
1

Boolean and Vector Space

Retrieval Models

This material was prepared by Diana Inkpen, University of Ottawa, 2005,

updated 2021. Some of these slides were originally prepared by Raymond

Mooney, University of Texas Austin.

2

Retrieval Models

• A retrieval model specifies the details
of:

– Document representation

– Query representation

– Retrieval function

• Determines a notion of relevance.

• Notion of relevance can be binary or
continuous (i.e., ranked retrieval).

3

Classes of Retrieval Models

• Boolean models (set theoretic)

– Extended Boolean

• Vector space models

(statistical/algebraic)

– Generalized VS

– Latent Semantic Indexing

• Probabilistic models

4

Other Model Dimensions

• Logical View of Documents

– Index terms

– Full text

– Full text + Structure (e.g. hypertext)

• User Task

– Retrieval

– Browsing

5

Retrieval Tasks

• Ad hoc retrieval: Fixed document corpus, varied

queries.

• Filtering: Fixed query, continuous document

stream.

– User Profile: A model of relative static preferences.

– Binary decision of relevant/not-relevant.

• Routing: Same as filtering but continuously supply

ranked lists rather than binary filtering.

6

Common Preprocessing Steps

• Strip unwanted characters/markup (e.g. HTML
tags, punctuation, numbers, etc.).

• Break into tokens (keywords) on whitespace.

• Stem tokens to “root” words

– computational comput

• Remove common stopwords (e.g. a, the, it, etc.).

• Detect common phrases (possibly using a domain
specific dictionary).

• Build inverted index (keyword list of docs
containing it).

7

Boolean Model

• A document is represented as a set of

keywords.

• Queries are Boolean expressions of keywords,

connected by AND, OR, and NOT, including the

use of brackets to indicate scope.

– [[Rio & Brazil] | [Hilo & Hawaii]] & hotel & !Hilton]

• Output: Document is relevant or not. No partial

matches or ranking.

8

• Popular retrieval model because:

– Easy to understand for simple queries.

– Clean formalism.

• Boolean models can be extended to include

ranking.

• Reasonably efficient implementations possible for

normal queries.

Boolean Retrieval Model

9

Boolean Models Problems

• Very rigid: AND means all; OR means any.

• Difficult to express complex user requests.

• Difficult to control the number of documents

retrieved.

– All matched documents will be returned.

• Difficult to rank output.

– All matched documents logically satisfy the query.

• Difficult to perform relevance feedback.

– If a document is identified by the user as relevant or

irrelevant, how should the query be modified?

10

Statistical Models

• A document is typically represented by a bag of
words (unordered words with frequencies).

• Bag = set that allows multiple occurrences of the
same element.

• User specifies a set of desired terms with optional
weights:

– Weighted query terms:

Q = < database 0.5; text 0.8; information 0.2 >

– Unweighted query terms:

Q = < database; text; information >

– No Boolean conditions specified in the query.

11

Statistical Retrieval

• Retrieval based on similarity between query

and documents.

• Output documents are ranked according to

similarity to query.

• Similarity based on occurrence frequencies

of keywords in query and document.

• Automatic relevance feedback can be supported:

– Relevant documents “added” to query.

– Irrelevant documents “subtracted” from query.

12

Issues for Vector Space Model

• How to determine important words in a document?

– Word sense?

– Word n-grams (and phrases, idioms,…) terms

• How to determine the degree of importance of a
term within a document and within the entire
collection?

• How to determine the degree of similarity between
a document and the query?

• In the case of the web, what is a collection and
what are the effects of links, formatting
information, etc.?

13

The Vector-Space Model

• Assume t distinct terms remain after preprocessing;

call them index terms or the vocabulary.

• These “orthogonal” terms form a vector space.

Dimension = t = |vocabulary|

• Each term, i, in a document or query, j, is given a

real-valued weight, wij.

• Both documents and queries are expressed as

t-dimensional vectors:

dj = (w1j, w2j, …, wtj)

14

Graphic Representation

Example:

D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?

• How to measure the degree of

similarity? Distance? Angle?

Projection?

15

More on the Vector Space Model

 create vectors, r1 and r2, that represent

features of R1 and R2

 measure the similarity of R1 and R2 by the

cosine of the angle θ between r1 and r2

nrrr ,11,11 ,, nrrr ,21,22 ,

 21

21

2211

21

1 1

2

,2

2

,1

1

,2,1

)cosine(
rr

rr

rrrr

rr

rr

rr

n

i

n

i

ii

n

i

ii

16

More on VSM (continued)

nrrr ,11,11 ,,

nrrr ,21,22 ,
1

10

θ
cosine(θ) 2

2

1

1)cosine(
r

r

r

r

1

1

r

r

2

2

r

r

17

More on VSM (continued)

nrrr ,11,11 ,,

nrrr ,21,22 ,

1

10

θ

cosine(θ)
2

2

1

1)cosine(
r

r

r

r

1

1

r

r

2

2

r

r

18

More on VSM (continued)

nrrr ,11,11 ,,

nrrr ,21,22 ,
1

10

θ
cosine(θ) 2

2

1

1)cosine(
r

r

r

r

1

1

r

r

2

2

r

r

19

Document Collection

• A collection of n documents can be represented in the
vector space model by a term-document matrix.

• An entry in the matrix corresponds to the “weight” of a
term in the document; zero means the term has no
significance in the document or it simply doesn’t exist in
the document.

