
Scalable TCP: Improving Performance in
Highspeed Wide Area Networks

Tom Kelly
∗

CERN - IT Division
1211 Geneva 23

Switzerland

ctk21@cam.ac.uk

ABSTRACT
TCP congestion control can perform badly in highspeed wide area
networks because of its slow response with large congestion win-
dows. The challenge for any alternative protocol is to better utilize
networks with high bandwidth-delay products in a simple and ro-
bust manner without interacting badly with existing traffic. Scal-
able TCP is a simple sender-side alteration to the TCP conges-
tion window update algorithm. It offers a robust mechanism to
improve performance in highspeed wide area networks using tradi-
tional TCP receivers. Scalable TCP is designed to be incrementally
deployable and behaves identically to traditional TCP stacks when
small windows are sufficient. The performance of the scheme is
evaluated through experimental results gathered using a Scalable
TCP implementation for the Linux operating system and a gigabit
transatlantic network. The preliminary results gathered suggest that
the deployment of Scalable TCP would have negligible impact on
existing network traffic at the same time as improving bulk transfer
performance in highspeed wide area networks.

1. INTRODUCTION
A communication network can experience periods where the traf-
fic offered to it exceeds the available transmission capacity; dur-
ing such periods the network is said to be congested. TCP con-
gestion control [9] was introduced to relieve congestion collapse
that had occurred in the Internet. A result of congestion control
is that resources are shared between flows during periods of con-
gestion. This sharing leads to similar throughput for flows with
similar round trip times and avoids starving individual flows. TCP
has proved to be remarkably successful at sharing bandwidth while
aggressively utilizing available capacity under a range of dynamic
traffic loads.

The TCP flow control algorithm uses a window and end-to-end ac-
knowledgments to provide reliable data transfer across a network;

∗Tom Kelly is a member of the Laboratory for Communication En-
gineering, Cambridge University Engineering Department, Trump-
ington Street, Cambridge CB2 1PZ, United Kingdom.

a brief description is given here and a more complete reference
is [15]. The sending host maintains a congestion window, cwnd,
which places an upper bound on the number of segments that may
be sent into the network awaiting acknowledgment by the receiver.1

Upon receiving a data packet the receiver schedules a cumulative
acknowledgment, that covers all received packets, to be sent to the
sender. The receiver also advertises to the sender a receive window,
rwnd, which is the size of the available socket receive buffer for
this connection. The sender is allowed to have at most the minimum
of cwnd and rwnd packets in the network awaiting acknowledg-
ment. The receive window provides flow control for the receiving
application; if the receiving application cannot process data at the
speed it is being sent the window advertisements from the receiver,
rwnd, will shrink as the socket receive buffer fills. The congestion
window is intended to provide flow control during periods in which
the network is congested. Packet loss is detected either through
the timeout of an unacknowledged packet, the receipt of several
duplicate acknowledgments, or through selective acknowledgment
(SACK) reports [12] sent by the receiver. Packet loss is used as a
signal of congestion; it is assumed to be caused by a buffer over-
flow due to offered traffic exceeding available capacity on the end-
to-end path of a connection.2 TCP senders update the congestion
window in response to acknowledgments of received packets and
the detection of congestion. For each acknowledgment received in
a round trip time in which congestion has not been detected

cwnd← cwnd +
1

cwnd

and on the first detection of congestion in a given round trip time

cwnd← cwnd

2

This process of increasing and decreasing cwnd allows TCP to ag-
gressively utilize the available bandwidth on a given end-to-end
path.

The agility of this congestion window adjustment algorithm can be
studied by considering the time taken to reach the same sending
rate following the detection of a transient congestion event. Sup-
pose a connection has a round trip time of 200ms and a packet size

1It is acknowledged that the strict definition of cwnd is in terms of
the number of bytes outstanding in the network. However the Linux
networking stack maintains cwnd in segments and this convention
is used in this paper.
2The use of explicit congestion notification (ECN) [8] by routers
allows congestion to be signaled to the sender (via acknowledg-
ments from the receiver) without the loss of packets.

of 1500 bytes. An available bandwidth of 1Gbps corresponds to
a congestion window of about 17000 packets. Immediately after
the detection of a congestion event cwnd will be set to about 8500
packets, which is equivalent to sending at 500Mbps. To reach the
sending rate of 1Gbps again will take around 8500 round trip times
or about 28 minutes! In many highspeed wide area networks this
recovery time is much longer than the time between transient con-
gestion periods. This can lead to low utilization even when the
network is uncongested for extended periods.

