) advantage is here only 
due to the fact that partition testing prevents a double 
test of the same input. 

The observation in Example 4 that random subdividing 
provides no essential advantage, compared to random test-
ing, can be made quite general: Let Pp random( )  denote the av-

erage value of Pp , if the partition of D into k subdomains is 

performed randomly (giving each input the same probabil-

ity of being put into a specific subdomain Di), and let 
Pr without replacement( )  denote the failure detection probability of 

random testing with k test inputs selected randomly from D 
without replacement. (Note that in Section 2, we have defined 
Pr  as the failure detection probability of random testing 
with k test inputs selected randomly with replacement). Then 

P Pp random r without replacement( ) ( )=  , 

since the effect of first distributing the elements of D ran-
domly into k subdomains and then selecting one element 
from each subdomain is just the same as selecting k differ-
ent random elements from D with equal probabilities at 
once. On the other hand, 

P P Pr without replacement r with replacement r( ) ( )� =  , 

as it is evident from the observation that selecting test in-
puts with replacement may produce the same test input 
more than once, which reduces the test input set and hence 
also the failure detection probability. In total, 

P Pp random r( ) �  , 

in accordance with Theorem 1. (For k > 1, even 
P Pp random r( ) �  can be shown.) It should be noticed, however, 

that the difference between Pr without replacement( )  and 

Pr with replacement( )  is small for large input domain size d. There-

fore, Pr  is usually only slightly worse than Pp random( ) , but, as 

Theorem 2 shows, it can be considerably worse than Pp  for 

a suitably chosen partition. 

3.2 Extension to Other Comparison Criteria 
Until now, we have used the fault detection probability as a 
comparison criterion for testing methods. It may be argued 
that this criterion is not the only interesting one: In many 
cases of application, testers will rather consider the number 
of faults found as a measure of effectiveness than the prob-
ability of finding any fault. On the other hand, also the 
number of detected fault may sometimes be misleading: 
Not all faults have the same severity; some of them may be 
that insignificant that it does not even pay to remove them, 
while other faults cause eminent financial loss (or even 
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harm to human life). The most adequate criterion in such 
situations seems to be the weighted number of detected 
faults, where the weights are chosen proportional to the 
failure severities. In total, our results stating superiority of 
partition testing over random testing would surely be ques-
tionable if they should depend exclusively on the special 
criterion of fault detection probabilities. 

However, it turns out that this is not the case: Roughly 
speaking, all the three indicated criteria (fault detection 
probability, expected number of detected faults, expected 
weighted number of detected faults) lead, in our frame-
work, to the same order of testing methods. To verify this 
formally, we need some further notation. 

First, in order to be able to speak of the number of faults, 
one must be in the position to distinguish between different 
faults. Let us assume that this can be done by some mean or 
other, such that there is a list of (possible) faults: fault 1, 
fault 2, etc., and for each input for the given program, one 
may determine by testing which fault(s), if any at all, this 
input exposes. Let dfail

1 , dfail
2 , ¡ be the failure domains cor-

responding to fault 1, fault 2, ¡, respectively. The set Dj
fail  

consists of all inputs that cause fault j to be exposed during 
the execution of the program. Of course, the sets dfail

1 , dfail
2 , 

¡ may be overlapping, and some or all of these sets may be 
empty as well. The failure domain Dfail  considered in Sec-
tion 2 is the union of all sets dj

fail  

Moreover, let Pp
j( )  and Pr

j( )  denote the fault detection 

probabilities of partition testing and random testing, re-
spectively, for a program with failure domain dj

fail  (i.e., a 

program where only fault j occurs, but none of the other 
faults). Pp

j( )  and Pr
j( )  can be interpreted as the probabilities 

of detecting fault j in the given program by partition testing 
and by random testing, respectively. They are computed in 

a formally analogous way as Pp and Pr: 

P F dp
j

i

k

i
j

i
( ) ( )( / )= - -

=
1 1

1
P  

and 
P F dr

j j k( ) ( )( / )= - -1 1  , 

where F D Di
j

i j
fail( ) = <  and F Dj

j
fail( ) = . So we obtain a 

straightforward generalization of the framework in Section 2. 
If all possibly occurring failures are considered as identical, 
then D Dfail fail

1 = , P Pp p
( )1 =  and P Pr r

( )1 = . Otherwise, the 

formalism of Section 2 has to be applied for each fault j 
separately. 

