
A Statistical Approach for Efficient Crawling of Rich 

Internet Applications 

Mustafa Emre Dincturk
1,3

, Suryakant Choudhary
1,3

, Gregor von Bochmann
1,3

,  

Guy-Vincent Jourdan1,3, Iosif Viorel Onut2,3 
 

1 EECS, University of Ottawa. 800 King Edward Avenue, 

K1N 6N5, Ottawa, ON, Canada 
2 Research and Development, IBM® Security AppScan® Enterprise, IBM, 

 770 Palladium, Ottawa, ON, Canada 
3 IBM Canada CAS Research 

{mdinc075, schou062}@uottawa.ca 

{bochmann, gvj}@eecs.uottawa.ca 

vioonut@ca.ibm.com 

Abstract. Modern web technologies, like AJAX result in more responsive and 

usable web applications, sometimes called Rich Internet Applications (RIAs). 

Traditional crawling techniques are not sufficient for crawling RIAs. We 

present a new strategy for crawling RIAs. This new strategy is designed based 

on the concept of “Model-Based Crawling” introduced in [3] and uses statistics 

accumulated during the crawl to select what to explore next with a high 

probability of uncovering some new information. The performance of our 

strategy is compared with our previous strategy, as well as the classical 

Breadth-First and Depth-First on two real RIAs and two test RIAs. The results 

show this new strategy is significantly better than the Breadth-First and the 

Depth-First strategies (which are widely used to crawl RIAs), and outperforms 

our previous strategy while being much simpler to implement. 

Keywords: Rich Internet Applications, Web Crawling, Web Application 

Modeling. 

1   Introduction 

Web applications have been undergoing a significant change in the past decade. 

Initialy, the web applications were built using simple HTML pages on the client side. 

Each page had a unique URL to access it. The client (web browser) would send a 

request for these URLs to the server which in turn would send the corresponding page 

in response. The client would then entirely replace the previous content with the new 

information sent by the server.  

In the recent years, with the introduction of newer and richer technologies for web 

application development, web-applications have become more useable and 

interactive. These applications, called Rich Internet Applications (RIAs), changed the 

traditional web applications in two important aspects: first, client side-scripting 

languages such as JavaScript have allowed the modification of the web page by 

updating the Document Object Model (DOM) [16], which represents the client-side 



“state” of the application. Second, using technologies like AJAX [1] the client can 

communicate asynchronously with the server, without having the user to wait for the 

response from the server. In both cases, the URL typically does not change during 

these client side activities. Consequently, we can now have a quite complex web 

application addressed by a single URL. 

These improvements increased the usability of web applications but on the other 

hand introduced new challenges. One of the important problems is the difficulty to 

automatically crawl these websites. Crawling is the process of browsing a web 

application in a methodical, automated manner or in an orderly fashion. Traditional 

crawling techniques are not sufficient for web applications built using RIA 

technologies.  In traditional web application, a page is defined by its URL and all the 

pages reachable from the current page have their URL embedded in the current page. 

Crawling a traditional web application requires to extract these embedded URLs and 

traverse them in an effective sequence. But in RIAs, the current page can change its 

state dynamically sometimes without even requiring user input and hence cannot be 

mapped to a single URL. All these changes mean that traditional crawlers are unable 

to crawl RIAs, save for a few pages that have distinct URLs. 

Crawling is an important aspect of the existence of the web. An important 

functionality of the web in general is the information it provides. This information can 

only be made available if the different information sources can be found and indexed. 

If search engines are not able to crawl websites with new information, they will not be 

able to index them.  Hence a good part of the web in general will be lost. In addition, 

crawling is also required for any thorough analysis of the web application such as for 

security and accessibility testing. To our knowledge, none of the current search 

engines,web application testers and analyzers have the ability to crawl RIAs [2] .The 

problem gets increasingly important as more and more developers and organizations 

adopt these newer technologies to put their information on the web. 

In this paper, we introduce a RIA crawling strategy using a statistical model. This 

strategy is based on the model-based crawling approach introduced in [3] to crawl 

RIAs efficiently. We evaluate the performances of our statistical model on two real 

RIAs and two test applications. We further compare our experimental results against 

other RIA crawling strategies, Depth-First, Breadth-First and Hypercube[3], and we 

show that the new strategy obtains overall better results. 