However, by altering the congestion window adjustment algorithm,
the agility with large windows can be dramatically improved. This
paper will consider the use of the following congestion control al-
gorithm. For each acknowledgment received in a round trip time in
which congestion has not been detected

cwnd← cwnd + 0.01

and on the first detection of congestion in a given round trip time

cwnd← cwnd− �0.125 ∗ cwnd�
The time taken for a source using this algorithm to double its send-
ing rate is about 70 round trip times for any rate; the window update
algorithm is scalable and a TCP implementing it is termed Scalable
TCP. In the previous case of a 1Gbps connection with a round trip
time of 200ms, the scalable algorithm will recover its original rate
after a transient in under 3 seconds. This suggests that this algo-
rithm could better utilize the bandwidth of a highspeed wide area
network that experiences transient congestion.

This paper studies the design, implementation, and early results re-
garding the performance of the Scalable TCP modification to TCP
congestion control. Section 2 describes the problems associated
with TCP congestion control in highspeed wide area networks and
presents a context within which Scalable TCP would be benefi-
cial. Section 3 considers the analytical properties of the general-
ized Scalable TCP algorithm and motivates the choice of the pa-
rameters 0.01 and 0.125. Section 4 presents results of experiments
performed using a Scalable TCP implementation in the Linux op-
erating system over the DataTAG highspeed transatlantic testbed.
Section 5 considers how this scheme differs from the related work
on improving the performance of congestion control in high speed
networks. Section 6 summarizes what has been achieved and gives
directions for future work.

2. MOTIVATION AND CONTEXT
This work is motivated by the poor performance of TCP when
used for bulk transfers in highspeed wide area networks. These
networks have speeds greater than 100Mbps and round trip times
above 50ms. Several communities use such networks and need to
distribute substantial amounts of data over them. For example, the
large datasets collected by the High Energy Physics, Bioinformat-
ics and Radioastronomy communities require global distribution
for the data to be analyzed effectively.

Define the supporting loss rate for a connection to be the maximum
packet loss rate that a congestion control algorithm will tolerate to
sustain a given level of throughput. Let the packet loss recovery
time for a given rate and connection be the length of time required
by a congestion control algorithm to return to its initial sending
rate following the detection of a packet loss. Traditional TCP con-
nections are unable to achieve high throughput in highspeed wide
area networks due to the long packet loss recovery times and the
need for low supporting loss rates. Table 1 shows the properties for

a given throughput of a traditional TCP connection with a round
trip time of 200ms and a segment size of 1500 bytes. A packet
loss rate of 10−7 is comparable with those that can occur on long
haul fiber links, within network devices, and in end-systems; this
places a limit on throughput before any transient congestion due to
load fluctuations are considered. This constraint on the loss rate be-
comes problematic for a connection with a round trip time of 200ms
at around 100Mbps. Furthermore the packet loss recovery time for
a 10Mbps connection with round trip time of 200ms becomes com-
parable with inter-page think times for a user’s Web requests. A
recovery time of more than a few minutes could be detrimental to
efficient utilization of a network with periods of transient conges-
tion; at a round trip time of 200ms this effect would occur at rates
of more than 100Mbps.

This paper considers whether a simple sender side change to the
congestion control algorithm is sufficient to improve highspeed wide
area network operation. Scalable TCP is an evolution of the exist-
ing congestion control algorithm that improves performance when
there is a high available bandwidth on long haul routes. It is de-
signed to be easily implemented in current TCP stacks and incre-
mentally deployable without needing modifications to network de-
vices. Scalable TCP builds on the HighSpeed TCP proposal [6] and
previous work on engineering stable congestion controls [11].

3. ANALYSIS AND DESIGN
The analysis will make use of standard fluid limit approximations
and the following notation conventions. Let each source and des-
tination pair in the network be identified with a route, r, and the
end-to-end dropping probability on a route at time, t, be denoted
by Pr(t). Let cwndr and Tr denote the sender’s congestion win-
dow and the round trip time of a connection on route r.

