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Abstract. Most instruments - formalisms, concepts, and metrics -
for social networks analysis fail to capture their dynamics. Typi-
cal systems exhibit different scales of dynamics, ranging from the
fine-grain dynamics of interactions (which recently led researchers
to consider temporal versions of distance, connectivity, and related
indicators), to the evolution of network properties over longer periods
of time. This paper proposes a general formal approach to study net-
works’ structural evolution for both atemporal and temporal indica-
tors, based respectively on sequences of static graphs and sequences
of time-varying graphs that cover successive time-windows. All the
concepts and indicators, some of which are new, are expressed using
a time-varying graph formalism recently proposed in [10]. Experi-
mental results of the application of atemporal metrics applied to a
portion of the scientific community of arXiv are provided.

1 Introduction

Social networks have drawn a lot of attention in the past few years,
and the analysis of their dynamics represents a pressing scientific
challenge. The research efforts in this area strive to understand the
driving forces behind the evolution of social networks and their
articulations within social dynamics, e.g., opinion dynamics, the
epidemic or innovation diffusion, the teams formation and so on
([7, 11, 14, 18, 27, 29, 33, 34, 35, 37, 38]). In other words, it is
known that individuals are influenced (e.g. concerning their opinion)
through their social network, it is also known that individuals take
into account others’ attributes when deciding to evolve their social
network, but yet qualitatively not much is known concerning the dy-
namical patterns that are produced by such an interplay.

Curiously enough, everybody agrees on the stance that social net-
works are dynamic, e.g. individuals join, participate, attract, com-
pete, cooperate, disappear, and affect the shape and strength of the
network and its relationships. Yet, the current instruments (defini-
tions, models, metrics) are mainly drawn for static networks and gen-
erally fail to capture the evolution of phenomena and their dynamical
properties – temporal dimension – focusing instead on structural [23]
or statistical aspects [39] of the systems. As stated in [28], the central
problem in this area is the definition of mathematical models able to
capture and to reproduce properties observed on the real networks.

The increasing availability of real datasets (e.g. e-mails logs, on-
line forums, or meta-data on scientific publishing), as well as devel-
opment of smartphones, vehicular networks, and satellite networks
have recently fostered research on dynamic networks and caused
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the appearance of new dedicated concepts. In particular, early works
around transportation and delay-tolerant networks (those networks
characterized by an absence of instant end-to-end connectivity) have
led to the concept of journey [6] - also called schedule-conforming
path [2], time-respecting path [20, 24], or temporal path [12, 42, 43].
Journeys can be seen as a particular kind of path whose edges do not
necessarily follow one another instantly, but instead induces waiting
times at intermediate nodes.

A direct consequence of considering journeys instead of paths is
that all the concepts usually built on top of paths can in turn take a
temporal meaning. This includes the concept of temporal distance [6]
- also called reachability time [20], information latency [25], or tem-
poral proximity [26] -, which accounts for the minimal speed of in-
formation propagation between two nodes, and the concept of tem-
poral connectivity [3] based on the existence of journeys. On the so-
cial network side, recent studies focused on measuring the temporal
distance between individuals based on e-mail datasets [25, 26] or
inter-meeting times [43]. Very recently, temporal betweenness and
temporal closeness were also considered in a social network context
in [32, 41]. All these temporal indicators complete the set of atempo-
ral indicators usually considered in social network analysis, such as
(the usual versions of) distance and diameter, density, clustering co-
efficient, or modularity, to name a few. It is important to keep in mind
that these indicators, whether temporal or atemporal, essentially ac-
counts for network properties at a reasonably short time-scale (fine-
grain dynamics). They do not reflect how these properties evolve
over longer periods of time (coarse-grain dynamics).

In this paper, we propose a general approach to look at the evolu-
tion of both atemporal and temporal indicators. Looking at the evo-
lution of atemporal indicators can be done by representing the evolu-
tion of the network as a sequence of static graphs, each of which rep-
resents the aggregated interactions over a given time-window. Atem-
poral indicators can then be normally measured on these graphs and
their evolution studied over time. The case of temporal indicators is
more complex because the corresponding evaluation cannot be done
on static graphs. The proposed solution is therefore to look at the
evolution of temporal indicators through a sequence of shorter time-
varying graphs, which are temporal subgraphs of the original time-
varying graph, covering successive time-windows. We discuss sev-
eral examples of indicators, both temporal and atemporal, some of
which are new. The evolution of some atemporal indicators is ac-
companied with recent experimental results from [36], based on on-
line data on scientific networking consisting of dated co-authoring
and citation records. We first present the time-varying graph (TVG)
formalism from [10], which we use to express all temporal concepts
and evolution properties in a concise and elegant way. We then dis-
cuss the two suggested approaches to study the evolution of atempo-



ral and temporal indicators, respectively.