The paper is organized as follows: in Section 2, we review related works. In 

Section 3, we give an overview of the model based crawling. In Section 4, we present 

the details of the new strategy based on statistical model. In Section 5, we provide 

experimental results obtained with our prototype, compared with existing crawling 

strategies. We conclude in Section 6 with some future research directions. 

2 Related Works 

For traditional web applications, crawling is a well-researched field with many 

efficient solutions in place [4]. However, in the case of RIAs the research is still 

ongoing to address the fundamental question of automatically discovering the existing 

pages. While at first glance web crawling may appear to be merely an application of 



Breadth-First or Depth-First search, the truth is that there are many challenges in RIA 

crawling ranging from defining the states of the application and the state equivalence 

relation to efficiently discovering the information. Today’s web applications have 

become much more complex and it might not be feasible to run the complete crawl. 

Thus, efficiency has been one prime factor that guides research directions for RIA 

crawling.  

We survey here only research focusing on crawling RIAs. Although a limited 

topic, several papers have been published in the area of crawling RIAs, mostly 

focusing on AJAX applications. For example [5, 6, 7] focus on crawling for the 

purpose of indexing and search. In [8], the aim is to make RIAs accessible to search 

engines that are not AJAX-friendly. In [9] the focus is on regression testing of AJAX 

applications whereas [10] is concerned with security testing. 

Mesbah et al. [11] introduced Crawljax, a tool for crawling AJAX applications that 

uses a variation of the Depth-First strategy. One of the drawbacks of the Crawljax 

strategy is that it uses its own logic to select only a subset of the possible “events” in 

the current state and thus might not be able to find all the states of the application. 

Moreover, Crawljax uses an edit distance (the number of operations that is needed to 

change one DOM to the other, the so-called Levenstein distance) to decide if the 

current state is different from the previous one. This approximation might incorrectly 

group some states together, leading to an incorrect model of the RIA being crawled. 

Duda et al. [12] uses the Breadth-First strategy to crawl AJAX applications. They 

propose to reduce the communication costs of the crawler by caching the JavaScript 

function calls, together with the actual parameters.  

Amalfitano et al. [13] focus on modeling and testing RIAs using execution traces. 

Their work is based on utilizing execution traces from user-sessions (a manual 

method). In a later paper [14], they introduced a tool, called CrawlRIA, which 

automatically generates execution traces using the Depth-First strategy.  

All these papers suggest approaches to crawl RIAs, but to our knowledge there has 

not been much attention on the actual efficiency of crawling strategies. In particular, 

none of these techniques aims at discovering new states as early as possible in the 

crawl. Further, the Breadth-First and the Depth-First strategies are guaranteed to 

discover all states of the application when given enough time and under the right 

assumptions; however they are too generic and inflexible to be efficient when 

crawling most RIAs. There are opportunities to design more efficient strategies if we 

can identify some general patterns in the actual RIAs being crawled and use these 

patterns to come up with reasonable anticipations about the model of the application. 

We call this approach “model-based crawling”. This concept was introduced in [3], in 

which we presented the crawling strategy based on Hypercube model. That strategy 

indeed presented an efficient way to crawl RIAs; however the assumptions made 

about the underlying model of the RIAs were too strict to be realistic for actual web 

applications. 



3 Overview of Strategy 

Crawling RIAs require crawler to understand more about a web page than just its 

HTML. It needs to be able to understand the structure of the document as well as the 

client side scripts such as JavasSript that manipulates it. To be able to investigate the 

deeper state of an application, the crawling process also needs to be able to recognize 

and execute “events” (which are occurences that cause client-side code execution and 

are typically triggered by user interactions such as clicking on an element) within the 

document to simulate the paths that might be taken by a real user. We call this an 

“event-based exploration”. A Web-application can be conceptualized as a Finite State 

Machine with “states” representing the distinct DOMs that can be reached in the web 

application and transitions representing event executions . The result of crawling is 

called a “model” of the application. A model basically contains the states and the 

possible ways to move from one state to another. 

3.1 Crawling Strategy 

A crawling strategy is an algorithm that decides how the exploration proceeds. In the 

case of event-based exploration of RIAs, the strategy basically decides which event to 

explore next. We say that a crawling strategy that is able to find the states of the 

application early in the crawl is an efficient strategy, since finding the states is the 

goal of crawling. Efficiency is always important, but it is especially so in the case of 

RIA, because many RIAs are complex applications that have a very large state space. 