The generalized Scalable TCP window update algorithm responds
to each acknowledgment received in a round trip time in which
congestion has not been detected with the update

cwndr ← cwndr + a

where a is a constant with 0 < a < 1. Further, on the first detection
of congestion in a given round trip time, the congestion window is
altered by

cwndr ← cwndr − �b ∗ cwndr�
where b is a constant with 0 < b < 1. Figures 1 and 2 illustrate
the congestion window dynamics of a single connection using tra-
ditional TCP and Scalable TCP over a dedicated link of capacity
c or C (c < C). Packet loss recovery times for a traditional TCP
connection are proportional to the connection’s window size and
round trip time. A Scalable TCP connection has packet loss recov-
ery times that are proportional to the connection’s round trip time
only; this invariance to link sizes allows Scalable TCP to outper-
form traditional TCP in highspeed wide area networks. The scaling
property applies for any choice of the constants a and b; implemen-
tation and deployment constraints determine these constants. The
use of a = 0.01 and b = 0.125 will be motivated by consider-
ing Scalable TCP’s impact on legacy traffic, bandwidth allocation
properties, flow rate variance, convergence properties, and control
theoretic stability.

3.1 Response curve and bandwidth allocation
A congestion window update algorithm relates the congestion win-
dow size to the end-to-end signaling rate through a response curve.

Throughput Window Packet loss recovery time Supporting loss rate

1Mbps 17pkts 1.7s 5.2 × 10−3

10Mbps 170pkts 17s 5.2 × 10−5

100Mbps 1700pkts 2mins 50s 5.2 × 10−7

1Gbps 17000pkts 28mins 5.4 × 10−9

10Gbps 170000pkts 4hrs 43mins 5.4 × 10−11

Table 1: Characteristics of a 200ms TCP connection using traditional congestion control.

c
2

Rate
(pkts/RTT)

c

Time (RTT)

c
2

c
2

C
2

C
2

C
2

Rate
(pkts/RTT)

C

Time (RTT)

Figure 1: Traditional TCP scaling properties.

log(1+a)
−log(1−b)Rate

(pkts/RTT)

(1−b)c

Time (RTT)

c

bc

log(1+a)
−log(1−b)Rate

(pkts/RTT)

bC

(1−b)C

Time (RTT)

C

Figure 2: Scalable TCP scaling properties.

The generalized Scalable TCP algorithm has a response curve that
can be approximated for small end-to-end drop rates by3

cwndr ≈ a

b

1

Pr

The traditional TCP response curve [14] can be approximated for
small end-to-end drop rates by

cwndr ≈
√

1.5

Pr

The two response curves have different forms for the multiplicative
function of Pr; the two schemes cannot have average windows of
the same value for all end-to-end loss rates Pr . However, all that is
needed is a suitable evolutionary approach that allows connections
to better use bandwidth in wide area networks when it is available.
The argument that follows was first introduced in [6]. Traditional
TCP connections can not effectively use large windows and in prac-
tice have a limited amount of socket receive and send buffer mem-
ory available, so they will tend not to have a windows greater than a

3This can be derived by considering the congestion window size at
equilibrium through a differential equation model of cwnd or the
expectation of a stochastic model of cwnd.

certain size; call this the legacy window size lwnd. Associate with
this window size the legacy loss rate, pl, which is the maximum
packet loss rate needed to support windows larger than lwnd. The
implementation of Scalable TCP in this paper uses the traditional
congestion window update algorithm when cwnd ≤ lwnd and the
scalable congestion window update algorithm for cwnd > lwnd.
The sharing properties of Scalable TCP can then be considered in
two states. For levels of congestion with drop rates higher than
pl the Scalable TCP connections use the traditional TCP algorithm
and receive the same share as a traditional TCP stack.4 For levels of
congestion with drop rates less than pl legacy connections will have
a window of at least lwnd. Scalable TCP connections will receive
larger windows than legacy connections but the legacy connections
are never starved of bandwidth.

