

ELG 4571 Systèmes de télécommunications J.-Y. Chouinard

AM /FM en présence de bruit

Performances des systèmes FM
• Pour des raisons économiques, la radio FM commerciale utilise un filtre passe-bas RC comme filtre de désaccentuation. La désaccentuation est de
$$75\mu s$$
.
 $H_{désacc}(f) = \frac{1}{1+j(f/f_1)}$ $f_1 = \frac{1}{2\pi(75\times10^{-6})} = 2.1 \, kHz$
• La puissance du bruit à la sortie du filtre de désaccentuation est modifiée comme suit:
 $P_{n_3} = 2 \int_0^8 |H(f)|^2 G_{n_3}(f) df = 2 \int_0^8 \alpha_L^2 \frac{(2\pi)^2 N_0}{A^2} \left(\frac{f^2}{1+(f/f_1)^2} \right) df$
 $P_{n_3} = 2 \int_0^8 \frac{K^2 N_0}{A^2} \left(\frac{f^2}{1+(f/f_1)^2} \right) df$; $K = \alpha_L 2\pi$
 $P_{n_3} = 2 \left(\frac{K}{A} \right)^2 N_0 f_1^3 \left(\frac{B}{f_1} - \tan^{-1} \left(\frac{B}{f_1} \right) \right)$