2 Dynamic Networks as Time-Varying Graphs
This section presents the time-varying graph formalism (TVG) re-
cently introduced in [10]. This formalism is semantically equivalent
to other graph formalisms, like that of evolving graphs [16], but sug-
gests in comparison an interaction-centric point of view. This point
of view was also present in the time-labelling function of [24], but
only for punctual contacts and latencies. The TVG formalism allows
us a concise and elegant formulation of temporal concepts and prop-
erties.

2.1 The TVG Formalism
Consider a set of entities V (or nodes), a set of relations E between
these entities (edges), and an alphabet L accounting for any prop-
erty such a relation could have (labels); that is, E ⊆ V × V × L.
The definition of L is domain-specific, and therefore left open –a
label could represent for instance a particular type of relation in a
social network, a type of carrier in a transportation networks, or a
communication medium in communication networks. For general-
ity, L is assumed to possibly contain multi-valued elements (e.g.
<satellite link; bandwidth of 4 MHz; encryption available;...> ). The
set E enables multiple relations between a given pair of entities,
as long as these relations have different properties, that is, for any
e1 = (x1, y1, λ1) ∈ E, e2 = (x2, y2, λ2) ∈ E, (x1 = x2 ∧ y1 =
y2 ∧ λ1 = λ2) =⇒ e1 = e2.

The relations between entities are assumed to take place over a
time span T ⊆ T called the lifetime of the system. The temporal
domain T is generally assumed to be N for discrete-time systems or
R for continuous-time systems. We denote by time-varying graph the
structure G = (V,E, T , ρ, ζ), where ρ : E × T → {0, 1}, called
presence function, indicates whether a given edge is present at a given
time, and ζ : E×T → T, called latency function, indicates the time
it takes to cross a given edge if starting at a given date.

Such a formalism can arguably describe a multitude of different
scenarios, including:

• Transportation networks - e.g. aviation, where nodes are the cities,
directed edges are regular flights, whose departure dates are given
by punctual presences, and flight duration by non-nil latencies.

• Communication networks - e.g. wireless mobile networks, where
an edge is present whenever its two endpoints are within range, the
latency corresponding here to the time to propagate a message.

• Complex systems, among which social networks - e.g. scientific
networks, where the nodes are scientists, and the edges (possibly
both directed and undirected) account for example for citations or
collaborations.

These examples illustrate the spectrum of models over which the
TVG formalism can stretch. As observed, some contexts are intrisi-
cally simpler than others and call for restrictions (e.g. directed vs.
undirected edges, single vs. multiple edges, punctual vs. lasting rela-
tions). Further restrictions may apply. For example the latency func-
tion could be decided constant over time, over the edges, over both,
or simply ignored. In fact, a vast majority of work in social networks
does not require such information (e.g., the propagation time of an
email is of little interest to the understanding of a community behav-
ior). Since the scope of this paper is social network analysis, we will
deliberately omit the latency function and consider TVGs described
as G = (V,E, T , ρ).

2.2 Journeys and related Temporal Concepts
A crucial concept in time-varying graphs is that of journey which
is the temporal extension of the notion of path, and forms the basis
of most recently introduced temporal concepts. A sequence of cou-
ples J = {(e1, t1), (e2, t2) . . . , (ek, tk)}, such that {e1, e2, ..., ek}
is a walk in G, is a journey in G if and only if ∀i, 1 ≤ i < k,
ρ(ei, ti) = 1 and ti+1 ≥ ti. We denote by departure(J ), and
arrival(J ), the starting date t1 and the last date tk of a journey J ,
respectively. Journeys can be thought of as paths over time from a
source to a destination and therefore have both a topological and a
temporal length. The topological length of J is the number |J | = k
of couples in J (i.e., the number of hops); its temporal length is its
end-to-end duration: ||J || = arrival(J )− departure(J ).