T1 T2 …. Tt

D1 w11 w21 … wt1

D2 w12 w22 … wt2

: : : :

: : : :

Dn w1n w2n … wtn

20

Term Weights: Term Frequency

• More frequent terms in a document are more

important, i.e. more indicative of the topic.

fij = frequency of term i in document j

• May want to normalize term frequency (tf) across

the entire corpus:

tfij = fij / maxi {fij}

21

Term Weights: Inverse Document Frequency

• Terms that appear in many different documents are

less indicative of overall topic.

df i = document frequency of term i

= number of documents containing term i

idfi = inverse document frequency of term i,

= log2 (N/ df i)

(N: total number of documents)

• An indication of a term’s discrimination power.

• Log used to dampen the effect relative to tf.

22

TF-IDF Weighting

• A typical combined term importance indicator is
tf-idf weighting:

wij = tfij idfi = tfij log2 (N/ dfi)

• A term occurring frequently in the document but
rarely in the rest of the collection is given high
weight.

• Many other ways of determining term weights
have been proposed.

• Experimentally, tf-idf has been found to work well.

23

Computing TF-IDF -- An Example

Given a document containing terms with given frequencies:

A(3), B(2), C(1)

Assume collection contains 10,000 documents and

document frequencies of these terms are:

A(50), B(1300), C(250)

Then:

A: tf = 3/3; idf = log(10000/50) = 5.3; tf-idf = 5.3

B: tf = 2/3; idf = log(10000/1300) = 2.0; tf-idf = 1.3

C: tf = 1/3; idf = log(10000/250) = 3.7; tf-idf = 1.2

24

Query Vector

• Query vector is typically treated as a

document and also tf-idf weighted.

• Alternative is for the user to supply weights

for the given query terms.

25

Similarity Measure

• A similarity measure is a function that computes

the degree of similarity between two vectors.

• Using a similarity measure between the query and

each document:

– It is possible to rank the retrieved documents in the

order of presumed relevance.

– It is possible to enforce a certain threshold so that the

size of the retrieved set can be controlled.

26

Similarity Measure - Inner Product

• Similarity between vectors for the document di and query q
can be computed as the vector inner product:

sim(dj,q) = dj•q = wij · wiq

where wij is the weight of term i in document j and wiq is the weight
of term i in the query

• For binary vectors, the inner product is the number of
matched query terms in the document (size of intersection).

• For weighted term vectors, it is the sum of the products of
the weights of the matched terms.

t

i 1

27

Properties of Inner Product

• The inner product is unbounded.

• Favors long documents with a large number of

unique terms.

• Measures how many terms matched but not how

many terms are not matched.

28

Inner Product -- Examples

Binary:
– D = 1, 1, 1, 0, 1, 1, 0

– Q = 1, 0 , 1, 0, 0, 1, 1

sim(D, Q) = 3

Size of vector = size of vocabulary = 7

0 means corresponding term not found in

document or query

Weighted:
D1 = 2T1 + 3T2 + 5T3 D2 = 3T1 + 7T2 + 1T3

Q = 0T1 + 0T2 + 2T3

sim(D1 , Q) = 2*0 + 3*0 + 5*2 = 10

sim(D2 , Q) = 3*0 + 7*0 + 1*2 = 2

29

Cosine Similarity Measure

• Cosine similarity measures the cosine of
the angle between two vectors.

• Inner product normalized by the vector
lengths.

D1 = 2T1 + 3T2 + 5T3 CosSim(D1 , Q) = 10 / (4+9+25)(0+0+4) = 0.81

D2 = 3T1 + 7T2 + 1T3 CosSim(D2 , Q) = 2 / (9+49+1)(0+0+4) = 0.13

Q = 0T1 + 0T2 + 2T3

2

t3

t1

t2

D1

D2

Q

1

D1 is 6 times better than D2 using cosine similarity but only 5 times better using

inner product.

t

i

t

i

t

i

ww

ww

qd

qd

iqij

iqij

j

j

1 1

22

1

)(

CosSim(dj, q) =

30

Naïve Implementation

Convert all documents in collection D to tf-idf
weighted vectors, dj, for keyword vocabulary V.

Convert query to a tf-idf-weighted vector q.

For each dj in D do

Compute score sj = cosSim(dj, q)

Sort documents by decreasing score.

Present top ranked documents to the user.

Time complexity: O(|V|·|D|) Bad for large V & D !

|V| = 10,000; |D| = 100,000; |V|·|D| = 1,000,000,000

31

Comments on Vector Space Models

• Simple, mathematically based approach.

• Considers both local (tf) and global (idf) word

occurrence frequencies.

• Provides partial matching and ranked results.

• Tends to work quite well in practice despite

obvious weaknesses.

• Allows efficient implementation for large

document collections.

32

Problems with Vector Space Model

• Missing semantic information (e.g. word sense).

• Missing syntactic information (e.g. phrase structure,

word order, proximity information).

• Assumption of term independence (e.g. ignores

synonomy).

• Lacks the control of a Boolean model (e.g.,

requiring a term to appear in a document).

– Given a two-term query “A B”, may prefer a document

containing A frequently but not B, over a document that

contains both A and B, but both less frequently.

33

Exercise

The corpus C consists in the following three documents:

• d1: “new york times”

• d2: “new york post”

• d3: “los angeles times”

1. Assuming that the term frequencies are normalized by the
maximum frequency in a given document, calculate the tf-idf
scores for all the terms in C. Assume the words in the vectors
are ordered alphabetically.

2. Given the following query: “new new times”, calculate the tf-
idf vector for the query, and compute the score of each
document in C relative to this query, using the cosine
similarity measure. Assume that term frequencies are
normalized by the maximum frequency in a given query.

