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Abstract 
This paper presents a method for measuring the 

semantic similarity of texts using a corpus based measure of 
semantic word similarity and a normalized and modified 
versions of the Longest Common Subsequence (LCS) string 
matching algorithm. Existing methods for computing text 
similarity have focused mainly on either large documents or 
individual words. In this paper, we focus on computing the 
similarity between two sentence or between two short 
paragraphs. The proposed method can be exploited in a 
variety of applications involving textual knowledge 
representation and knowledge discovery. Evaluation results 
on two different data sets show that our method 
outperforms several competing methods. 

Keywords 
Semantic similarity of words, similarity of short texts, corpus-
based measures. 

1. Introduction 
Similarity is a complex concept which has been widely 
discussed in the linguistic, philosophical, and information 
theory communities. Frawley [9] discusses all semantic 
typing in terms of two mechanisms: the detection of 
similarities and differences. For our task, given two input 
text segments, we want to automatically determine a 
score that indicates their similarity at semantic level, thus 
going beyond the simple lexical matching methods 
traditionally used for this task.  

An effective method to compute the similarity 
between short texts or sentences has many applications in 
natural language processing and related areas such as 
information retrieval and text filtering. For example, in 
web page retrieval, text similarity has proven to be one of 
the best techniques for improving retrieval effectiveness 
[33] and in image retrieval from the Web, the use of short 
text surrounding the images can achieve a higher 
retrieval precision than the use of the whole document in 
which the image is embedded [3]. The use of text 
similarity is beneficial for relevance feedback and text 
categorization [13], [24], text summarization [7], [22], 
word sense disambiguation [19], methods for automatic 
evaluation of machine translation [25], [31], evaluation 
of text coherence [17], and schema matching in databases 
[26]. 

One of the major drawbacks of most of the existing 
methods is the domain dependency: once the similarity 
method is designed for a specific application domain, it 
cannot be adapted easily to other domains. To address 
this drawback, we aim to develop a method that is fully 
automatic and independent of the domain in applications 

requiring small text or sentence similarity measure. The 
computing of text similarity can be viewed as a generic 
component for the research community dealing with text-
related knowledge representation and discovery. 

This paper is organized as follow: Section 2 presents 
a brief overview of the related work. Our proposed 
method is described in Section 3. Evaluation and 
experimental results are discussed in Section 4.  

2. Related Work 
There is extensive literature on measuring the similarity 
between long texts or documents [15], [27], [28], but 
there is less work related to the measurement of 
similarity between sentences or short texts [8]. Related 
work can roughly be classified into four major 
categories: word co-occurrence/vector-based document 
model methods, corpus-based methods, hybrid methods, 
and descriptive feature-based methods. 

The vector-based document model methods are 
commonly used in Information Retrieval (IR) systems 
[28], where the document most relevant to an input query 
is determined by representing a document as a word 
vector, and then queries are matched to similar 
documents in the document database via a similarity 
metric [37].  

The Latent Semantic Analysis (LSA) [15], [16] and 
the Hyperspace Analogues to Language (HAL) model [2] 
are two well known methods in corpus-based similarity. 
LSA analyzes a large corpus of natural language text and 
generates a representation that captures the similarity of 
words and text passages. The dimension of the word by 
context matrix is limited to several hundreds because of 
the computational limit of Singular Value Decomposition 
(SVD). As a result the vector is fixed and the 
representation of a short text is very sparse. The HAL 
method uses lexical co-occurrence to produce a high-
dimensional semantic space. The authors’ experimental 
results showed that HAL was not as promising as LSA in 
the computation of similarity for short texts. 

Hybrid methods use both corpus-based measures [38] 
and knowledge-based measures [18] of word semantic 
similarity to determine the text similarity. Mihalcea et al. 
[30] suggest a combined method for measuring the 
semantic similarity of texts by exploiting the information 
that can be drawn from the similarity of the component 
words. Specifically, they use two corpus-based measures, 
PMI-IR (Pointwise Mutual Information and Information 
Retrieval) [38] and LSA (Latent Semantic Analysis) [16] 
and six knowledge-based measures [12], [18], [19], [23], 



[34], [39] of word semantic similarity, and combine the 
results to show how these measures can be used to derive 
a text-to-text similarity metric. They evaluate their 
method on a paraphrase recognition task. The main 
drawback of this method is that it computes the similarity 
of words from eight different methods, which is not 
computationally efficient. 