In such scenarios, it might not be feasible to wait for the crawler to complete the 

crawl. In this case, a strategy which discovers a larger portion of the application early 

on will deliver more data during the alloted time slot, and thus be more efficient. 

Generating more information about an application sooner not only helps search 

engines indexing more data but also allows security assessment and web application 

testing tools to provide more coverage as quickly as possible. However, the main 

problem is that we do not know how the web application has been built and without 

this prior knowledge of the web application, finding an efficient strategy is difficult. 

One important aspect of the efficiency of the strategy is the use of “resets”, that is, 

reloading the initial URL of the application to go back to the initial state. Resets are 

typically costlier (in terms of time of execution) than event execution. Moreover, 

resetting leads to the state that was reached initially when the crawl started, and most 

of the transitions from the initial state would typically have already been explored, so  

we have to go through known states and transitions before we could discover new 

states of the application. 

Primarily motivated by the above goals, we introduced the concept of “model-

based crawling” in [3] as:  

1. First, a general hypothesis about the behaviour of the application is 

conceptualized. The idea is to assume that the application will behave in a 

certain way. Based on this hypothesis, one can define the anticipated 

(assumed) model of the application. This will transform the process of 



crawling from the discovery acitivity to determine “what the model is” to the 

activity of validating whether the anticipated model is correct. 

2. Once a hypothesis is elaborated and an anticipated model is defined, the next 

step is to define an efficient crawling strategy to verify the model.  Without 

having an assumption about the behaviour of the application, it is impossible 

to define any strategy that will be efficient. 

3. However, it is important to note that any real world application will never 

follow the anticipated model to its entirety.  Therefore, we will also define a 

strategy which will reconcilates the differences discovered between the 

anticipated model and the real model of the application in an efficient way. 

We define a two stage approach to confer to our primary goal of finding all states 

as soon as possible. The first phase is the “state exploration phase”. It aims at 

discovering all the states of the RIA being crawled. Once our strategy believes that it 

has probably found all the reachable states of the application, we proceed to the 

second phase, the “transition exploration phase” which tries to execute the remaining 

transitions after state exploration phase, to confirm that nothing has been overlooked. 

The motivation behind defining this two phase approach is that in many cases the 

application is too complex to be crawled completely, and it is important to explore, in 

the given time, as many states as possible, but unless we have explored all transitions 

in the application, we cannot be sure that we have found all states. In [3], we provided 

a solution where the underlying (anticipated) model was an hypercube. In this case, 

we were able to provide a strategy that was optimal for both phases. 

3.2 Assumptions 

An important factor for the efficiency of the crawling strategy is the definition of the 

state equivalence function. Equivalence function is used to determine whether a state 

can be regarded as being the same as another already seen. This is usually different 

from the simple state equality although, equality is one obvious equivalence function. 

The equivalence function plays a pivotal role in crawling of web-application. If an 

equivalence evaluation method is too stringent (like equality), then it may result in too 

many states being produced, essentially resulting in state explosion, long runs and in 

some cases infinite runs. On the contrary, if the equivalence relation is too lax, we 

may end up with client states that are merged together while, in reality, they are 

different, leading to an incomplete, simplified model. Our crawling strategy assumes 

that some valid equivalence function has been provided. 

Another important factor is the deterministic behaviour of the web application. 

That is, from the same state executing the same event at different times will lead to 

the same state. The biggest challenge for making this assumption is the existence of 

server-side states, since during crawling we have access only to the client-side of the 

application. If there are server-side state changes then the application may behave 

differently when the same transition is taken at a different time from the same client-

state since the server-state of the application may be different. Currently, we do not 

include server states in our crawling strategy (see [17] for more discussion on 

assumptions and requirements). 



4 Probability Strategy 

A crawling strategy can be efficient if it is able to predict the results of the event 

executions with some degree of accuracy. This helps prioritizing the events that are 

more likely to discover new states and hence improve efficiency.  One way to have a 

strategy that can predict the outcomes of the events is to use a concrete anticipated 

model as we did in the Hypercube strategy [3]. But we can also make predictions 

about an event by looking at the outcomes of the previous executions of the same 

event from different states. Clearly, statistics about the past behavior of the event 

(from different states) can be used to model the future behavior of the event. With this 

motivation, we introduce a crawling strategy which makes use of the statistical data 

collected during crawling. The strategy is based on the belief that an event which was 

often observed to lead to new states in the past will be more likely to lead to new 

states in the future. We call this new strategy “the Probability strategy” as it estimates 

the probability of discovering a state for each event and prioritizes the events based 

on their probability. 

