ELG-5373 Secure Communications and Data Encryption

```
Assignment #2 (due on Wednesday, February 27, 2002 at the beginning of the lecture.)
```


Question 1:

(permutation)
Let $\Pi(m)$ be a permutation of the n-bit integers: $0,1, \ldots, 2^{n}-1$, where $0 \leq m \leq 2^{n}$. For instance, the standard permutation P in the DES algorithm is a permutation for 32-bit integers. If $\prod(m)=m$ then this value of m is called a fixed point in the permutation.
a) Find an expression for the probability $P_{\text {no fixed point }}$ as a function of $N=2^{n}$. Hint: Consider the set of permutations S_{N} on $\left[0, \ldots, 2^{n}-1\right]$.
b) Show that more than 60% of the mappings will have at least one fixed point.

Question 2:

(DES modes of operation)
Problem 3.4 from the course notes.

Question 3:

(double DES)
Consider double DES encryption with keys K_{1} and $K_{2}: C=D E S_{K_{2}}\left[D E S_{K_{1}}(M)\right]$. If $D E S_{K_{2}}(X)=$ $D E S_{K_{1}}^{-1}(X)$, then K_{1} and K_{2} are called dual keys. This undesirable since the ciphertext C will be the original plaintext M. Now a key K will be a self-dual key if it is its own dual key.
a) Show that if C_{0} is either all 0 's or all 1 's and D_{0} is either all 0 's or all 1 's, then the key K is a self-dual key.
b) Show that the following keys (in hexadecimal form) are self-dual:

$$
\begin{array}{lllllllllllllllll}
K_{1}= & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
K_{2}= & F & E & F & E & F & E & F & E & F & E & F & E & F & E & F & E \\
K_{3}= & 1 & F & 1 & F & 1 & F & 1 & F & 0 & E & 0 & E & 0 & E & 0 & E \\
K_{4}= & E & 0 & E & 0 & E & 0 & E & 0 & F & 1 & F & 1 & F & 1 & F & 1
\end{array}
$$

c) Show that the following pairs of keys are dual:

$K_{1,1}=$	E	0	0	1	E	0	0	1	F	1	0	1	F	1	0	1
and $K_{1,2}=$	0	1	E	0	0	1	E	0	0	1	F	1	0	1	F	1
$K_{2,1}=$	F	E	1	F	F	E	1	F	F	E	0	E	F	E	0	E
and $K_{2,2}=$	1	F	F	E	1	F	F	E	0	E	F	E	0	E	F	E
$K_{3,1}=$	E	0	1	F	E	0	1	F	F	1	0	E	F	1	0	E
and $K_{3,2}=$	1	F	E	0	1	F	E	0	0	E	F	1	0	E	F	1

Question 4:

We have seen that DES linear cryptanalysis exploits the sometimes biased input-output relationship of a given substitution box. Give the input-output relationship of substitution boxes S_{4} and S_{7}. Which one is better against linear cryptanalysis? How do S_{4} and S_{7} compare to S_{5} (section 3.6.2 of the course notes). Justify your answers (e.g. tables).