Analogously as in Section 2.2, we introduce the expected 
values of Pp

j( )  and Pr
j( )  in the considered reference class of 

programs, which yields the quantities P E Pp
j

p
j( ) ( )( )=  and 

P E Pr
j

r
j( ) ( )( )= . 

In a consequent continuation of the analogy, the ex-
pected failure rate q i

j( )  in subdomain i with respect to fault j 

is defined as E F di
j

i( / )( ) . Again by the argument that the 

labels of the subdomains Di are arbitrary or random (cf. 

Section 3.1), it is reasonable to assume that the values q i
j( )  

do not depend on the subdomain Di, i.e., that q qi
j j( ) ( )=   for 

all i. So, provided that the other respective conditions are 
also satisfied, we are within the premises of Theorems 1, 5, 
and 6, and may conclude that 

P Pr
j

p
j( ) ( )�  

for each j. 
By I(A), we denote the indicator of the event A, i.e., I(A) 

= 1 if A occurs, and I(A) = 0 otherwise. Using this notation, 
the number of detected faults is given by 

j

I jÊ (fault is detected) ,  

and the weighted number of detected faults is given by 

j
jw I jÊ (fault is detected) ,  

where wj � 0 is the weight (or severity) of fault j. 
Now we can state the announced theorem which makes 

it possible to derive dominance with respect to expected 
(weighted) numbers of found faults from dominance with 
respect to fault detection probabilities: 

THEOREM 7. Whenever P Pr
j

p
j( ) ( )�  for each j, then also the fol-

lowing two assertions hold: 

1) The expected number of detected faults under random 
testing is smaller or equal to that under partition testing. 

2) The expected weighted number of detected faults under 
random testing is smaller or equal to that under parti-
tion testing. 

This result is especially instructive for the case of pro-
grams with a large number of faults. For such programs, Pr  
and Pp  are close to one anyway, so the assertion P Pr p�  is 

here of little practical relevance. The expected (weighted) 
number of faults found by random testing and partition 
testing, however, may nevertheless differ considerably: 
Note that the probabilities Pr

j( )  and Pp
j( )  for special (severe) 

faults j may be essentially smaller than one. For the final 
test of safety-critical applications, e.g., where the occurrence 
of a severe fault has to be considered as a rare event, our 
last derivations may be combined with Theorem 2, yielding 
the assertion that on these premises the expected value of 
the weighted number of found faults can be up to k times 
higher for partition testing than for random testing. 

4 CONCLUDING REMARKS 
We have shown that in a comparison between random test-
ing and partition testing, deterministic assumptions on the 
failure rates systematically favor random testing, and that 
this effect is especially strong, if a partition consists of few 
large and many small subdomains. As a consequence, the 
fault detection ability of partition testing, compared to that 
of random testing, seems to be better than suggested by 
some prior investigations. In particular, it was demon-
strated that, for example, independent failure rates with 
identical expected value in the subdomains guarantee a 
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higher fault detection probability for partition testing, ex-
ceeding that of random testing up to a factor of about k, 
where k is the number of subdomains. 

Some readers might wonder how prior information or 
assumptions on failure rates can influence the fault detec-
tion probabilities of partition testing and random testing: It 
could be argued that, as soon as a concrete program is 
given (together with its specification), there will be certain 
fault detection probabilities for partition testing and ran-
dom testing, which are independent of what we know about 
the program. Let us make this point quite clear. It is true 

that the fault detection probabilities Pr and Pp for the given 
program are independent of our prior information. How-
ever, they are unknown to us, and there is no way to de-
termine them before testing! So our decision cannot be 

based on the values Pr and Pp themselves, but only on our 
expectation of what these values will be, i.e., on Pr  and Pp . 

This expectation may be established by objective informa-
tion on failure rates in a programs similar to the program 
under test. Also concrete information on the program under 
test could be exploited; this would be a Bayesian approach. 
The only condition for our results is that there is any way of 
assigning probability distributions to the failure rates, no 
matter whether an objective (frequentist) or subjective (Baye-
sian) interpretation of “probability” is chosen (cf. [17], [20]). 

