Information Retrieval and the Internet

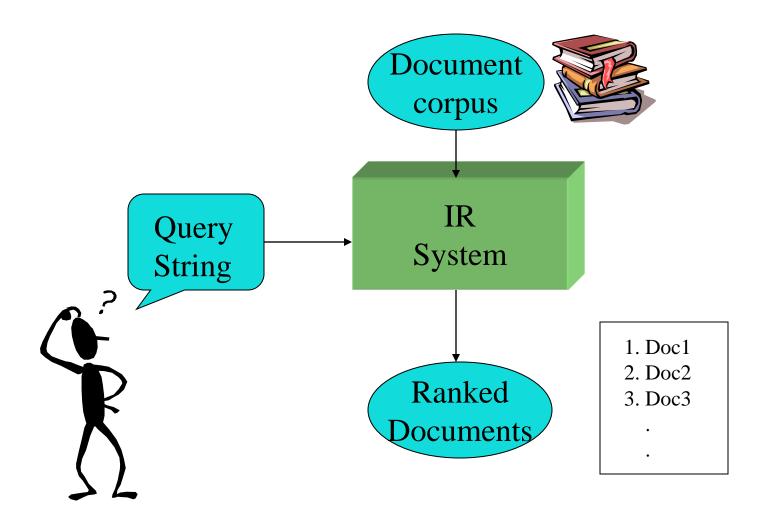
Introduction

This material was prepared by Diana Inkpen, University of Ottawa, 2005, updated 2021. Some of the slides were originally prepared by Raymond Mooney, University of Texas Austin.

Information Retrieval (IR)

- The indexing and retrieval of textual documents.
- Searching for pages on the World Wide Web is the most recent "killer app."
- Concerned firstly with retrieving <u>relevant</u> documents to a query.
- Concerned secondly with retrieving from *large* sets of documents *efficiently*.

Typical IR Task


• Given:

- A corpus of textual natural-language documents.
- A user query in the form of a textual string.

• Find:

 A ranked set of documents that are relevant to the query.

IR System

Relevance

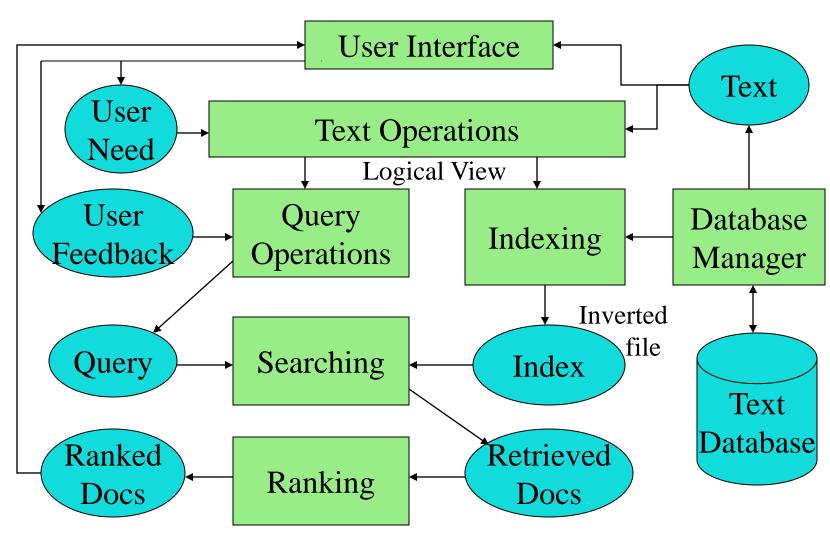
- Relevance is a subjective judgment and may include:
 - Being on the proper subject.
 - Being timely (recent information).
 - Being authoritative (from a trusted source).
 - Satisfying the goals of the user and his/her intended use of the information (*information need*).

Keyword Search

- Simplest notion of relevance is that the query string appears verbatim in the document.
- Slightly less strict notion is that the words in the query appear frequently in the document, in any order (*bag of words*).

Problems with Keywords

- May not retrieve relevant documents that include synonymous terms.
 - "restaurant" vs. "café"
 - "PRC" vs. "China"
- May retrieve irrelevant documents that include ambiguous terms.
 - "bat" (baseball vs. mammal)
 - "Apple" (company vs. fruit)
 - "bit" (unit of data vs. act of eating)


Beyond Keywords

- We will cover the basics of keyword-based IR, but...
- We will focus on extensions and recent developments that go beyond keywords.
- We will cover the basics of building an *efficient* IR system, but...
- We will focus on basic capabilities and algorithms rather than system's issues that allow scaling to industrial size databases.

Intelligent IR

- Taking into account the *meaning* of the words used.
- Taking into account the *order* of words in the query.
- Adapting to the user based on direct or indirect feedback.
- Taking into account the *authority* of the source.