4There is not an intrinsic problem with using the Scalable TCP
algorithm in a small window regime; previous studies [11, 13] sug-
gest that there may be benefits to doing so in the context of ECN IP
networks. However in environments where equilibrium windows
are small, Scalable TCP connections would receive a smaller share
of the bandwidth, would react more slowly to congestion, and may
alter the dynamics of existing traffic. These effects could make
evolution through incremental deployment more difficult and so are
avoided in the design presented here.

1

10

100

1000

0.0001 0.001 0.01 0.1

W
in

do
w

 s
iz

e
(p

kt
s)

Loss rate

Standard TCP
Scalable TCP

Figure 3: Response curves for traditional TCP and Scalable
TCP.

The choice of the value lwnd could be viewed as a policy deci-
sion. If lwnd = 16, it is only when traditional TCP connections
have a window of about 420 that Scalable TCP connections of the
same round trip time will receive twice the bandwidth. This sug-
gests that concerns about Scalable TCP receiving a higher band-
width than traditional TCP connections with windows greater than
lwnd should not arise until the window size is already large enough
for there to be concerns about TCP packet loss recovery times. For
the purposes of this paper we will assume that lwnd is 16 packets;
this corresponds to 24KB with 1500 byte segments and a legacy
loss rate, pl, of 5.86 × 10−3. The response curves for traditional
TCP and Scalable TCP are plotted for an lwnd of 16 in Figure 3.5

To ensure a continuous and decreasing response curve, the Scalable
TCP response curve must pass through the point (pl, lwnd) giving
the following constraint on a and b

a

b
= pl ∗ lwnd ≈

√
1.5pl (1)

The number of free variables is now reduced to one; choosing b
fixes a.

3.2 Instantaneous rate variation
The instantaneous rate of a TCP connection probes around a mean
value giving it a share of the available capacity. It is desirable to
keep the instantaneous rate variation small so that the probing about
the mean window is small; this could be desirable for streaming
applications and improves the accuracy of fluid modelling tech-
niques. The size of this stochastic rate variation for the Scalable
TCP congestion window update algorithm has been studied previ-
ously [13].6 The coefficient of variance for the instantaneous send-
ing rate is

CoV (xr) = CoV

(
cwndr

Tr

)
∼

√
b

2
(2)

5It is not argued here that 16 is the optimal value for lwnd and
further work could consider the quantative impact that lwnd has
on the performance of Scalable TCP.
6The responses were considered in the context of an ECN imple-
mentation. However these results provide a good approximation
with large windows and low drop probabilities.

provided Pr ↓ 0. This suggests that b should be chosen as small
as possible to reduce instantaneous rate variation, a conclusion that
agrees with intuitive arguments based on the packet loss recovery
times shown in Figure 2. It appears sensible not to make the algo-
rithm have a rate variation larger than traditional TCP, so b should
satisfy b ≤ 1

2
.

The Scalable TCP algorithm responds to congestion events at most
once per round trip time. Therefore it is necessary that the window
expansion and contraction cycle lasts longer than a round trip time.7

Using the packet loss recovery time of Scalable TCP and noting that
b is the only free variable, this constraint becomes

b > 1−
√

1

1.5pl

This constraint is often trivially satisfied; with a lwnd of 16, it

becomes satisfied for any b > 0 because 1−
√

1
1.5pl

≈ −113 < 0.

3.3 Convergence
The convergence speed of an elastic rate protocol is significant be-
cause it must adapt to changing network conditions on reasonable
timescales. Ideally convergence should happen instantaneously.
However the use of packet loss as a signaling channel, the need
to provide compatibility with legacy traffic and to use a wide vari-
ety of minimal cost network devices, can make this goal difficult.
Suppose that at time t0 a sudden overload shock occurs and Pr in-
creases. Then a source will reduce its sending rate upon receiving
feedback by a factor of 1

2
in less than

log(1
2
)Tr

log(1− b)

In fact this is an overestimate of the time needed. Any overload
that causes loss and delay will lead to a lower sending rate because
acknowledgments from the receiver are needed to release packets
into the network; this self-clocking is a robust mechanism that re-
acts within a round trip time to severe overload events. Traditional
TCP congestion control corresponds to a choice of b = 1

2
; a fairly

rapid convergence speed in the face of overload.