In this section we provide an algorithm (crawling strategy) to select a state s and an 

event e in s for which our statistical model predicts the highest likelihood of 

discovering a new state. We start the discussion by giving the formula used to 

estimate events’ probability of discovering new states.  

4.1 Events’ Probability of Discovering New States 

Let P(e) be the event e’s probability of discovering a new state. Remember that the 

same event “e” can be found in different states (we say that e is “enabled” in these 

states). The following Bayesian formula, known as the “Rule of Succession” in 

probability theory, is used to calculate P(e) 
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where: 

 N(e) is the “execution count” of e, that is, the number of times e has been 

executed from different states so far. 

 S(e) is the “success count” of e, that is, the number of times e discovered a 

new state out of its N(e) executions. 

 ps and pn are the terms to represent initial success count and initial execution 

count respectively. These terms are preset and represent the initial 

probability of an unexecuted event to find a new state.  

  

This Bayesian formula is useful for estimating the probabilities in situations when 

there are very few observations. Since at the beginning of the crawling we do not 

have any observations, this formula is suitable for our purpose. To use this formula 

we assign values to ps and pn to set the initial probability. For example, ps = 1 and pn = 



2 can be used to set an event’s initial probability to 0.5 (note that N(e) = S(e) = 0 

initially).  

Having Bayesian probability instead of using the “classical” probability, P(e)=S(e)/ 

N(e), with some initial values for P(e), avoids in particular have events that get a 

probability of 0 because no new state were found at their first execution. With our 

formula, events never have a probability of 0 (or 1) and can always be picked up after 

a while. 

After each execution of an event from a state where the event was not executed 

before, the event’s probability will be updated by taking into account the result of this 

recent execution. As we execute an event and have more observations about its 

behaviour, the weight of the initial probability will decrease and actual observations 

will dominate the value of the probability.  

4.2 Choosing Next Event to Explore 

In this section, we describe the logic that helps the strategy decide which event to 

explore next. Before going into details, we introduce the notation and definitions 

used.  

 S denotes the set of already discovered states. Initially S contains the initial state 

and each newly discovered state is added to S as the crawl progresses. 

 scurrent, represents the current state, the state we are at currently in the application 

while executing the crawl. scurrent always refers to one of the states in S.  

 For a state s, we define the probability of the state, P(s), as the maximum 

probability of an unexecuted event in s. An unexecuted event of s is an event that is 

enabled in s but has not yet been explored by the strategy from s. If s has no 

unexecuted events then P(s) = 0 

 d(s, s') is the distance from s ∈ S to s' ∈ S. It is the length of the shortest path from 

s to s' in the known model of the application. 

When deciding which event to explore next, the Probability strategy aims to take 

the action that will maximize the chances of discovering a new state while minimizing 

the cost (number of event executions and resets). For this reason, starting from the 

current state scurrent, we search for a state schosen such that executing the event with 

probability P(schosen) in schosen achieves this goal. 

All the states that still have unexecuted events are the candidates to become the 

chosen state. However we have to take into account the distance from the current state 

to the chosen state in addition to the raw probabilities. Note that from scurrent reaching 

to any other state in S means following a known path (consisting of already executed 

events). By traversing a known path, we will not be able to discover new states. 

Between two states that are at different distances from scurrent, we may consider 

reaching the one that is farther away because of its higher probability. However, it 

requires traversing a longer known path. The time to execute the extra events in this 

path could actually be used for exploration if the closer state is chosen.  As will be 

explained shortly, to make decisions in such situations we need to balance the cost of 

executing known event with the higher probability of the farther state. 



For our analysis it is necessary to have an estimation of discovering a state by 

executing an (unexecuted) event from an “average” state in S. For this purpose, we 

will use the average probability Pavg that is defined as follows. 

