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Figure 15.7 An example of linear regression. The line y = 0.25x + 1 is the
best least-squares fit for the four points (1,1), (2,2), (6,1.5), (7,3.5). Arrows show
which points on the line the original points are projected to.

o =3 K- -YAmY (-8 =0
i =) —Y)
° "= St (xi — X)2

Figure 15.7 shows an example of a least square fit for the four points
(1,1), (2,2), (6,1.5), and (7,3.5). We have: x =4, y = 2,
_ 2L i =X -y) _ 6.5

=— =0.2
=TS (- %) 26 ~ 0%

2-025x4=1

Ny
Il
<
|
3
>
Il

Singular Value Decomposition

As we have said, we can view Latent Semantic Indexing as a method
of word co-occurrence analysis. Instead of using a simple word over-
lap measure like the cosine, we instead use a more sophisticated simi-
larity measure that makes better similarity judgements based on word
co-occurrence. Equivalently, we can view SVD as a method for dimension-
ality reduction. The relation between these two viewpoints is that in the
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process of dimensionality reduction, co-occurring terms are mapped onto
the same dimensions of the reduced space, thus increasing similarity in
the representation of semantically similar documents.

Co-occurrence analysis and dimensionality reduction are two ‘func-
tional’ ways of understanding LSI. We now look at the formal definition
of LSIL LSI is the application of Singular Value Decomposition to term-by-
document matrices in information retrieval. SVD takes a matrix A and
represents it as A in a lower dimensional space such that the “distance”
between the two matrices as measured by the 2-norm is minimized:

A=]lA-Al2

The 2-norm for matrices is the equivalent of Euclidean distance for vec-
tors. SVD is in fact very similar to fitting a line, a one-dimensional object,
to a set of points, which exists in the two-dimensional plane. Figure 15.7
indicates with arrows which point on the one-dimensional line each of
the original points corresponds to.

Just as the linear regression in figure 15.7 can be interpreted as pro-
jecting a two-dimensional space onto a one-dimensional line, so does
SVD project an m-dimensional space onto a k-dimensional space where
k < m. In our application (word-document matrices), m is the number
of word types in the collection. Values of k that are frequently chosen
are 100 and 150. The projection transforms a document’s vector in m-
dimensional word space into a vector in the k-dimensional reduced space.

One possible source of confusion is that equation (15.11) compares the
original matrix and a lower-dimensional approximation. Shouldn’t the
second matrix have fewer rows and columns, which would make equa-
tion (15.11) ill-defined? The analogy with line fitting is again helpful here.
The fitted line exists in two dimensions, but it is a one-dimensional ob-
ject. The same is true for A: it is a matrix of lower rank, that is, it could
be represented in a lower-dimensional space by transforming the axes of
the space. But for the particular axes chosen it has the same number of
rows and columns as A.

The SVD projection is computed by decomposing the document-by-
term matrix A;«g into the product of three matrices,! Tixn, Snxn, and Dgxn:

Atxd = Ttxnsnxn (Ddxn)T

1. Technically, this is the definition of the so-called ‘reduced SVD.” The full SVD takes the
form Asxg = TixtStxd (Daxa) T, where the extra rows or columns of S are zero vectors,
and T and D are square orthogonal matrices (Trefethen and Bau 1997: 27).
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Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
cosmonaut | —0.44 -0.30 0.57 0.58 0.25

T_ astronaut -0.13 -0.33 -0.59 0.00 0.73
moon -0.48 -0.51 -0.37 0.00 -0.61
car -0.70 0.35 0.15 -0.58 0.16
truck -0.26 0.65 -0.41 0.58 -0.09

Figure 15.8 The matrix T of the SVD of the matrix in figure 15.5. Values are
rounded.

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
S=1] 0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

Figure 15.9 The matrix of singular values of the SVD of the matrix in fig-
ure 15.5. Values are rounded.

where n = min(t,d). We indicate dimensionality by subscripts: A has t
rows and d columns, T has t rows and n columns and so on. DT is the
transpose of D, the matrix D rotated around its diagonal: D;; = (D) ji-

Examples of A, T, S, and D are given in figure 15.5 and figures 15.8
through 15.10. Figure 15.5 shows an example of A. A contains the docu-
ment vectors with each column corresponding to one document. In other
words, element a;; of the matrix records how often term i occurs in doc-
ument j. The counts should be appropriately weighted (as discussed in
section 15.2). For simplicity of exposition, we have not applied weighting
and assumed term frequencies of 1.

Figures 15.8 and 15.10 show T and D, respectively. These matrices
have orthonormal columns. This means that the column vectors have
unit length and are all orthogonal to each other. (If a matrix C has or-
thonormal columns, then CTC = I, where I is the diagonal matrix with a
diagonal of 1’s, and zeroes elsewhere. So we have TTT = D'D = 1))

We can view SVD as a method for rotating the axes of the n-dimensional
space such that the first axis runs along the direction of largest variation
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dy d; ds3 dy ds dg
Dimension1 | -0.75 -0.28 -0.20 -045 -0.33 -0.12
Dimension 2 | —-0.29 -0.53 -0.19 0.63 0.22 0.41
Dimension 3 0.28 -0.75 0.45 -0.20 0.12 -0.33
Dimension 4 0.00 0.00 0.58 0.00 -0.58 0.58
Dimension 5 | —0.53 0.29 0.63 0.19 041 -0.22

DT =

Figure 15.10 The matrix DT of the SVD of the matrix in figure 15.5. Values are
rounded.

among the documents, the second dimension runs along the direction
with the second largest variation and so forth. The matrices T and D
represent terms and documents in this new space. For example, the first
row of T corresponds to the first row of A, and the first column of DT
corresponds to the first column of A.