In response to a sudden increase in the available capacity on a route,
Pr ↓ 0, and the time taken for the source to increase its sending rate
by a factor of 2 is

log(2)Tr

log(1 + a)

By contrast a traditional TCP connection would require cwndr(t0)
round trip times to respond to the increase in available capacity.
The Scalable TCP algorithm responds more effectively to changes
in available capacity when window sizes are large through its rate
invariance properties.

These convergence properties suggest that b (and also a)8 should be
chosen as large as possible for fastest convergence. This conflicts
with the desire to keep the instantaneous rate variation small which
requires b to be small, from Equation 2.

Table 2 shows the properties of a Scalable TCP connection for a
general round trip time and when it is equal to 200ms; these choices

7Implementations reacting to fine grained congestion notification,
such as ECN, do not necessarily suffer from this limitation.
8a is proportional to b by Equation 1; so a large b gives a large a.

b a Coefficient of variation for
rate

Packet loss recovery time Time to halve rate Time to double rate

1
2

1
25

0.50 17.7Tr or 3.54s Tr or 0.20s 17.7Tr or 3.54s
1
4

1
50

0.35 14.5Tr or 2.91s 2.41Tr or 0.48s 35Tr or 7.00s
1
8

1
100

0.25 13.4Tr or 2.68s 5.19Tr or 1.04s 69.7Tr or 13.9s
1
16

1
200

0.18 12.9Tr or 2.59s 10.7Tr or 2.15s 139Tr or 27.8s

Table 2: Properties of a Scalable TCP connection with a variety of parameter settings for a general round trip time or at 200ms.

of a and b are compatible with a legacy window of 16 packets. The
setting of a and b is a policy choice determined by the system prop-
erties that are deemed to be most important. It could be argued
that the variability of choosing b = 1

2
is too large. However the

slow convergence times of b = 1
16

would suggest that choosing
b between 1

4
and 1

8
is desirable. In this paper b = 1

8
is selected

because it offers a good balance between rate fluctuation and con-
vergence time. The choosing of the optimal parameter in this range
appears to make only a marginal difference to the theoretical dy-
namics of the algorithm; further experimentation using implemen-
tations based on different network stacks and real workloads will
help to refine this choice.

3.4 Stability
It has been shown [16] that for heterogeneous round trip times and
arbitrary network topologies, the generalised Scalable TCP algo-
rithm is locally stable9 about its equilibrium provided

a <
pj(ŷj)

ŷjp′
j(ŷj)

∀j ∈ J (3)

where ŷj is the equilibrium rate at each link, pj(y) is the probability
of loss at link j for an arrival rate y, and J is the set of all links.

For example, assuming Poisson packet arrivals,10 the scheme is sta-
ble if FIFO network buffers are provisioned to be of size at most 1

a
.

Hence if the network buffers can be configured the system can be
made stable in a control theoretic sense. A control theoretic ap-
proach to the design of a stable and scalable TCP using ECN is
given in [11]. Further improvements and enhancements are possi-
ble with the use of adaptive queue management (AQM) schemes at
network devices but is beyond the scope of this paper.

4. EXPERIMENTS
Scalable TCP was implemented in the network stack of the Linux
2.4.19 operating system. This kernel implements a sophisticated
TCP stack supporting the following relevant standards: TCP ex-
tensions for high performance11 [10], SACK [7], and D-SACK [8].
The stack also implements packet retransmission timeout checking
to detect lost packets12, reordering detection using D-SACK, rate
halving, and burst limiting. The Scalable TCP patch13 adds the
9This is in the sense that the differential equations for all the send-
ing rates are locally stable with respect to the feedback loop con-
trolling them.

10Other traffic models can also be considered and the results are
qualitatively similar; see [11] for some examples.

11This provides the following enhancements: window scaling,
timestamping, and protection against wrapped sequence numbers.

12This is similar to that used in TCP Vegas [2] to quickly detect
losses with a limited number of duplicate acknowledgments.

13The Scalable TCP patch used for the experiments in this paper
can be downloaded from: http://www-lce.eng.cam.ac.
uk/˜ctk21/scalable/.