 Pavg = (Σs∈ S P(s)) / |S| 

To select a state that maximizes the probability while minimizing the cost, we need 

a mechanism that compares two states and decides which is more preferable. Let’s 

say we want to compare two states s and s'. If the two states are at the same distance 

from the current state (i.e. d(scurrent, s) = d(scurrent, s')) then the one with the higher 

probability is obviously a better choice. But if the cost of reaching one of the states, is 

higher than the other, say d(scurrent, s) < d(scurrent, s')) then there can be two cases. If 

P(s) ≥ P(s') then s is clearly a better choice. But if P(s) < P(s') then the fact that 

reaching s' is costlier than reaching s should be reflected in the comparison 

mechanism. To make up for the difference in the cost, we should allow the 

exploration of a sequence k = d(scurrent, s') - d(scurrent, s) extra events after executing the 

event with probability P(s) from s. Thus we use the probability of discovering a new 

state after executing the event from S and executing k more unexecuted events (each 

with a probability of Pavg to discover new state). This is given by the following 

formula  
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Now we can compare this value with P(s') and choose the option that gives the 

higher probability. 

In the following, we will present an algorithm that chooses from the set of 

discovered states, S, a state, schosen, such that executing the event with maximum 

probability on schosen maximizes the probability of discovering a state while 

minimizing the number of event executions. In particular, the schosen that we are 

looking for is the state, s ∈  S that satisfies the following condition  

∀  s' ∈  S  

- if  (             )    (             
 )  (  )   ( ) 

- if  (             )    (             
 )   (   ( ))(      )

 (             
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The first case makes sure that s is a better choice than any other state, s' which is at 

the same distance from the current state as s. The second case makes sure that s is a 

better choice than any state, s' which is farther from the current state than s is. The last 

case makes sure that s is a better choice than any state, s' which is closer to current 

state than s is. 



4.3 The Algorithm 

In this section we give an algorithm that can efficiently decide on a schosen that satisfies 

the condition given in the previous section. The algorithm goes over the states in S in 

a systematic fashion to find the state that satisfies the condition to be schosen. The 

algorithm initializes the variable schosen to the current state and searches for the schosen 

in iterations. At iteration i the states at a distance i from the current state are compared 

against the state currently referenced by schosen. Using the given condition in previous 

section, we check if there is any state at distance i from the current state more 

preferable to schosen. 

 

Algorithm ChooseStateToExploreAnEvent 

schosen := scurrent ; 

i := 1; 

distanceToCheck = maxDistanceToCheckFrom(schosen); 

while ( i < distanceToCheck) { 

Let s be the state with max probability at distance i from scurrent;  

if (s is preferable to schosen) {  

schosen := s; 

distanceToCheck += maxDistanceToCheckFrom(schosen); 

       } 

    i++; 

} 

return schosen; 

 

We can optimize the search by exploiting the fact that we do not necessarily need 

to explore all the states in S to find schosen .The search can be stopped the moment we 

detect that it is not possible to find any state further away with a higher probability. 

This is possible since we take into account the cost of distance while comparing the 

probability of states.  We only need to know the probability of the state with 

maximum probability in S. We call this probability Pbest.   

Then the maximum distance that needs to be considered from schosen (this distance 

is noted in the algorithm as maxDistanceToCheckFrom(schosen)) is the value of 

smallest d that satisfies  

1 – (1- P(schosen))(1 - Pavg) 
d 
≥ Pbest (2) 

 

When the left hand side of (2) becomes as large as Pbest then it is not required to 

look further since even the states that might have the maximum probability, Pbest, will 

not be preferable anymore to schosen due to the distance factor.  



5   Experimental Results 

In this section, we evaluate the performance of the Probability strategy on two real 

RIAs and two test RIAs.  We have used the following metrics for performance 

evaluation. 

(1) Number of events and resets required to discover all states 

(2) Number of events and resets required to explore all transitions 

However, for simplicity we have combined the events and resets required for state 

exploration and transition exploration into a single cost factor. For this purpose, we 

have simply expressed the cost of resets in terms of number of event execution (the 

actual value used is application dependent and is based on experiments). We believe 

that number of events execution is a good metric for performance evaluation, since 

the time to crawl is proportional to the number of events executed during the crawl. 

We compare the performance of our model with the Breadth-First and the Depth-

First strategies. We compare with these strategies as these are standard graph 

exploration strategies and most of the published crawling results have used a variation 

of these standard strategies [5, 11, 14]. It is important to mention that our 

implementations of the Breadth-First and the Depth First strategies are optimized to 

use the shortest known path to reach the next state to explore (as opposed to using 

systematically resets, which is very inefficient). 