The diagonal matrix S contains the singular values of A in descending
order (as in figure 15.9). The ith singular value indicates the amount
of variation along the i'? axis. By restricting the matrices T, S, and D
to their first k < n columns one obtains the matrices T;xk, Skxk, and
(Daxk)™. Their product A is the best least squares approximation of A
by a matrix of rank k in the sense defined in equation (15.11). One can
also prove that SVD is ‘almost’ unique, that is, there is only one possible
decomposition of a given matrix.? See Golub and van Loan (1989) for an
extensive treatment of SVD including a proof of the optimality property.

That SVD finds the optimal projection to a low-dimensional space is the
key property for exploiting word co-occurrence patterns. SVD represents
terms and documents in the lower dimensional space as well as possible.
In the process, some words that have similar co-occurrence patterns are
projected (or collapsed) onto the same dimension. As a consequence, the
similarity metric will make topically similar documents and queries come
out as similar even if different words are used for describing the topic. If
we restrict the matrix in figure 15.8 to the first two dimensions, we end

2. For any given SVD solution, you can get additional non-identical ones by flipping signs
in corresponding left and right singular vectors of T and D, and, if there are two or more
identical singular values, then the subspace determined by the corresponding singular
vectors is unique, but can be described by any appropriate orthonormal basis vectors.
But, apart from these cases, SVD is unique.
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| dl d2 d3 d4 dS d6
Dimension1 | —-1.62 -0.60 -0.44 -0.97 -0.70 -0.26
Dimension 2 | —0.46 -0.84 -0.30 1.00 0.35 0.65

Figure 15.11 The matrix Bsyxg = Sox2DT»y4 of documents after rescaling with
singular values and reduction to two dimensions. Values are rounded.

di d> d3 dy ds de
d; | 1.00

d> | 0.78 1.00

dz | 0.40 0.88 1.00

ds | 047 -0.18 -0.62 1.00

ds | 0.74 0.16 -0.32 0.94 1.00

ds | 0.10 -0.54 -0.87 0.93 0.74 1.00

Table 15.9 The matrix of document correlations ETE where E is B with length-
normalized columns. For example, the normalized correlation coefficient of ds
and d» (When represented as in figure 15.11) is 0.88. Values are rounded.

up with two groups of terms: space exploration terms (cosmonaut, as-
tronaut, and moon) which have negative values on the second dimension
and automobile terms (car and truck) which have positive values on the
second dimension. The second dimension directly reflects the different
co-occurrence patterns of these two groups: space exploration terms only
co-occur with other space exploration terms, automobile terms only co-
occur with other automobile terms (with one exception: the occurrence
of car in d;). In some cases, we will be misled by such co-occurrence
patterns and wrongly infer semantic similarity. However, in most cases
co-occurrence is a valid indicator of topical relatedness.

These term similarities have a direct impact on document similarity.
Let us assume a reduction to two dimensions. After rescaling with the
singular values, we get the matrix B = S2x2DT>.4 shown in figure 15.11,
where Sy is S restricted to two dimensions (with the diagonal elements
2.16, 1.59). Matrix B is a reduced dimensionality representation of the
documents in the original matrix A, and is what was shown in figure 15.6.

Table 15.9 shows the similarities between documents when they are
represented in this new space. Not surprisingly, there is high similarity
between d; and d» (0.78) and d4, ds, and dg (0.94, 0.93, 0.74). These
document similarities are about the same in the original space (i.e., when
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we compute correlations for the original document vectors in figure 15.5).
The key change is that d> and d3, whose similarity is 0.00 in the original
space, are now highly similar (0.88). Although d» and d3; have no common
terms, they are now recognized as being topically similar because of the
co-occurrence patterns in the corpus.

Notice that we get the same similarity as in the original space (that is,
zero similarity) if we compute similarity in the transformed space without
any dimensionality reduction. Using the full vectors from figure 15.10
and rescaling them with the appropriate singular values we get:

—0.28 x —0.20 X 2.16°% + —0.53 x —0.19 x 1.59%+
—0.75 x 0.45 x 1.28% + 0.00 x 0.58 x 1.00% + 0.29 x 0.63 x 0.39% =~ 0.00

(If you actually compute this expression, you will find that the answer is
not quite zero, but this is only because of rounding errors. But this is as
good a point as any to observe that many matrix computations are quite
sensitive to rounding errors.)

We have computed document similarity in the reduced space using the
product of S and DT. The correctness of this procedure can be seen by
looking at ATA, which is the matrix of all document correlations for the
original space:

ATA = (TSDOTTSDT = DSTTTTSDT = DSTSDT = (SDT)T(SDT) = B'B
Because T has orthonormal columns, we have TTT = I. Furthermore,

since S is diagonal, S = ST. Term similarities are computed analogously
since one observes that the term correlations are given by:

AAT = TSDY(TSD")! = TSD'DSTTT = (TS)(TS)"

One remaining problem for a practical application is how to fold que-
ries and new documents into the reduced space. The SVD computation
only gives us reduced representations for the document vectors in ma-
trix A. We do not want to do a completely new SVD every time a new
query is launched. In addition, in order to handle large corpora efficiently
we may want to do SVD for only a sample of the documents (for example
a third or a fourth). The remaining documents would then be folded in.

The equation for folding documents into the space can again be derived
from the basic SVD equation:

A=TSDT
& TTA=TT'TSDT
& TTA=SD"