Li et al. [20] propose another hybrid method that 
derives text similarity from semantic and syntactic 
information contained in the compared texts. Their 
proposed method dynamically forms a joint word set 
only using all the distinct words in the pairs of sentences. 
For each sentence, a raw semantic vector is derived with 
the assistance of the WordNet lexical database [32]. A 
word order vector is formed for each sentence, again 
using information from the lexical database. Since each 
word in a sentence contributes differently to the meaning 
of the whole sentence, the significance of a word is 
weighted by using information content derived from a 
corpus. By combining the raw semantic vector with 
information content from the corpus, a semantic vector is 
obtained for each of the two sentences. Semantic 
similarity is computed based on the two semantic vectors. 
An order similarity is calculated using the two order 
vectors. Finally, the sentence similarity is derived by 
combining semantic similarity and order similarity.  

Feature-based methods try to represent a sentence 
using a set of predefined features. Similarity between two 
texts is obtained through a trained classifier. But finding 
effective features and obtaining values for these features 
from sentences make this category of methods more 
impractical. 

3. Proposed Method 
The proposed method derives text similarity of two texts 
by combining semantic similarity and string similarity,  
with normalization. We call our proposed method the 
Semantic Text Similarity (STS) method. We investigate 
the importance of including string similarity by a simple 
example. Let us consider a pair of texts, T1 and T2 that 
contain a proper noun (proper name) ‘Maradona’ in T1. 
In T2 the name ‘Maradona’ is misspelled to ‘Maradena’. 

T1 : Many consider Maradona as the best player in 
soccer history. 

T2 : Maradena is one of the best soccer players. 
Dictionary-based similarity measure can not provide any 
similarity value between these two proper names. And 
the chance to obtain a similarity value using corpus-
based similarity measures is very low. We obtain a good 
similarity score if we use string similarity measures. The 
following sections present a detailed description of each 
of the above mentioned functions.    

3.1 String Similarity between Words 
We use the longest common subsequence (LCS) [1], [14] 
measure with some normalization and small 
modifications for our string similarity measure. We use 

three different modified versions of LCS and then take a 
weighted sum of these1. Melamed [29] normalized LCS 
by dividing the length of the longest common 
subsequence by the length of the longer string and called 
it longest common subsequence ratio (LCSR). But LCSR 
does not take into account of the length of the shorter 
string which sometimes has a significant impact on the 
similarity score. 

We normalize the longest common subsequence 
(LCS) so that it takes into account of the length of both 
the shorter and the longer string and call it normalized 
longest common subsequence (NLCS) which is, 
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While in classical LCS, the common subsequence 
needs not be consecutive, in text matching, consecutive 
common subsequence is important for a high degree of 
matching. We use maximal consecutive longest common 
subsequence starting at character 1, v2 = MCLCS1 (Fig. 
1) and maximal consecutive longest common 
subsequence starting at any character n, v3 = MCLCSn 
(Fig. 2). In Fig. 1, we present an algorithm that takes two 
strings as input and returns the shorter string or maximal 
consecutive portions of the shorter string that 
consecutively match with the longer string, where 
matching must be from first character (character 1) for 
both strings. In Fig. 2, we present another algorithm 
where matching may start from any character (character 
n). We also normalize MCLCS1 and MCLCSn. 

We take the weighted sum of the values v1, v2, and v3 
to determine string similarity score, where w1, w2, w3 are 
weights and w1+w2+w3=1. Therefore, the similarity of the 
two strings is:      α = w1v1 + w2v2 + w3v3                   (2) 
We set equal weights for our experiments. 2
 

Algorithm MCLCS1
 Input: ri, sj // ri and sj are two input strings where 
     // |ri| = τ, |sj| = η and τ ≤ η as mentioned earlier. 
1.    τ ← |ri|,  η ← |sj| 
2.    while |ri| > 0    
3.           if ri ⊂ sj   // i.e., sj ∩ ri = ri  
4.                      return ri
5.           else ri ← ri \ cτ    //  i.e., remove the right- 
                                        // most character from ri
6.           end if 
7.   end while 
 Output: ri      // ri is the Maximal Consecutive 
                        // LCS starting at character 1 

Fig. 1. Maximal consecutive LCS starting at character 1. 