We also present, for each application the optimal number of events and resets 

required to explore all the states of the application. It is important to understand that 

this optimal value is calculated after the fact, once the model of the application is 

obtained. In our case the optimal path to visit every state of the application can be 

found by solving the Asymmetric Traveling Salesman Problem (ATSP) on the graph 

instance obtained for the application. In Traveling Salesman Problem, given a list of 

cities and their pairwise distances, the task is to find the shortest possible route that 

visits each city exactly once. The ATSP differs from its symmetric counterpart in the 

sense that paths may not exist in both directions or the distances might be different, 

forming a directed graph. This seems a reasonable strategy as a web application can 

be modeled as directed graphs with states as nodes and event executions as directed 

edges. Before calculating the optimal cost, we define the pair wise distance or cost 

between all pairs of states. This is possible as all states are reachable from the home 

state and from every state we can reach the home state, possibly using reset. 

We have used an exact ATSP solver [15] to get the optimal path. From this path, 

optimal number of event executions and resets to discover all states is obtained.  

In an effort to minimize any influence that may be caused by considering events in 

a specific order, the events at each state are randomly ordered for each crawl. Also, 

each application is crawled 5 times with each method and the average cost of these 

five runs is used for comparison. Further, for all strategies and applications the cost of 

reset is calculated separately. The value is chosen by comparing the time it takes to 

load the initial page and average execution time of an event in our tool. 

 



5.1 Test Applications 

The first real RIA we consider is an AJAX-based periodic table1. The periodic table 

contains the 118 chemical elements in an HTML table. Clicking on each cell 

containing a chemical element retrieves detailed information about the element. In 

total 240 states and 29034 transitions are identified by our crawler and the reset cost is 

8. 

The second real application considered is Clipmarks2. Clipmarks is a RIA which 

allows its users to share parts of any webpage (images, text, videos) with other users. 

For this experimental study we have used a partial local copy of the website in order 

to be consistent for the each strategy. The partial local copy of the website consisted 

of 129 states and 10580 transitions and the reset cost is 18. 

The third application, TestRIA3, is a test application that we developed using 

AJAX. TestRIA mimics standard company or personal webpage. Each state contains 

menu items such as home, contact us etc. TestRIA has 39 states and 305 transitions 

and a reset cost of 2. 

The fourth application4 is a demo web application maintained by the IBM
®
 

AppScan
®
 Team. We have used the AJAX-fied version of the website. The 

application has 45 states and 1210 transitions and a reset cost of 2. 

5.2 State Exploration 

For compactness we have used boxplots: the top of vertical lines show the maximum 

number required to discover all the states.The lower edge of the box, the line in the 

box and the higher edge of the box indicate the number required to discover a quarter, 

half and 3 quarters of all the states in the application, respectively. We will use the 

position of this box and the middle line to assess whether a method is able to discover 

new states faster than others. The boxplots are drawn in logarithmic scale. 

It is important to mention that we are only interested in two factors to define the 

efficiency of the crawling algorithms. First, the cost required to discover all the states 

of the application. Once we have discovered all the states of the application the only 

important factor that remains is the total cost to perform a complete crawl of the 

reaming transitions. The cost of the state exploration phase is important as it might 

not be feasible to finish  the crawling and we would want to explore as much states as 

possible within the given run of the algorithm. Hence it is very important to find what 

percentage of the total state space have been discovered by the crawling algorithm at 

a given time during the crawl. However, once all the states have been discovered the 

only factor remaing is the cost that the crawling algorithm takes to finish all the 

remaining transitions.  

                                                           
1 http://code.jalenack.com/periodic (Local version: http://ssrg.eecs.uottawa.ca/periodic/) 
2 http://www.clipmarks.com/ (Local version: http://ssrg.eecs.uottawa.ca/clipmarks/) 
3 http://ssrg.eecs.uottawa.ca/TestRIA/ 
4 http://www.altoromutual.com/ 



 
 

Figure1: State exploration costs (Logarithmic scale) 

 

The plots above make a very convincing statement about the efficiency of the 

Probability strategy. The paper [3] proved the efficiency of the Hypercube strategy 

compared to the current state-of-the-art commercial products and other research tools. 

It is thus useful to provide a comparative analysis of our strategy against the 

Hypercube strategy.  

