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1 Elliptic Curve Cryptography

1.1 Elliptic Curves
An elliptic curve is a cubic equation of the form:
V4ary+by = a3 +cx®+dr+e

where a, b, ¢, d and e are real numbers.
A special addition operation is defined over elliptic curves, and this with the inclusion of a point
O, called point at infinity. If three points are on a line intersecting an elliptic curve, then their sum
is equal to this point at infinity O (which acts as the identity element for this addition operation).
Figure 1 shows the elliptic curves 4% = 23 4+ 2z + 5 and y? = 23 — 22z + 1.

10

-10,

Figure 1: Elliptic curves y? = 23 +2x + 5 and y? = 23 — 22 + 1.

1.2 Elliptic Curves over Galois Fields

An elliptic group over the Galois Field E,(a,b) is obtained by computing z® + ax + b mod p for
0 <z < p. The constants a and b are non negative integers smaller than the prime number p and
must satify the condition:

40 + 270> modp # 0

For each value of x, one needs to determine whether or not it is a quadratic residue. If it is the
case, then there are two values in the elliptic group. If not, then the point is not in the elliptic
group Ep(a,b).



4a® + 27b% mod p
4a® + 27b% mod p
4a® + 27b* mod p

Example (construction of an elliptic group):
Let the prime number p = 23 and let the constants a = 1 and b = 1. We first verify that:

4 x 13+ 27 x 12 mod 23
4 + 27 mod 23 = 31 mod 23

840

22 mod p ‘(p—x)Qmodp‘ = H

12 mod 23 222 mod 23 1
22 mod 23 212 mod 23 | 4
3% mod 23 202 mod 23 9
42 mod 23 192 mod 23 | 16
52 mod 23 182 mod 23 2
62 mod 23 17° mod 23 |13
72 mod 23 162 mod 23 3
82 mod 23 15> mod 23 |18
92 mod 23 14> mod 23 | 12
10°mod 23| 132mod 23 | 8
112 mod 23 | 122 mod 23 6

We then determine the quadratic residues Qg5 from the reduced set of residues Zos = {1,2,3,...,21,22}:

Therefore, the set of p—gl = 11 quadratic residues Qa3 = {1,2,3,4,6,8,9,12, 13,16, 18}.
Now, for 0 < x < p, compute y> = 2% + x + 1 mod 23 and determine if y? is in the set of
quadratic residues Qas3:

x ol 123|456 7][8]9/ 10]11
y? 1 | 3 |11 8|0 |16]16| 6 |15 3 [22] 9
y2 € Qo937 || yes | yes | no | yes | no | yes | yes | yes | no | yes | no | yes

Y1 1|7 100 4 1] 411 7 3
o 22 | 16 1301919 ] 12 16 20

x 12 13141516 ] 17 [ 18 | 19 | 20 | 21 | 22

y? 16 3 [22[10[19] 9] 9 | 2 |17|14]22
y2 € Qo3” || yes | yes | no | no | no | yes | yes | yes | no | no | no

Y1 4 | 7 31315

Yo 19 | 16 20 | 20 | 18




The elliptic group E,(a,b) = Fa3(1,1) thus include the points!:

(0,1)  (0,22) (L,7) (L,16) (3,10) (3,13) (4,0)
By - ] B 619 @0 ©19) (1) (112 (0.7
BT (9,16) (11,3) (11,20) (12,4) (12,19) (13,7) (13,16)
(17,3) (17,20) (18,3) (18,20) (19,5) (19,18)
Figure 2 shows a scatterplot of the elliptic group E,(a,b) = Ea3(1,1).
24
220
20 ° [
e o [ ]
18 [}
16~ @ - [ ] [ ]
14+
[ ]
12~ [ ]
[}
10 L
sl
[ ] [ ] [ ]
6L
[}
4 e o [}
[ ] e o
oL
®
% 2 & & s 10 12 14 16 18 2

Figure 2: Scatterplot of elliptic group Ej(a,b) = Ea3(1,1).

!The elliptic group Fa3(1,1) also includes the additional point (4, 0), corresponding to the single value y = 0.



1.3 Addition and multiplication operations over elliptic groups

Let the points P = (z1,y1) and Q = (z2,y2) be in the elliptic group E,(a,b), and O be the point
at infinity. The rules for addition over the elliptic group Ej(a,b) are:

1. P+rO=0+P=P

2. If x9 = 21 and yo = —y1, that is P = (z1,91) and @ = (z2,y2) = (x1,—y1) = —P, then
P+Q=0.

3. If Q@ # —P, then their sum P + Q = (x3,ys) is given by:

T3 = /\Q—xl—:cgmodp

ys = Az —x3) —y1r modp

where

>
[I>

3x%+a . .
501 if P=qQ

{ B P £Q

Example (Multiplication over an elliptic curve group):

The multiplication over an elliptic curve group Ej,(a,b) is the equivalent operation of the mod-
ular exponentiation in RSA.