Let us denote by J ∗ the set of all possible journeys in a time-
varying graph G, and by J ∗(u, v) ⊆ J ∗ those journeys starting at
node u and ending at node v. In a time-varying graph, there are three
natural distinct measures of distance, and thus three different types
of “minimal” journeys.

• The shortest distance from a node u to a node v at time t is simply
dt(u, v) = Min{|J | : J ∈ J ∗(u, v) ∧ departure(J ) ≥ t}.

• The foremost distance from u to v at time t is δt(u, v) =
Min{arrival(J )− t : J ∈ J ∗(u, v) ∧ departure(J ) ≥ t}.

• The fastest distance from u to v at time t is defined as δ̂t(u, v) =
Min{||J || : J ∈ J ∗(u, v) ∧ departure(J ) ≥ t}.

A journey J ∈ J ∗(u, v) with departure(J ) ≥ t is said
to be shortest at time t if |J | = δt(u, v); foremost at time t if
arrival(J )− t = δt(u, v); and fastest at time t if ||J || = δ̂t(u, v).

Whether in the contexts of social networks or communication net-
works, a number of higher concepts have been recently defined on
top of these. They include new meanings of connectivity and con-
nected components [3], temporal eccentricity and temporal diame-
ter [6], or temporal betweenness and temporal closeness [41], among
others. As discussed in the introduction, these concepts allow for
novel insights on the way nodes interact at a small time-scale (fine-
grained dynamics), but do not reflect the way the network evolves at
over longer periods of time (coarse-grain dynamics).

3 Capturing the Evolution
In this section we introduce a framework to study the behavior of net-
work parameters (or indicators) during the lifetime of a time-varying
graph. Two types of indicators are described: atemporal and tempo-
ral ones. Atemporal parameters are defined on static networks and
their evolution over time can be observed by measuring them over
sequences of static graphs, where each graph of the sequence cor-
responds to the aggregation of interactions that occur in a given in-
terval of time (we call them footprints of a TVG). Temporal indi-
cators, on the other hand, are only defined on time-varying graphs,
taking into account their temporal nature. The evolution of such in-
dicators requires to consider a sequence of (non-aggregated) time-
varying graphs, each of which corresponds to a temporal subgraph
of the original one for the considered interval.

3.1 Evolution of Atemporal Indicators
3.1.1 Methodological approach

TVGs as a sequence of footprints. Given a TVG G =
(V,E, T , ρ), one can define the footprint of this graph from t1 to



t2 as the static graph G[t1,t2) = (V,E[t1,t2)) such that ∀e ∈ E, e ∈
E[t1,t2) ⇐⇒ ∃t ∈ [t1, t2), ρ(e, t) = 1. In other words, the foot-
print aggregates interactions over a given time window into static
graphs. Let the lifetime T of the time-varying graph be partitioned
in consecutive sub-intervals τ = [t0, t1), [t1, t2) . . . [ti, ti+1), . . .;
where each [tk, tk+1) can be noted τk. We call sequence of foot-
prints of G according to τ the sequence SF(τ) = Gτ0 , Gτ1 , . . ..
Considering this sequence with a sufficient size of the intervals al-
lows to overcome the strong fluctuations of fine-grain interactions,
and focus instead on more general trends of evolution. Note that the
same approach could be considered with a sequence of intervals that
are overlapping (i.e., a sliding time-window) instead of disjoint ones.
Another axis of variation can be considered whether or not the set of
nodes in each Gτi is also varying, e.g. being restricted to nodes that
have at least one adjacent edge in Eτi (which is the case in the ex-
perimental results shown below).

Looking at atemporal parameters. Since every graph in SF is
static, any classical network parameter (degree, neighborhood, den-
sity, diameter, modularity, etc.) can be directly measured on it. When
observing the evolution of a parameter over SF, one can achieve dif-
ferent levels of granularity by varying the size of the footprint in-
tervals. Depending on the parameter and on the application, differ-
ent choices of granularity are more appropriate to capture a mean-
ingful behavior. At one extreme, each interval could correspond to
the smallest time unit (in discrete-time systems), or to the time be-
tween any two consecutive modification of the graph. In these cases
every footprint corresponds to an instant snapshot of the network,
and the whole sequence becomes equivalent to the evolving graph
model [16]. At the other side of the spectrum, i.e. taking τ = T , the
sequence would consist of a single footprint aggregating all interac-
tions over the network lifetime.