As to the interpretation of our results, let us add a warn-
ing remark. Partition testing strategies may be roughly classi-
fied into clear box and black box strategies, according to the 
criterion used for subdividing, which can be structural or 
functional. Our formal results hold for both types of partition 
testing strategies. Nevertheless, some of our informal argu-
ments (especially in Remark 2, Section 3) rather refer to struc-
tural subdivision criteria, so their validity should be carefully 
checked when a special black box strategy is considered. Ex-
ample 4 shows that at least random subdividing, which is a 
black box subdivision strategy, does not produce essentially 
better outcomes than random testing. 

The presented results might lead to the impression that 
random testing is a technique of low value and should not 
be applied. In the author’s opinion, however, more cautious 
conclusions should be drawn. There are some aspects still 
to be considered: 

Aspect 1. First of all, the reader should remember that we 
have investigated a particular type of random testing, using 
a uniform distribution on the input domain. (The same 
holds for the investigations in [24].) Using other distribu-
tions has already been discussed in [5]. Appropriate non-
uniform distributions may lead to significantly higher fault 
detection probabilities. Of course, there is a price to be paid 
for such improvements: the advantage that for test case 
generation, one does not need any information on the pro-
gram except the knowledge of the input domain, gets lost. 

Aspect 2. Secondly, there seems to be a broad consensus 
in the literature that random testing (e.g., with the opera-
tional distribution) can provide quantitative reliability es-
timates, while deterministic testing (e.g., deterministic path 
testing) cannot (see [21], [5], [14], [22], [7], [23]). In particu-
lar, random testing allows a quantitative judgment of the 

achieved reliability in the form of statistical confidence 
bounds (see [14], [22]). 

Aspect 3. Third, random test data generators, where they 
can be applied, are able to produce very large test data sets. 
(Of course, not every application is well suited for the 
automated generation of test inputs.) On the additional 
condition that a test oracle, an automated or at least partially 
automated tool for the evaluation of test results, is available 
(the development of such a test oracle may be a very diffi-
cult task, cf. [4]!), random testing may win against partition 
testing simply by means of an overwhelming number of 
test cases. This effect, which has already been discussed by 
other authors, deserves some closer inspection in future 
research. It would be desirable to have necessary and/or 
sufficient conditions indicating under what circumstances K 
random test cases are better than k partition test cases. To 
give an example for such a condition: It is possible to show, 
using Theorem 2, that for very small independent failure 
rates with equal expectation, K = k2 random test cases have 
always a higher fault detection probability than k partition 
test cases from k subdomains. Conditions of this type could 
be helpful for the comparison of random and partition test-
ing on the base of cost-effectiveness. (Incidentally, let us 
mention that random test data generation is not the only 
way to produce large test data sets. In [13], e.g., a method 
for improving the fault detection probability of random 
testing for a class of numerical programs, using an appro-
priate “derandomization” of the generation process, was 
outlined.) 

Let us discuss a few special questions left open by our 
results. Some of them may possibly be attacked by analyti-
cal methods, others are obvious candidates for simulation 
experiments and/or empirical studies. 

Question left open 1. We have assumed that in partition 
testing, only one test case is selected from each subdomain. 
A more general assumption would be the following: From 

each subdomain Di , exactly m � 1 test cases have to be se-
lected. It is not clear whether in such a situation our result 
P Pr p�  for independent failure rates with identical expecta-

tion remains valid, and how multiple selection of test in-
puts from subdomains influences the lower bound on Pr . 
An analytical treatment of this question is difficult, so simu-
lation results would be of great value. Of course, also vary-

ing numbers mi of test cases selected from the subdomains 

Di may be investigated, as they have already been consid-

ered in [5], [24]. Chen and Yu ([2], [3]) have shown that if mi 

is chosen proportional to di (“proportional sampling”), then 
partition testing is always better than random testing. The 

difficulty lies in achieving an exact proportion between mi 

and di. Our approach might possibly be applied for judging 
approximations to proportional sampling. 

Question left open 2. Our results were based on the as-
sumption of equal expected failure rates in the subdomains 
defined by the partition. As it was stated in Section 3, this 
assumption is almost inevitable for the standard applica-
tion type of a partition testing technique, where subdo-
mains are not distinguished according to prior information 
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on their error-proneness or other criteria. Of course, also the 
opposite case may be studied, where such information is 
taken into account. In this case, it is obviously more effi-
cient to select varying numbers mi of test cases from the 
subdomains Di. To have a fair comparison, also the distri-
bution of the test cases selected by random testing should 
then be changed from a uniform distribution on D to a 
nonuniform distribution giving more weight to the (pre-
sumably) more error-prone subdomains. This is again a 
possible topic for simulation experiments. 