                                                                 
1 We use modified versions because in our experiments we obtained 

better results (precision and recall) for text matching on a sample of 
data than when using the original LCS, or other string similarity 
measures. 

2 We use equal weights in several places in this paper in order to keep 
the system unsupervised. If development data would be available, we 
could adjust the weights.  

 



 
Algorithm MCLCSn
  Input: ri, sj     // ri and sj are two input strings 
                         // where |ri| = τ, |sj| = η and τ ≤ η. 
1.  while |ri| > 0    
2.    determine all n-grams from ri where n = 1 .. |ri|  

       and ir is the set of n-grams 

3.    if  x ∈ Sj where {x | irx∈ ,  x = Max ( ir )} 

     // i is the number of n-grams and Max ( ir ) 

     // returns the maximum length n-gram from ir  
4.           return x 

5.   else ir  ← ir \ x  // remove x from set ir    
6.  end if 
7. end while 
  Output: x     // x is the Maximal Consecutive 
                       // LCS starting at any character n  

Fig. 2. Maximal consecutive LCS starting at any character n 
 

Algorithm semanticMatching 
  Input: ri, sj     // ri and sj are two input words 
                         // where |ri| = τ, |sj| = η and τ ≤ η. 
1.  v ← SOCPMI(ri, sj) // This method determines 
    // semantic similarity between two words. Any  
//other similarity method can also be used instead. 
2.  if v> λ  // λ is the maximum possible similarity 
values 
3.            v ← 1 
4.  else v ← v / λ  
5.  end if    
Output: v        // v is the semantic similarity value 
                        // between 0 and 1, inclusively 

Fig. 3. Semantic similarity matching. 
 

3.2 Semantic Similarity between Words 
There is a relatively large number of word-to-word 
similarity metrics in the literature, ranging from distance-
oriented measures computed on semantic networks or 
knowledge base (or dictionary/thesaurus-based 
measures), to metrics based on models of information 
theory (or corpus-based measures) learned from large 
text collections. A detailed review on word similarity can 
be found in [21], [35]. We focus our attention on corpus-
based measures because of their large type coverage.  

PMI-IR [38] is a simple method for computing 
corpus-based similarity of words which uses Pointwise 
Mutual Information. PMI-IR used AltaVista Advanced 
Search query syntax to calculate the probabilities. LSA, 
another corpus-based measure, analyzes a large corpus of 
natural text and generate a representation that captures 
the similarity of words (discussed in the Related Work 
section). 

We use the Second Order Co-occurrence PMI (SOC-
PMI) word similarity method [10] that uses Pointwise 
Mutual Information to sort lists of important neighbor 
words of the two target words from a large corpus. The 

method considers the words which are common in both 
lists and aggregate their PMI values (from the opposite 
list) to calculate the relative semantic similarity. We 
define the pointwise mutual information function for only 
those words having f b(ti, w) > 0, 
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where f t(ti) tells us how many times the type ti appeared 
in the entire corpus, f b(ti, w) tells us how many times 
word ti appeared with word w in a context window words 
and m is total number of tokens in the corpus. Now, for 
word w1, we define a set of words, X, sorted in 
descending order by their PMI values with w1 and taken 
the top-most β1 words having f pmi(ti, w1) > 0.  