Let P = (3,10) € E93(1,1). Then 2P = (z3,y3) is equal to:
2P = P+P=(z1,5)+ (z1,11)

Since P = @ and x3 = z1, the values of A\, x3 and y3 are given by:

3z +a 3x(3%)+1 5 _

A= dp="""2 " " mod23=—mod23=4"'mod23 =6
o mod p 5 % 10 mo 20 mo mo

T3 = )\2—301—332modp:62—3—3m0d23:30m0d23:7

ys = Mz —23) —yg modp==6x (3—7)—10 mod 23 = —34 mod 23 = 12

Therefore 2P = (z3,y3) = (7, 12).
The multiplication kP is obtained by repeating the elliptic curve addition operation k times by
following the same additive rules.



k| A=220 (it P#£Q)or T3 Y3 kP
A= Sggl;lra if P=@Q A2 — 21 — 29 mod 23 | A(x1 — 23) — y1 mod 23 | (3,%3)
1 (3.10)
2 6 7 12 (7,12)
3 12 19 5 (19,5)
4 4 17 3 (17,3)
5 11 9 19 (9,16)
6 1 12 4 (12,4)
7 7 11 3 (11,3)
8 2 13 16 (13,16)
9 19 0 1 (0,1)
10 3 6 4 (6,4)
11 21 18 20 (18,20)
12 16 5 4 (5,4)
13 20 1 7 (1,7)
14 13 4 0 (4,0)
15 13 1 16 (1,16)
16 20 5 19 (5,19)
17 16 18 3 (18,3)
18 21 6 19 (6,19)
19 3 0 22 (0,22)
20 19 13 7 (13,7)
21 2 11 20 (11,20)
22 7 12 19 (12,19)
23 1 9 7 9,7)
24 11 17 20 (17,20)
25 4 19 18 (19,18)
26 12 7 11 (7,11)
27 6 3 13 (3,13)




1.4 Elliptic Curve Encryption

Elliptic curve cryptography can be used to encrypt plaintext messages, M, into ciphertexts. The
plaintext message M is encoded into a point Pjs from the finite set of points in the elliptic group,
E,(a,b). The first step consists in choosing a generator point, G' € E,(a, b), such that the smallest
value of n for which nG = O is a very large prime number. The elliptic group E,(a,b) and the
generator point G are made public.

Each user select a private key, n4 < n and compute the public key P4 as: Py = naG. To
encrypt the message point Pys for Bob (B), Alice (A) choses a random integer k and compute the
ciphertext pair of points Pc using Bob’s public key Pg:

FPo = [(kG),(Pym + kPp)]

After receiving the ciphertext pair of points, Pc, Bob multiplies the first point, (kG) with his
private key, np, and then adds the result to the second point in the ciphertext pair of points,
(PM + kPB):

(Py + kPg) — [np(kG)] = (Puy+ knpG) — [np(kG)] = Py

which is the plaintext point, corresponding to the plaintext message M. Only Bob, knowing the
private key np, can remove np(kG) from the second point of the ciphertext pair of point, i.e.
(Py + kPp), and hence retrieve the plaintext information Pyy.

Example (Elliptic curve encryption):
Consider the following elliptic curve:

> = 2 +axr+bmodp

> = 23— 2+ 188 mod 751

that is: @ = —1, b = 188, and p = 751. The elliptic curve group generated by the above elliptic
curve is Ey(a,b) = E751(—1,188).

Let the generator point G = (0,376). Then the multiples kG of the generator point G are (for
1<k<751):

G = (0,376) 2G = (1,376) 3G = (750,375) 4G = (2,373)
5G = (188,657)  6G = (6,390) 7G = (667,571)  8G = (121, 39)
9G = (582,736)  10G = (57,332) ... 761G = (565, 312)

762G = (328,569) 763G = (677,185) 764G = (196,681) 765G = (417,320)
766G = (3,370) 767G = (1,377) 768G = (0,375) 769G = O(point at infinity)

If Alice wants to send to Bob the message M which is encoded as the plaintext point Py; =
(443,253) € E751(—1,188). She must use Bob public key to encrypt it. Suppose that Bob secret
key is np = 85, then his public key will be:

Pg = ngG = 85(0,376)
Pg = (671,558)



Alice selects a random number k£ = 113 and uses Bob’s public key Pg = (671, 558) to encrypt
the message point into the ciphertext pair of points:

Po = [(kG),(Py +kPp)]

Po = [113 x (0,376), (443,253) 4 113 x (671, 558)]
Po = [(34,633),(443,253) + (47,416)]

Po = [(34,633),(217,606)]

Upon receiving the ciphertext pair of points, Po = [(34,633), (217,606)], Bob uses his private
key, np = 85, to compute the plaintext point, Py, as follows

(Pr+ kPp) — [np(kG)] = (217,606) — [85(34, 633)]

(Py+ kPg) — [np(EG)] = (217,606) — [(47,416)]

(Py+ kPg) — [np(kG)] = (217,606) 4 [(47, —416)] (since =P = (z1,—y1))

(Py + kPp) — [np(kG)] = (217,606) + [(47,335)] (since —416 =335 (mod 751))
(P + kPg) — [np(kG)] = (443,253)

and then maps the plaintext point Py; = (443, 253) back into the original plaintext message M.

1.5 Security of ECC

The cryptographic strength of elliptic curve encryption lies in the difficulty for a cryptanalyst to
determine the secret random number k from kP and P itself. The fastest method to solve this
problem (known as the elliptic curve logarithm problem) is the Pollard p factorization method
[Sta99].

The computational complexity for breaking the elliptic curve cryptosystem, using the Pollard p
method, is 3.8 x 1010 MIPS-years (i.e. millions of instructions per second times the required number
of years) for an elliptic curve key size of only 150 bits [Sta99]. For comparison, the fastest method
to break RSA, using the General Number Field Sieve Method to factor the composite interger n
into the two primes p and ¢, requires 2 x 108 MIPS-years for a 768-bit RSA key and 3 x 10!
MIPS-years with a RSA key of length 1024.

If the RSA key length is increased to 2048 bits, the General Number Field Sieve Method will
need 3 x 1020 MIPS-years to factor n whereas increasing the elliptic curve key length to only 234
bits will impose a computational complexity of 1.6 x 10?® MIPS-years (still with the Pollard p
method).
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