3.1.2 Indicators and Discussions

We now discuss the definitions and peculiarities of a set of atemporal
parameters, some of which are illustrated upon recent experimenta-
tions results (from [36]) on the hep-th (High Energy Physics Theory)
portion of the arXiv website. The dataset consists of a collection of
papers and their related citations over the period from January 1992
to May 2003. For each paper the set of authors, the dates of on-line
deposit, and the references to other papers are provided. There are
352 807 citations within the total amount of 29 555 papers written
by 59 439 authors. From the dataset we extract the network of the
most proficient authors - i.e., the authors of papers which received
more than 150 citations. In all the example charts, a one-year time
window is used.

Evolution of the Density. One important and widely used indica-
tor aimed at measuring the network structure is the density, which
measures how close it is to a complete graph. The density of a graph
G = (V,E) is defined as:

D =
|E|

|V | ∗ (|V | − 1)

The evolution of the density could be observed by looking at its
trend over the sequence of footprints SF = Gτ1 , Gτ2 , . . . , Gτi . The
trend of this value reflects the network’s topology formation during
time from a global perspective. It could be useful in many cases, such
as in the study of transportation networks, e.g. to see how the equip-
ment (number of roads, railways, flights connections...) increases

over time. Figure 1 provides another example showing a trend of un-
densification observed in the above-mentioned scientific publishing
network.

Figure 1. Evolution of the density.

This counter-intuitive trend can be explained by an increasing
number of authors. (Recall that these experimentations considered
that the set of nodes in the footprint sequence was varying among
the Gτis, based on the existence of adjacent edges in the considered
footprints.)

Evolution of the Clustering Coefficient. The clustering coeffi-
cient is used in social network analysis to characterize architectural
aspects. Several studies (e.g., [19, 44]) suggest that in general nodes
tend to create tightly compact groups characterized by a relatively
high density of ties. Roughly speaking, the clustering coefficient of
a node indicates how close to a clique its neighborhood is. It is for-
mally defined in [44] as

C(x) =
|{(u, v) : u, v ∈ N(x)}|
deg(x)(deg(x)− 1)

The average clustering coefficient of a graph can then be defined
as the average over all nodes:

AC =
1

|V |
∑
x∈V

C(x)

As for the density, the evolution of these properties could be ob-
served through measuring it on the footprints of SF. An increasing
or decreasing trend of clustering coefficient would typically capture
the formation or dismemberment of social communities at a global
scale. An example is provided on Figure 2, still with the same dataset,
which shows that the connectivity first tends to be sparse, then after
a phase transition around 1999, the nodes start to cluster into denser
sub-communities.

Evolution of the Modularity. Modularity measures how the struc-
ture of a given network is modular, i.e., how it can be decomposed
into subparts. It also quantifies the quality of a given network di-
vision into modules or communities. Networks with high values of
modularity are characterized by dense intra-module connections and
sparse inter-module connections.

The modularity of a pair of nodes u and v is defined as

M(u, v) =
deg(u) ∗ deg(v)

2|E|



Figure 2. Average Clustering Coefficient Evolution

The most common use of modularity is the detection of commu-
nity structures (e.g. [4]). Such an indicator, if observed over time,
can provide very interesting hints for the analysis of complex dy-
namic networks, in particular for the evolution of their structures and
groups formation. It could also enable to see whether communities
tend to specialize and/or homogenize. Figure 3 shows the evolution
of the average modularity over the sequence of footprints of our sci-
entific networking example.

Figure 3. Evolution of the Modularity

In a similar way as for the clustering coefficient, the evolution of
modularity exhibits a phase transition around 1999 that separates a
monotone trend from a decreasing one. This means that nodes first
tends to form separate groups, which at some point start to inter-
connect with each other into a smaller number of larger groups (for-
mation of communities). Modularity and clustering coefficient are
clearly related. It was shown for example in [1] that networks with
the largest possible average clustering coefficient are found to have a
modular structure, and at the same time, to have the smallest possible
average distance between nodes.

Evolution of the Degree Power Law. Real world networks are
“scale-free”, in the sense that their node degree distributions follow
a power-law that is not affected by the size of the network. Such a
power law indicates that the fraction F of nodes that have degree k
decreases as F (k) ∼ k−γ , where γ ∈ R is a parameter that varies
among different types of networks; its value is generally in the inter-
val [2, 3].