X = {Xi}, where i = 1, 2, …, β1  and 

f pmi(t1, w1) ≥ f pmi(t2, w1) ≥… f pmi(t β1-1, w1)  ≥ f pmi(tβ1, w1) 

Similarly, for word w2, we define a set of words, Y, 
sorted in descending order by their PMI values with w2 
and taken the top-most β2 words having f pmi(ti, w2) > 0. 
The value of β (either β1 or β2) is related to how many 
times a word w appears in the corpus, i.e., the frequency 
of w as well as the number of types in the corpus. Then 
we define the β-PMI summation function. For word w1, 
the β-PMI summation function is: 
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which sums all the positive PMI values of words in the 
set Y  also common to the words in the set X. In other 
words, this function actually aggregates the positive PMI 
values of all the semantically close words of w2 which 
are also common in w1’s list. The higher the value of γ is, 
the greater emphasis on words having very high PMI 
values with w1 is given. Similarly, we calculate the β-
PMI summation function for word w2. Finally, we define 
the semantic PMI similarity function between the two 
words, w1 and w2, 
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We normalize the semantic word similarity (Fig. 3), 
so that it provides a similarity score between 0 and 1 
inclusively. The word similarity method is a separate 
module in our Text Similarity Method. Therefore any 
other word similarity method could be substituted instead 
of SOC-PMI. In that case, we need to set λ to the 
maximum similarity value specific to that method. 

3.3 Overall Sentence Similarity 
Our task is to derive a score between 0 and 1 inclusively 
that will indicate the similarity between two texts P and 
R at semantic level. The main idea is to find, for each 
word in the first sentence, the most similar matching in 
the second sentence. The method consists in the 
following six steps:  



Step 1: We use all special characters, punctuations, and 
capital letters, if any, as initial word boundary and 
eliminate all these special characters, punctuations and 
stop words. We lemmatize each of the segmented words 
to generate tokens. After cleaning we assume that the text 
P = {p1, p2 …, pm} has m tokens and the text R = {r1, r2 
…, rn} has n tokens and n ≥ m. Otherwise, we switch P 
and R.  
Step 2: We count the number of pi’s (say, δ) for which pi 

= rj, for all p ∈ P and for all r ∈ R. I.e., there are δ tokens 
in P that exactly match with R, where δ ≤ m. We remove 
all δ tokens from both of P and R. So, P = {p1, p2 …, pm-

δ} and R = {r1, r2 …, rn-δ}. If all the terms match, m-δ = 
0, we go to step 6. 
Step 3: We construct a (m-δ)×(n-δ) string similarity 
matrix (say, M1 = (αij)(m-δ)×(n-δ)) using the following 
process: we assume any token pi ∈ P has τ characters, 
i.e., pi = {c1c2…cτ}and any token rj ∈ R has η characters, 
i.e., rj = {c1c2 … cη}where τ ≤ η. In other words, η is the 
length of the longer token and τ is the length of the 
shorter token. We calculate the followings:  
v1 ← NLCS(pi, rj),                
v2 ← NMCLCS1(pi, rj) 
v3 ← NMCLCSn(pi, rj),      
αij ← w1v1 + w2v2 + w3v3 

i.e., αij is a weighted sum of v1, v2, and v3 where w1, w2, 
w3 are weights and w1+w2+w3=1. We set equal weights 
for our experiments. 
    We put αij in row i and column j position of the matrix 
for all i = 1 … m- δ and j = 1 … n- δ. 
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Step 4: We construct a (m-δ)×(n-δ) semantic similarity 
matrix (say, M2 = (βij)(m-δ)×(n-δ)) using the following 
process: We put βij (βij ← semanticMatching(pi, rj) (Fig. 
3) in row i and column j position of the matrix for all i = 
1 … m-δ and j = 1 … n-δ. 
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Step 5: We construct another (m-δ)×(n-δ) joint matrix 
(say,  M = (γij)(m-δ)×(n-δ))  using     
         M ← ψM1 + φM2                  (3) 
(i.e., γij = ψαij + φβij) where ψ is the string matching 
matrix weight factor. φ is the semantic similarity matrix 

weight factor, and ψ + φ = 1. We set equal weights for 
our experiments. 
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After constructing the joint matrix, M, we find out the 
maximum-valued matrix-element, γij. We add this matrix 
element to a list (say, ρ and ρ ← ρ ∪ γij) if γij > 0. We 
remove all the matrix elements of i’th row and j’th 
column from M. We repeat the finding of the maximum-
valued matrix-element, γij adding it to ρ and removing all 
the matrix elements of the corresponding row and 
column until either γij = 0, or m-δ-|ρ| = 0, or both.  
Step 6: We sum up all the elements in a value ρ and add 
δ to it to get a total score. We multiply this total score by 
the reciprocal harmonic mean of m and n to obtain a 
balanced similarity score between 0 and 1, inclusively. 