Question left open 3. By restricting ourselves to partition 
testing instead of the more general case of subdomain-
based testing methods, we have assumed that all subdo-
mains are nonoverlapping. For practical applications, it 
would be very interesting to have results concerning the 
“overlapping” case (cf. the discussions in [14], [24]), since 
many well-established subdomain-based testing techniques 
(like, e.g., branch testing) define subdomains that are not 
pairwise disjoint. Intuitively, one can expect that the trends 
outlined in this paper are still valid for overlapping sub-
domains, but weaker: The extreme case for overlapping 
subdomains is D1 = ¡ = Dk = D, and in this case, partition 
testing coincides with random testing. So one may conjec-
ture that the behavior of the techniques that do not define 
proper partitions lies somewhere between partition testing 
and random testing. Mathematical results making this con-
sideration precise and/or simulation results would be 
worthwhile. 

Question left open 4. The aspect of varying failure costs 
should be investigated in more detail than in Section 3.2. In 
the discussion on the relative performance of partition and 
random testing, this aspect was studied by Tsoukalas, 
Duran and Ntafos [22]. As one of their results, they stated 
that in an extended model where varying degrees of failure 
severity are distinguished, the superiority of partition test-
ing over random testing is more pronounced than in the 
model investigated in [5]. Although the criterion of com-
parison in [22] is not the fault detection probability or the 
expected weighted number of detected faults, but the ob-
tained confidence bound on reliability estimates, it can be 
conjectured that for varying failure costs, an investigation 
along the lines of our derivations in Section 3.1 would un-
veil an even stronger advantage for partition testing. This 
conjecture could possibly be accessible to an analytical 
treatment. 

Finally, let us briefly summarize consequences of our re-
sults for the work of a practicing test engineer: 

� In spite of (erroneous) conclusions that might possi-
bly be drawn from previous investigations, partition–
based testing techniques are well-founded. Even if no 
especially error-prone subdomains of the input do-
main can be identified in advance, partition testing 
can provide substantially better results than random 
testing. 

� Because of the close relations between partition testing 
and other subdomain-based testing methods (branch 
testing, all-uses, mutation testing etc.), also the superior-
ity of the last-mentioned methods over random testing 
can be justified. The wide-spread practice of spending 
effort for satisfying diverse coverage criteria instead of 

simply choosing random test cases is not a superstitious 
custom; it is a procedure the merits of which can be un-
derstood by sufficiently subtle, but formally precise 
models. 

� The effort for satisfying partition-based coverage cri-
teria is particularly well spent, whenever the partition 
leads to subdomains of largely varying sizes, each of 
which is processed by the program or system in a 
rather homogeneous way (i.e., the processing steps 
are similar for all inputs of a given subdomain). Con-
trary, the advantages of partition testing are only 
marginal in the case of subdomains of comparable 
sizes and heterogeneous treatment by the program. In 
any case, the partition should not be arbitrarily cho-
sen, but carefully derived from the structure or func-
tion of the program. 

We admit that the main intention of this article was to 
get more clarity in regard to the question whether partition-
testing techniques should be applied or not and not how 
they can be applied in a more effective way. Since partition 
testing techniques are expensive, such that doubts whether 
they are really superior to arbitrary (“random”) choice of 
test cases would drastically discourage their application, 
we think that our results are also of considerable practical 
interest. Nevertheless, some readers might desire more con-
crete hints on how their partition testing strategies could be 
improved. This question exceeds the scope of this article, 
but we are optimistic that further investigations along the 
lines of the presented approach will also produce results of 
this type. 

APPENDIX A 

PROOF OF THEOREM 1. Induction with respect to  k. For k = 1, 
we obtain P Pr p= = q . Let k > 1. By (5), 

P E F dr
k= - -1 1( / )4 9  . 

We use the stochastic inequality 

E Y E Y E Y a b Ya b a b( ) ( ) ( ) ( , ; )+ � � �0 0      (11) 

which follows from Lyapunov’s inequation 

              E U E U U( ) ( ) ( ; )
/ /a a b b

a b
1 1

0 0� < � �  . 