For the first real RIA website (periodic table), the Probability strategy performs 

significantly better than the Breadth-First and the Depth-First both in terms of the 

final cost and the progress during the crawl. The Depth-First and Breadth-First 

strategies are both very expensive with total costs of 981716 and 88874 events 

execution respectively. The Probability strategy also performs very good compared to 

the Hypercube strategy. The progress of the crawl of both the algorithms is very 

competitive, while the Probability strategy has a smaller total cost of 28955 event 

executions compared to 29989 for the Hypercube. Further, the Probability also 

performs really well in terms of the optimal cost of the crawls only differing 

significantly towards the last quarter of the crawl.  

We see very similar results for the second real RIA (clipmarks). Again the 

Probability strategy performs better in terms of a total cost of 9717 event executions, 

the least among all the crawling strategies. In addition, it surpasses the Hypercube 

strategy’s performance during the progress of the craw, where the Hypercube results 

in a total cost of 11233 event executions. As expected, the Probability strategy 

performs better than both the Depth-First and the Breadth-First which take 19128 and 

28710 event executions respectively.  

On the test application (TestRIA), the Probability strategy performs very close to 

the optimal solution and outperforms all other strategies by a factor of more than 5 

with a total cost of 174 event executions. This is exceptionally better than the other 

strategies that have values of 868, 1310 and 1194 for the Hypercube, the Depth-First 

and the Breadth-First respectively.  

The last application (Altoro Mutual) is a demo website developed to model the 

typical operation of a bank website. As we can see, the Probability strategy again 

performs very close to the optimal solution with a total cost of 240 event executions. 



The progress of the crawl of the Probability strategy is very similar to the optimal 

solution. In addition, it outperforms the other strategies by a factor of 10 or more, 

having a total cost of 974, 7666 and 2656 for the Hypercube, the Depth-First and the 

Breadth-First respectively.  

5.3 Transition Exploration 

As explained above, we are only interested in the overall cost of the crawl in terms of 

event executions (the cost of exploring all transitions). As we can see, the Probability 

strategy is again the best in the total overall cost of crawling. For most of the websites 

the Probability strategy’s performance is better than or comparable to the Hypercube 

strategy but it significantly outperforms the Depth-First and the Breadth-First 

strategies.   

 

Table1: Transition Exploration Costs 

  Periodic Table Clipmarks TestRIA Altoro Mutual 

Probability 31403 12344 979 2526 

Hypercube 31810 12356 996 2542 

Depth-First 983582 32026 1345 7693 

Breadth-First 181924 19914 1324 3744 

 

When compared to the Hypercube strategy, the Probability strategy is simple to 

understand and implement. Hypercube strategy requires strict assumptions about the 

web application and involves complex algorithms that will probably not be 

understood by most. So our conclusion is that the Probability model is a better choice, 

much simpler and actually slightly more efficient than the Hypercube.  

When compared to the optimal solution, we see that there is still some room for 

improvement, but we are closing in. We state again that the optimal solution is 

calculated after the website model is known, and thus can only be used as a 

benchmark, not to actually crawl an unknown web application. The most striking 

factor about the Probability strategy is that it was never the worst performer and best 

in most of the cases. Further, its performance was significant both with respect to 

general purpose website and also on websites developed to model specific 

requirements.  

6   Conclusion and Future Work 

In this paper, we have presented a new crawling strategy based on the idea of model 

based crawling introduced in [3]. Our strategy aims at finding most of the states of the 

application as soon as possible but still eventually finds all the states and transitions 

of the web application. Experimental results show that this new strategy performs 

very well and outperforms the standard crawling strategies by a significant margin. 

Further, it also outperforms the Hypercube strategy [3] in most cases and it performs 



comparably in the least favorable example, while being very much simpler to 

understand and to implement. However, there is a lot more to be explored in the area 

of RIA crawling. 

First, we are trying to expand the concept of state equivalence to form a notion of 

independent and dependent states and use it to crawl websites like Google calendar, 

where most of the states are independent of each other and can be crawled 

individually.  

Second, we are exploring other models apart from the Probability and the 

Hypercube. Probability model is a very general model and doesn’t exploit the 

structure of the web application completely to its advantage. On the other hand 

Hypercube makes very strict assumption about the structure of the web application. 

We are trying to explore notions that can gain advantage from the structure of the 

application but does not make very strict assumptions. 

A third direction would be to enhance the model with the notion of “important” 

states and events, that is, some states would have priority over others and some events 

would be more important to execute than others. We believe that the model-based 

crawling strategy can be adjusted to deal with this situation. 