| |

1
( ) (

( , )
2

i
i

m n
S P R

mn

ρ

δ ρ
=

)+ × +
=

∑
                               (4) 

4. Evaluation and Experimental Results 
In order to evaluate our text similarity measure, we use 
two different data sets: 30 sentence pairs [20] and the 
Microsoft paraphrase corpus [6]. 

4.1 Experiment with Human Similarities of 
Sentence Pairs 
We use the same data set as Li et al. [20] (available at  
http://www.docm.mmu.ac.uk/STAFF/D.McLean/Sentenc
eResults.htm). Li et al. [20] collected human ratings for 
the similarity of pairs of sentences following existing 
designs for word similarity measures. The participants 
consisted of 32 volunteers, all native speakers of English 
educated to graduate level or above. Li et al. [20] began 
with the set of 65 noun pairs from Rubenstein and 
Goodenough [36] and replaced them with their 
definitions from the Collins Cobuild dictionary [4]. 
Cobuild dictionary definitions are written in full 
sentences, using vocabulary and grammatical structures 
that occur naturally with the word being explained. The 
participants were asked to complete a questionnaire, 
rating the similarity of meaning of the sentence pairs on 
the scale from 0.0 (minimum similarity) to 4.0 
(maximum similarity), as in Rubenstein and Goodenough 
(R&G) [36]. Each sentence pair was presented on a 
separate sheet. The order of presentation of the sentence 
pairs was randomized in each questionnaire. The order of 
the two sentences making up each pair was also 
randomized. This was to prevent any bias being 
introduced by order of presentation. Each of the 65 
sentence pairs was assigned a semantic similarity score 
calculated as the mean of the judgments made by the 



participants. The distribution of the semantic similarity 
scores was heavily skewed toward the low similarity end 
of the scale. A subset of 30 sentence pairs was selected to 
obtain a more even distribution across the similarity 
range. This subset contains all of the sentence pairs rated 
1.0 to 4.0 and 11 (from a total of 46) sentences rated 0.0 
to 0.9 selected at equally spaced intervals from the list. 
The detailed procedure of this data set preparation is in 
[20]. Table 1 shows average human similarity scores 
along with Li et al.’s Similarity Method scores [20] and 
our proposed Semantic Text Similarity scores. Human 
similarity scores are provided as the mean score for each 
pair and have been scaled into the range [0..1].  
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Fig. 4. Similarity correlations. 

 

Table 1.  Results on Li et al. sentence data set 
R&
G 
No. 

R&G 
word pair Sim. 
in the 
sentence 

Human 

(Mean) 

Li et STS 
al. 
Sim. 
Meth. 

Meth. 
R&
G 
No. 

R&G 
word  
pair in the 
sentence 

Human 
Sim. 
(Mean) 

Li et STS 
al. 
Sim. 
Meth.

Meth.