The evolution of the power law over time could reflect for exam-
ple the arrival or departure of hubs - nodes that interconnect several
groups. Figure 4 shows the evolution of the power law exponent over
the sequence of footprints of our dataset. As our example deals with

the network of most proficient authors, i.e. a subset of the dataset,
the values in Fig 4 are slightly different from the traditional refer-
ence values. In particular, the graphic shows how closely the degree
distribution of a graph follows a power-law scale at each time inter-
val. The higher the values, the more unequal is the distribution of
connections within the nodes of the network.

Figure 4. Evolution of the degree power law

Notice that the curve in Figure 4 provides additional details about
the interaction pattern evolution of the network. As the evolution of
the clustering coefficient shows an increase of the clustered structure
of the network, and the modularity indicates that such an increase
is characterized by the connection among separated groups, the de-
crease of the degree power law shows that the interconnection pro-
cess is driven by nodes with low degree acting as hubs within groups.

Evolution of the Conductance. Social networks are intensively
studied not only with respect to their structure, but also regarding the
interactions occurring on top of them. For instance, several studies
focused on information diffusion within groups based on a process
of social influence (influential networks [21]). Such a process was
intensively studied under the name of viral marketing (see for in-
stance [15]) to predict the propagation time of a message over a net-
work. It was recently shown in [13] that the conductance - a measure
that characterizes the time of convergence of a random walk toward
its uniform distribution - plays an important role in “push-pull” based
dissemination strategies. The conductance of a graph is defined as the
minimum conductance over all the possible cuts (S, S̄) in this graph
(a cut is a partition of the nodes into two disjoint subsets). The con-
ductance of a cut (S, S̄) is defined as

ϕ(S) =
|(x∈S , y∈S̄) ∈ E|

min(|(x∈S , y∈V ) ∈ E|, |(x∈S̄ , y∈V ) ∈ E|)

The evolution of conductance might reveal how the links of a net-
work are organizing according to the distance between nodes, and
indirectly reflect a process of self-optimization (or deterioration) of
the network efficiency.

3.2 Evolution of Temporal Indicators
3.2.1 Methodological approach

Most temporal concepts – including all those mentioned at the end
of Section 2.2 – are based on replacing the notion of path by that
of journey. As a result, they can be declined into three versions de-
pending on the type of distance considered (i.e., shortest, foremost,



fastest). Since journeys are paths over time, the evolution of param-
eters based on journeys cannot be studied using a sequence of ag-
gregated static graphs. For example, there might be a path between
x and y in all footprints, and yet possibly no journey between them
depending on the precise chronology of interaction. To analyze the
evolution of such parameters, we need to use a more powerful tool:
a sequence of time-varying graphs.

TVGs as a sequence of (shorter) TVGs. Subgraphs of a time-
varying graph G = (V,E, T , ρ) can be defined in a classical manner,
by restricting the set of vertices or edges of G. More interesting is the
possibility to define a temporal subgraph by restricting the lifetime
T of G, leading to the graph G′ = (V,E′, T ′, ρ′) such that

• T ′ ⊆ T
• E′ = {e ∈ E : ∃t ∈ T ′ : ρ(e, t) = 1}
• ρ′ : E′ × T ′ → {0, 1} where ρ′(e, t) = ρ(e, t)

In the same way as for the sequence of footprints SF, we can now
look at the evolution of a TVG through a sequence of shorter TVGs
ST(τ) = Gτ0 ,Gτ1 , . . ., in which the intervals are either disjoint or
overlapping.

3.2.2 Indicators and Discussions

Evolution of the (temporal) Distance. The basic concept of this
class of indicators is that of distance. In particular, there are three dif-
ferent types of distances - shortest, fastest, and foremost - that are re-
spectively noted d(u, v), δ(u, v), and δ̂(u, v). As discussed in the in-
troduction, these concepts of distance are central in various contexts
and were recently subject to several studies. Algorithms to compute
optimal journeys according to the three types of distances are avail-
able in [6]. (Distributed analogues of these algorithms were recently
proposed in [8] and [9].) Computing the distance gives an idea of
how reachable the nodes are from each other, and thereby constitutes
a general bound on dissemination speed.