Setting Y := 1 - F/d, a := k - 1 and b := 1 in (11), we 
obtain 

P E F d E F d

E F d

r
k

k

� - - ¼ -

= - - ¼ -

-

-

1 1 1

1 1 1

1

1

( / ) ( / )

( / ) ( ) .

4 9
4 9 q

 

(Observe that E F d d E d F d( / ) ( / ) ( /= +1 1 1 1 K  + d Fk k  
/ ) . )dk = q  

On the other hand, by (4) we find 

P E F dp
i

k

i i
k= - - = - -

=
1 1 1 1

1
P ( / ) ( )q  ,     (12) 

using the independence of the failure rates Fi/di. So it 
remains to show that 

E F d k k( / ) ( ) .1 11 1- � -- -1 6 q                 (13) 
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For that purpose, define a partition of D by joining 
subdomains Dk-1 and Dk in the given partition:  

                 
~

: ( , , ),
~

:D D i k D D Di i k k k= = - =- -1 2 1 1K <  . 

The corresponding numbers of failure-causing inputs 
are then 

                  
~

( , , ),
~

F F i k F F Fi i k k k= = - = +- -1 2 1 1K  , 

and analogous equations hold for the subdomain 
sizes 

~
di . 

~
, ,

~
F Fk1 1K -  are independent random vari-

ables, and it is easy to verify that all expected failure 
rates E F di i(

~
/

~
) are again equal to q . By induction as-

sumption and with the use of (12), we obtain 

                     1 1 1 11 1

1 1

1

1- -
+ +

+ +

�
��

�
��

�

�
��

�

�
�� � - --

-

-
-E

F F

d d
k

k

k

k
~ ~

~ ~ ( )
K

K
q  . 

Hence 

E F d E
F F

d d
k k

k

k

k

( / )
~ ~

~ ~

( ) ,

1 1

1 1

1 1 1

1 1

1

1

- = -
+ +

+ +

�
��

�
��

�

�
��

�

�
��

� - -

- -

-

-

-

1 6 K

K

q

, 

which yields (13). o 

PROOF OF THEOREM 2. 
Case 1. We show the inequation. Since 0 � 1 - F/d � 

1, one has (1 - F/d)k � 1 - F/d, and therefore 

1 1 1- = - � - =P E F d E F dr
k( / ) ( / )1 6 q  .       (14) 

Thus, Pr � q .  Because of (12), this implies 

P

P
r

p
k�

- -

q

q1 1( )
 . 

Case 2. We show that the lower bound is tight in 
the sense indicated in the theorem, i.e., that the bound 
cannot be improved. Consider the following case:  

                             d1 = d - k,     di = 1      (i = 2, ¡, k) , 

and 

                            F
di

i
= -%&'

0 1with probability ,
with probability ,

q
q

 

for i = 1, ¡, k, where F1, ¡, Fk are independent. It is 

immediate that E F di i( / ) = q  (i = 1, ¡, k). Since F1 = 0 

with probability 1 - q , it follows that F = F1 + ¡ + Fk � 

k - 1 with probability � -1 q , i.e., (1 - F/d)k � (1 - (k 

- 1)/d)k with probability� -1 q . Therefore, 

P E F d k dr
k k= - - � - - - -1 1 1 1 1 1( / ) ( )( ( )/ )4 9 q  .  15) 

For fixed k and d � �, one has (1 - (k - 1)/d)k � 1, so 
the expression on the right-hand side of (15) tends to 
q  for growing d. Together with the inequation Pr � q  
derived above, we obtain the result that for appropri-
ate special cases, {P}r gets arbitrarily close to q , which 
proves the assertion, again because of (12). o 

PROOF OF THEOREM 3. Let d = ( , , )d dk1 K  be the vector of 

random variables di. Now consider any fixed vector 

d( ) ( ) ( )( , , )0
1
0 0= d dkK  of values di

( )0  of the random vari-

ables di. Let 

P E
F

dp
i

k
i

i

( )( )
( )d 0

1
01 1= - -

�
��

�
��

�
��

�
��=

P  

(cf. (4)). By E(d), we denote the expectation with respect 
to the distribution of d = ( , , )d dk1 K , such that now 

P E Pp
d

p= ( ) ( )d4 9  . 