1 
 

Cord 
Smile 

0.01 0.33 0.06 51 
 

Glass 
Tumbler 

0.14 0.65 0.28 

5 
 

Autograph 
Shore 

0.01 0.29 0.11 52 
 

Grin 
Smile 

0.49 0.49 0.32 

9 
 

Asylum 
Fruit 

0.01 0.21 0.07 53 
 

Serf 
Slave 

0.48 0.39 0.44 

13 
 

Boy 
Rooster 

0.11 0.53 0.16 54 
 

Journey 
Voyage 

0.36 0.52 0.41 

17 
 

Coast 
Forest 

0.13 0.36 0.26 55 
 

Autograph 
Signature 

0.41 0.55 0.19 

21 
 

Boy 
Sage 

0.04 0.51 0.16 56 
 

Coast 
Shore 

0.59 0.76 0.47 

25 
 

Forest 
Graveyard 

0.07 0.55 0.33 57 
 

Forest 
Woodland 

0.63 0.7 0.26 

29 
 

Bird 
Woodland 

0.01 0.33 0.12 58 
 

Implement 
Tool 

0.59 0.75 0.51 

33 
 

Hill 
Woodland 

0.15 0.59 0.29 59 
 

Cock 
Rooster 

0.86 1 0.94 

37 
 

Magician 
Oracle 

0.13 0.44 0.20 60 
 

Boy 
Lad 

0.58 0.66 0.60 

41 
 

Oracle 
Sage 

0.28 0.43 0.09 61 
 

Cushion 
Pillow 

0.52 0.66 0.29 

47 
 

Furnace 
Stove 

0.35 0.72 0.30 62 
 

Cemetery 
Graveyard 

0.77 0.73 0.51 

48 
 

Magician 
Wizard 

0.36 0.65 0.34 63 
 

Automobil 
Car 

0.56 0.64 0.52 

49 
 

Hill 
Mound 

0.29 0.74 0.15 64 
 

Midday 
Noon 

0.96 1 0.93 

50 
 

Cord 
String 

0.47 0.68 0.49 65 
 

Gem 
Jewel 

0.65 0.83 0.65 

 
Fig. 4 shows that our proposed Semantic Text Similarity 
Measure achieves a high Pearson correlation coefficient 
of 0.853 with the average human similarity ratings, 
whereas Li et al.’s Similarity Measure [20] achieves 
0.816. The improvement we obtained is statistically 
significant at the 0.05 level3. In the human judging 
experiment of Li et al. [20] the best human participant 
obtained a correlation of 0.921 with the mean of the 
participants and the worst participant obtained 0.594.   

4.2 Experiment with Microsoft Paraphrase 
Corpus 
We use the semantic text similarity method to 
automatically identify if two text segments are 
paraphrases of each other. We use the Microsoft 
paraphrase corpus [6], consisting of 4,076 training and 
                                                                 
3 We used the test from http://faculty.vassar.edu/lowry/rdiff.html? 

1,725 test pairs, and determine the number of correctly 
identified paraphrase pairs in the corpus using the 
semantic text similarity measure. The paraphrase pairs in 
this corpus were labeled by two human annotators who 
determined if the two sentences in a pair were 
semantically equivalent paraphrases or not. The 
agreement between the human judges who labeled the 
candidate paraphrase pairs in this data set was measured 
at approximately 83%, which can be considered as an 
upper bound for an automatic paraphrase recognition task 
performed on this data set.  

We acknowledge, as in [5], that the semantic 
similarity measure for short texts is a necessary step in 
the paraphrase recognition task, but not always sufficient. 
There might be cases when the same meaning is 
expressed in one sentence and the exact opposite 
meaning in the second sentence (for example by adding 
the word not). For these situations deeper reasoning 
methods are needed.  

We evaluate the results in terms of accuracy, the 
number of pairs predicted correctly divided by the total 
number of pairs. We also measure precision (P = TP / 
(TP + FP)), recall (R = TP / (TP + FN)) and F-measure 
(F = 2PR / (P + R)). Here, TP, FP and FN stand for True 
Positive, False Positive and False Negative respectively. 

We use eleven different similarity thresholds ranging 
from 0 to 1 with interval 0.1. In Table 2, when we use 
similarity threshold score of 1 (i.e., matching word by 
word exactly, therefore no semantic similarity matching 
is needed), we obtain recall value of 0.0044 for the test 
data set. We can consider this score as one of the 
baselines. Mihalcea et al. [30] mentioned two other 
baselines: Vector-based and Random. See Table 3 for the 
results of these baselines and the results of several 
methods from [30] and [5] (on the test set). 

For this paraphrase identification task, we can 
consider our proposed STS method as a supervised 
method. Using training data set, we obtain the best 
accuracy of 72.42% when we use 0.6 as the similarity 
threshold score. Therefore we can recommend this 
threshold for use on the test set, achieving an accuracy of 
72.64% (our method predicts 1369 pairs as correct, out of 
which 1022 pairs are correct among the 1725 manually 
annotated pairs). Our results on the test set are shown in 
Table 3.   