Finally, a fourth direction is exploring and using the model based crawling strategy 

for dictributed crawling. We are working on distributed crawling algorithms and 

exploiting the cloud services for the purpose of web application crawling. 
 

Acknowledgments: This work is supported in part by IBM and the Natural Science and Engineering 

Research Council of Canada. 

Disclaimer: The views expressed in this article are the sole responsibility of the authors and do not 
necessarily reflect those of IBM. 

Trademarks: IBM, Rational and AppScan are trademarks or registered trademarks of International 

Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names 
might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web 

at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml. 

References 

1. Jesse James Garrett. (2005) Adaptive Path. [Online].  

"http://www.adaptivepath.com/publications/essays/archives/000385.php" 

2. Bau, J., Bursztein, E., Gupta, D., and Mitchell, J.C.: State of the Art: Automated 

Black-Box Web Application Vulnerability Testing. In Proc. IEEE Symposium on 

Security and Privacy. (2010). 

3. Benjamin, K., Bochmann, G.v., Dinturk, M.E., Jourdan, G.-V. AND Onut, I.V., 

2011. A Strategy for Efficient Crawling of Rich Internet Applications. In S. Auer, 

O. Díaz & G. Papadopoulos, eds. Web Engineering: 11th International 

Conference, ICWE 2011, Paphos, Cyprus. Springer Berlin / Heidelberg. 74-89. 

4. Olston, C. and Najork, M., 2010. Web Crawling. Foundations and Trends in 

Information Retrieval, 4(3), 175-246. Available at 

http://dx.doi.org/10.1561/1500000017. 

5. Duda, C., Frey, G., Kossmann D., and Zhou, C.: AJAXSearch: Crawling, 

Indexing and Searching Web 2.0 Applications.VLDB. (2008). 

6. Frey, G.: Indexing Ajax Web Applications, Master’s Thesis, ETH Zurich. (2007). 

http://dx.doi.org/10.1561/1500000017


7. Matter, R.: Ajax Crawl: making Ajax applications searchable. Master’s Thesis. 

ETH, Zurich. (2008). 
8. Mesbah, A., and Deursen, A. v.: Exposing the Hidden Web Induced by AJAX. TUD-

SERG Technical Report Series. TUD-SERG-2008-001. (2008). 

9. Roest, D., Mesbah, A., Deursen, A. v.: Regression Testing Ajax Applications: Coping 

with Dynamism. Third International Conference on Software Testing, Verification and 

Validation. pp.127-136. (2010). 

10. Bezemer, B., Mesbah, A., and Deursen, A. v.: Automated Security Testing of 

Web Widget Interactions. Foundations of Software Engineering Symposium 

(FSE). ACM. pp. 81–90. (2009). 

11. Mesbah,A., Bozdag, E., and Deursen, A.v.: Crawling Ajax by Inferring User 

Interface State Changes. In Proceedings of the 8th International Conference on 

Web Engineering, IEEE Computer Society, 122-134. (2008). 

12. Duda, C., Frey, G., Kossmann, D., Matter, R. AND Chong Zhou, 2009. AJAX 

Crawl: Making AJAX Applications Searchable. In IEEE 25th International 

Conference on Data Engineering., 2009. 78-89. 

13. Amalfitano, D., Fasolino, A. and Tramontana, P., 2008. Reverse Engineering 

Finite State Machines from Rich Internet Applications. In Proc. of 15th Working 

Conference on Reverse Engineering. Washington, DC, USA, 2008. IEEE 

Computer Society. 69 -73. 

14. Amalfitano, D., Fasolino, R. and Tramontana, P., 2010. Rich Internet Application 

Testing Using Execution Trace Data. In Proceddings of Third International 

Conference on Software Testing, Verification, and Validation Workshops. 

Washington, DC, USA, 2010. IEEE Computer Society. 274-283. 

15. Carpento, G., Dell'amico, M. and Toth, P., 1995. Exact solution of large-scale, 

asymmetric traveling salesman problems. ACM Trans. Math. Softw., 21(4). 

16. World Wide Web Consortium (W3C). (2005) Document Object Model (DOM). 

[Online]. http://www.w3.org/DOM/ 

17. Benjamin, K., Bochmann, G.v., Jourdan, G.V., and Onut, I.V.: Some Modeling 

Challenges when Testing Rich Internet Applications for Security. In First 

International workshop on modeling and detection of vulnerabilities. Paris, 

France. (2010). 

http://www.w3.org/DOM/