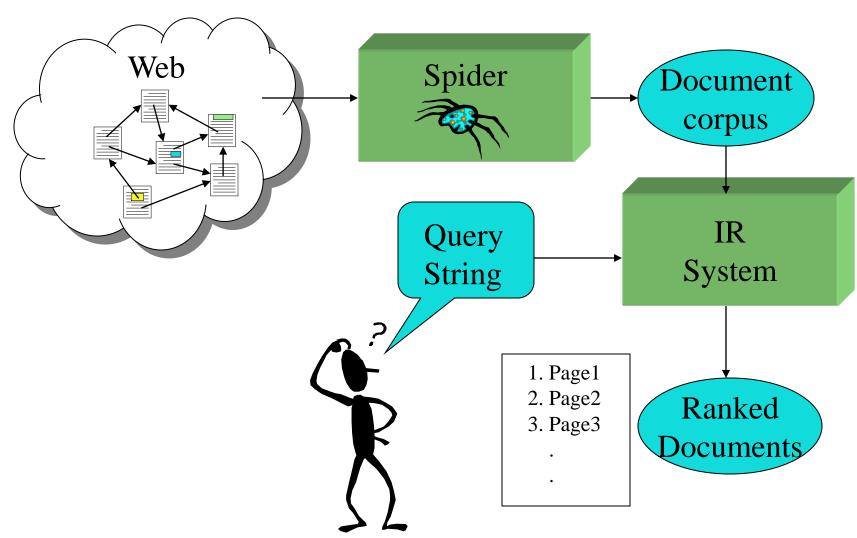
IR System Architecture

IR System Components

- Text Operations forms index words (tokens).
 - Stopword removal
 - Stemming
- Indexing constructs an <u>inverted index</u> of word to document pointers.
- Searching retrieves documents that contain a given query token from the inverted index.
- Ranking scores all retrieved documents according to a relevance metric.

IR System Components (continued)

- User Interface manages interaction with the user:
 - Query input and document output.
 - Relevance feedback.
 - Visualization of results.
- Query Operations transform the query to improve retrieval:
 - Query expansion using a thesaurus.
 - Query transformation using relevance feedback.


Web Search

 Application of IR to HTML documents on the World Wide Web.

• Differences:

- Must assemble document corpus by spidering the web.
- Can exploit the structural layout information in HTML (XML).
- Documents change uncontrollably.
- Can exploit the link structure of the web.

Web Search System

Other IR-Related Tasks

- Automated document categorization
- Information filtering (spam filtering)
- Information routing
- Automated document clustering
- Recommending information or products
- Information extraction
- Information integration
- Question answering

History of IR

• 1960-70's:

- Initial exploration of text retrieval systems for "small" corpora of scientific abstracts, and law and business documents.
- Development of the basic Boolean and vectorspace models of retrieval.
- Prof. Salton and his students at Cornell
 University are the leading researchers in the area.

IR History Continued

- 1980's:
 - Large document database systems, many run by companies:
 - Lexis-Nexis
 - Dialog
 - MEDLINE

IR History Continued

- 1990's:
 - Searching FTPable documents on the Internet
 - Archie
 - WAIS
 - Searching the World Wide Web
 - Lycos
 - Yahoo
 - Altavista

IR History Continued

- 1990's continued:
 - Organized Competitions
 - NIST TREC
 - Recommender Systems
 - Ringo
 - Amazon
 - NetPerceptions
 - Automated Text Categorization & Clustering

Recent IR History

- 2000's
 - Link analysis for Web Search
 - Google
 - Automated Information Extraction
 - Whizbang
 - Fetch
 - Burning Glass
 - Question Answering
 - TREC Q/A track

Recent IR History

- 2000's continued:
 - Multimedia IR
 - Image
 - Video
 - Audio and music
 - Cross-Language IR
 - DARPA Tides
 - Document Summarization
 - Deep learning for IR

Current status

- 2020 Using deep learning in IR.
- Largescale pre-trained neural language models.
- Deep learning models for passage retrieval.

Related Areas

- Database Management
- Library and Information Science
- Artificial Intelligence
- Natural Language Processing
- Machine Learning

Database Management

- Focused on *structured* data stored in relational tables rather than free-form text.
- Focused on efficient processing of welldefined queries in a formal language (SQL).
- Clearer semantics for both data and queries.
- Recent move towards *semi-structured* data (XML) brings it closer to IR.

Library and Information Science

- Focused on the human user aspects of information retrieval (human-computer interaction, user interface, visualization).
- Concerned with effective categorization of human knowledge.
- Concerned with citation analysis and bibliometrics (structure of information).
- Recent work on *digital libraries* brings it closer to CS & IR.

Artificial Intelligence

- Focused on the representation of knowledge, reasoning, and intelligent action.
- Formalisms for representing knowledge and queries:
 - First-order Predicate Logic
 - Bayesian Networks
- Recent work on web ontologies and intelligent information agents brings it closer to IR.

Natural Language Processing

- Focused on the syntactic, semantic, and pragmatic analysis of natural language text and discourse.
- Ability to analyze syntax (phrase structure) and semantics could allow retrieval based on *meaning* rather than keywords.

Natural Language Processing: IR Directions

- Methods for determining the sense of an ambiguous word based on context (word sense disambiguation).
- Methods for identifying specific pieces of information in a document (*information extraction*).
- Methods for answering specific NL questions from document corpora.

Machine Learning

- Focused on the development of computational systems that improve their performance with experience.
- Automated classification of examples based on learning concepts from labeled training examples (*supervised learning*).
- Automated methods for clustering unlabeled examples into meaningful groups (*unsupervised learning*).

Machine Learning: IR Directions

- Text Categorization
 - Automatic hierarchical classification (Yahoo).
 - Adaptive filtering/routing/recommending.
 - Automated spam filtering.
- Text Clustering
 - Clustering of IR query results.
 - Automatic formation of hierarchies (Yahoo).
- Learning for Information Extraction
- Text Mining