For each candidate paraphrase pair in the test set, we 
first calculate the semantic text similarity score using (4), 



and then label the candidate pair as a paraphrase if the 
similarity score exceeds a threshold of 0.6. We obtain the 
same F-measure (81%) at the combined methods from 
[30] and [5]. We obtain higher accuracy and precision at 
the cost of decreasing recall.  
 

Table 2. Characteristics of the paraphrase evaluation data 
set and our results 

Number 
of pairs 
in (data 

set) 
 

Number of Similarity 
threshold 
score in 

our 
method 

pairs 
determine

d as 
correct by 

human 
annotators 
(TP+FN) 

 

 
 

Accuracy 
(%) 

 
 

Number 
of 

correct 
pairs 
(TP) 

Number 
of 

predicte
d pairs 

(TP+FP)

0 67.54 2753 4076 

0.1 67.54 2753 4076 

0.2 67.54 2753 4076 

0.3 67.59 2753 4074 

0.4 67.74 2751 4064 

0.5 69.53 2708 3905 

0.6 72.42 2435 3241 

0.7 68.45 1874 2281 

0.8 56.67 1085 1183 

0.9 37.78 218 219 

 

 

 

 

 

4076 

(Training) 

 

 

 

 

 

 

2753 

1.0 32.82 15 15 

0 66.49 1147 1725 

0.1 66.49 1147 1725 

0.2 66.49 1147 1725 

0.3 66.49 1147 1725 

0.4 66.66 1146 1720 

0.5 68.86 1128 1646 

0.6 72.64 1022 1369 

0.7 68.06 768 940 

0.8 56.29 443 493 

0.9 38.38 86 88 

1725 

(Test) 

 

 

 

 

 

1147 

1.0 33.79 5 5 

 

5. Conclusion 
Our proposed STS method achieves a very good Pearson 
correlation coefficient for 30 sentence pairs data set and 
outperforms the results obtained by Li et al. [20] (the 
improvement is statistically significant). For the 
paraphrase recognition task, our proposed STS method 
performs similar to the combined unsupervised method 
[30] and the combined supervised method [5]. The main 
advantage of our system is that is that it has lower 
complexity and running time than the other systems [20], 
[5], [30], because we use only one corpus-based measure, 
while they combine both corpus-based and WordNet-
based measures. For example, Mihalcea et. al [30] use six 
WordNet-based measures and two corpus-based 

measures. The complexity of the algorithms and their 
running time is given mainly by the number of searches 
in the corpus and in WordNet. We don’t use WordNet at 
all, therefore saving a lot of time. We add the string 
similarity measure, but this is very fast, because we apply 
it on short strings (no search needed). 

Our method can be used as unsupervised or 
supervised. For the second task, paraphrase recognition, 
we used it as supervised, but only to find the best 
threshold. For the first task, comparing our sentence 
similarity score to scores assigned by human judges, our 
system is used as unsupervised (there is no training data 
available).  

 

Table 3. Text similarity results for paraphrase identification 
(test set) 

Metric Accuracy Precision Recall F-measure 

Semantic similarity (corpus-based) 

PMI-IR 69.9 70.2 95.2 81.0 

LSA 68.4  69.7  95.2 80.5 

STS 72.6 74.7 89.1 81.3 

Semantic similarity (knowledge-based) 

J & C 69.3 72.2 87.1 79.0 

L & C 69.5 72.4 87.0  79.0 

Lesk 69.3 72.4 86.6 78.9 

Lin 69.3 71.6 88.7 79.2 

W & P 69.0 70.2 92.1 80.0 

Resnik 69.0 69.0 96.4 80.4 

Combined(S) 71.5 72.3 92.5 81.2 

Combined(U)70.3 69.6 97.7 81.3 

Baselines 

Threshold-1 33.8 100.0 0.44 0.87 

Vector-based 65.4 71.6 79.5 75.3 

Random 51.3 68.3 50.0 57.8 
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