A concept symmetric to the one of temporal distance is that of
temporal view, introduced in [25] in the context of social network
analysis. The temporal view (or simply view) that a node v has of
another node u at time t, denoted φv,t(u), is defined as the latest
(i.e., largest) t′ ≤ t at which a message received by time t at v could
have been emitted at u; that is, in the TVG formalism,

max{departure(J ) : J ∈ J ∗(u, v) ∧ arrival(J ) ≤ t}.

This concept could, as that of distance, be declined into three ver-
sions (the above one is symmetric to the foremost distance). Studying
the evolution of temporal distances or views over a sequence of tem-
poral subgraphs reflects how close in time, or in hops, the nodes tends
to become. It serves as a basis to most of the indicators discussed be-
low.

Evolution of the (temporal) Diameter and Eccentricity. The
three journey-based versions of eccentricity and diameter were first
discussed in a communication network context [6]. The eccentricity
of a node u in a TVG G can be defined in terms of shortest journeys
as

e(u) = max{d(u, v) : v ∈ V }

where d can be substituted by δ(u, v) or δ̂(u, v) to obtain the fore-
most eccentricity ε(u), or the fastest eccentricity ε̂(u), respectively.
The eccentricity of a node directly reflects its reachability capacity,

and therefore the impact it can have on the network. Such a param-
eter could have a particular significance in some field of research,
e.g. in epidemics, the existence of nodes with a high temporal eccen-
tricity could be associated with the possibility for a virus to survive
long-enough to reinfect people. Three versions of the diameter natu-
rally follow based on those of eccentricities: max{ei(u) : u ∈ V },
max{εi(u) : u ∈ V }, andmax{ε̂i(u) : u ∈ V }. The foremost ver-
sion of the temporal diameter was specifically studied in [12] from
a stochastic point of view by Chaintreau et al., but to the best of our
knowledge, the evolution of the temporal diameter or eccentricities
have never been considered yet. Looking at them could reveal com-
plex social parameters, e.g., considering the evolution of standard de-
viations among node eccentricities could reflect how a network tends
to create fairness or inequalities among its participants.

Evolution of the (temporal) Centrality. One of the most impor-
tant properties of social networks’ structures is the so-called notion
of power. As a shared definition of power is still object of debate, the
design of metrics able to characterize its causes and consequences
is a pressing challenge. In particular the social network approach
emphasizes the concept of power as inherently relational, i.e., de-
termined by the network topology. Hence, the focus must be put on
the relative positions of nodes. In order to characterize such a prop-
erty the concept of centrality has emerged. The simplest centrality
metric, namely the degree centrality, measures the number of edges
that connect a node to other nodes in a network. Over the years many
more complex centrality metrics have been proposed and studied,
including Katz status score [22], α-centrality [5], betweenness cen-
trality [17], and several others based on random walk [30, 40], the
most famous of which is the eigenvector centrality used by Google’s
PageRank algorithm [31]. The temporal adaptation of these concepts
is meaningful, and Kleinberg et al. have shown in [25] that nodes
that are topologically more central are not necessarily central from a
temporal point of view, whence the concept of temporal centrality.
Studying the evolution of these over time could in turn shed light on
how “powerful” nodes tends to emerge in a network. Betweenness
and closeness are two well-known measures of centralities.

Temporal betweenness. The betweenness of a node in a static graph
measures the occurrences of that node within the shortest paths of
other nodes [17]. A temporal version of the betweeness based on
foremost journeys was considered in recent work by Tang et al. [41].
The definition can be generally formulated as

B(q) =
∑

v 6=u6=q∈V

|d′(u, v, q)|
|d(u, v)|

where |d(u, v)| is the number of shortest journeys between u and v in
the time varying graph Gτi , and |d′(u, v, q)| is the number of shortest
journeys, among them, that pass through q. We can analogously de-
fine the temporal betweeness in terms of foremost or fastest distance,
by substituting d(u, v) with δ(u, v) or δ̂(u, v).

Temporal closeness. In a static context, the closeness measures the
mean of the shortest paths between a node and all the other reachable
nodes [17]. It can be formally defined as

TC(u) =
∑
v∈V \u

d(u, v)

|{w ∈ V : ∃J ∈ J ∗(u,w)}|

and again, possibly declined to a shortest, foremost (δ(u, v)), or
fastest (δ̂(u, v)) versions. As one will certainly notice, this parameter



is highly related to that of temporal eccentricity, and yet, both have
appeared in very different fields of research. This illustrates again
how general both the temporal concepts and the formal tools can be.
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