Pr  is still given by (5). Theorem 1 yields P Pr p� ( )( )d 0  

for each d( )0 . Because of the monotonicity of the ex-

pectation operator E(d), this implies P Pr p� , thus the 

generalization of Theorem 1 to random subdomain 

sizes di is proved. The generalization of the inequation 
in Theorem 2 is demonstrated in a quite analogous 
way. The tightness of the lower bound in the generali-
zation of Theorem 2 follows immediately, since for 
showing it, it is sufficient to indicate special cases, and 
these are provided by the deterministic construction 
in the proof of Theorem 2, case 2. o 

PROOF OF THEOREM 4. By (4), 

                      

P E F d F d

E F d E F d E F F d d

E F F d d

p = - - -

= + -

= -

1 1 1

2

1 1 2 2

1 1 2 2 1 2 1 2

1 2 1 2

( / )( / )

( / ) ( / ) ( ) / ( )

( ) / ( ) .

2 7
2 7

q

 

By (5), 

                               

P E F d

E F d E F d

E F d

r = - -

= - - +

= -

1 1

1 1 2

2

2

2 2

2 2

( / )
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( ) / ,

4 9
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hence 

P P E F d E F F d d

d
E F E F E F F d d E F F

d
E F E F

d
d d E F F

p r- = -

= + + -

= + + -
�
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�
��

�
!
  

"
$
##

( ) / ( ) / ( )
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2 2
1 2 1 2

2 1
2

2
2

1 2
1 2

1 2

2 1
2

2
2

2

1 2
1 2

1
2

1

1
2

4 9   (16) 

Using 

E F Var F E F

Var F d i

i i i

i i

( ) ( ) ( )

( ) ( , )

2 2

2 2 1 2

= +

= + =

2 7
q

 

and 
E F F Cov F F E F E F

Cov F F d d

( ) ( , ) ( ) ( )

( , ) ,
1 2 1 2 1 2

1 2 1 2
2

= +

= + q
  

we finally obtain (9) by insertion into (16). o 
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PROOF OF THEOREM 5. Let Var F di i( / ) = s 2 . We obtain 

Var F d ii i( ) ( , )= =2 2 1 2s  , 

and 

Cov F F Var F Var F d d( , ) [ ( )] [ ( )]/ /
1 2 1

1 2
2

1 2
1 2

2� = s  . 

This yields 

d P P d d d dp r
2

1
2 2

2
2 2

1
2

2
2 2 0( ) ( )- � + - + =s s s  . o 

PROOF OF THE ASSERTION BEFORE THEOREM 6. We have to 
show that for i � j, the random variables (di - Fi)/di 
and (dj - Fj)/dj are positively correlated, provided that 
Var(H) > 0, E(Hi) > 0 (i = 1, ¡, k), and H, H1, ¡, Hk 
are independent. For that purpose, we show that the 
covariance of the two random variables is strictly 
positive: 

Cov
d F

d
d F

d Cov HH HH
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PROOF OF THEOREM 6. One finds 
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Set Gi = di(1 - Hi) (i = 1, ¡, k). Then G1, ¡, Gk are in-
dependent random variables, and the “rates” Gi/di 
have equal expectation: 

E G d E H

E H
i i i( / ) (

( ) / ( ) .

= -

= - -

1

1 1 q
 

(The last equation follows from E H E H E HHi i( ) ( ) ( )=  

= -1 q ) Using the variables Gi, the right-hand side of 
(17) can be represented (after a short calculation) as 
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It is not difficult to see that the assertion 
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of Theorem 1 can be generalized from integer vari-
ables Fi to real-valued variables Gi. As a consequence, 
the expression (18) and hence also the expressions in 
(17) are nonnegative. This yields the theorem because 
of E H k( ) > 0 . o 

PROOF OF THEOREM 7. It is sufficient to prove assertion 2, since 
assertion 1 is only the special case of identical weights 
w1 = w2 = ¡ = 1. Let, for a fixed given program with 
known failure rates, Ep and Er denote the expectation of 
a quantity in the case when partition testing and ran-
dom testing is applied, respectively. We obtain 

E w I j
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In the second step, we take the expected value E in the 
considered reference class of programs. This yields 
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as the expected weighted number of detected faults 
for partition testing, and 
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as the expected weighted number of detected faults 
for random testing. The assertion follows now from 

P Pr
j

p
j( ) ( )�  and wj � 0. o 
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