6x1Gbps 6x1Gbps
2.4Gbps, 120ms

Geneva

Chicago

Figure 4: Testbed topology used for experiments.

congestion window algorithm changes, scalings to kernel interface
queues, the removal of special case small packet handling in the
SysKonnect driver, and debug counters. The scaling of kernel inter-
face queues increases the send and receive queues that lie between
the kernel and device driver. This is needed because scheduling
timeslices have remained constant while interface speeds have in-
creased.14 The SysKonnect device driver for Linux 2.4.19 copies
small packets into their own buffer to conserve memory. In order
to optimize for speed rather than space efficiency, the driver’s in-
terrupt handling routine was changed to not make this extra copy.
These changes were simple and significantly improved TCP through-
put; they will be termed the gigabit kernel modifications. In order
to adjust for the effect of delayed acknowledgments a was set to
0.02. The implementation at the sender of appropriate byte count-
ing [1], which updates the congestion window in proportion to the
exact number of bytes acknowledged, would remove the need to
adjust for delayed acknowledgments.

The DataTAG testbed consists of 12 high performance PCs that
have Supermicro P4DP8-G2 motherboards with dual 2.4GHz Xeon
processors and 2 gigabytes of memory. SysKonnect SK-9843 Gi-
gabit Ethernet cards on a 133MHz/64bit PCI bus provided con-
nectivity to the testbed network. 6 servers are located at CERN,
Geneva, and 6 servers at StarLight, Chicago. The clusters are con-
nected through two Cisco 76xx routers with a 2.4Gbps packet over
SONET link between Geneva and Chicago. The PCs are connected
to each router through gigabit Ethernet ports. This topology is
shown in Figure 4. The round trip time for a ping from Geneva
to Chicago was 120ms. In the experiments that follow the interface
between Geneva and Chicago had a FIFO queue of 2048 packets.
All the other gigabit Ethernet interfaces on the routers had the fac-
tory default setting of a 40 packet FIFO queue. At most 9% of the
bandwidth-delay product is available as buffers on the path; this

14The transmit side queue is limited by a device’s txqueue vari-
able. The receive side queue size is set by the sysctl variable
net.core.netdev max backlog. These were increased to 2000
and 3000 respectively to hold the increased number of packets that
can arrive during a period where the operating system cannot pro-
cess them immediately.

Number of flows 2.4.19 TCP 2.4.19 TCP with gigabit
kernel modifications

Scalable TCP

1 7 16 44
2 14 39 93
4 27 60 135
8 47 86 140
16 66 106 142

Table 3: Number of 2 Gigabyte transfers completed in 1200 seconds.

trend toward a decrease in available buffering delay might continue
due to the cost of implementing highspeed memory systems in net-
work devices.

Three sender side test cases are compared: TCP in an unaltered
Linux 2.4.19 kernel, TCP in a Linux 2.4.19 kernel with the gigabit
kernel modifications, and Scalable TCP in a Linux 2.4.19 kernel
with the gigabit kernel modifications. The receivers used an unal-
tered Linux 2.4.19 kernel in all cases. The experiments were de-
signed to explore the performance of Scalable TCP for bulk data
transfer as could be found in wide area scientific networks.

4.1 Basic performance
In these tests 4 server and receiver pairs were used with TCP flows
distributed evenly across the 4 machines. Each receiver in Chicago
requested a file of size 2 Gigabytes from its associated server in
Geneva. The server responded by transferring 2 Gigabytes of data
(from memory) back to the receiver in Chicago. Upon comple-
tion of the 2 Gigabyte transfer the connection was completed and
another request was initiated. This was intended to capture some
slow-start and termination dynamics. In all cases each TCP socket
had send and receive buffers set to 64MB; this allowed a single flow
to make full use of any bandwith available to it.

Table 3 shows the results of these experiments. A significant through-
put improvement of 60% to 180% was observed simply by scal-
ing the kernal interface queues and removing the copying of small
packets in the receive path of the SysKonnect device driver. The
Scalable TCP congestion control algorithm further increased through-
put by 34% to 175% over that observed with traditional TCP using
the gigabit kernel modifications. With one Scalable TCP flow on
each of four machines the bandwidth is effectively utilised at 78%
of maximal performance. Using 16 Scalable TCP flows across four
machines acheived 81% of the maximal performance possible over
a saturated 2.4Gbps link after accounting for the required IP and
TCP header overhead incurred with packets of size 1500 bytes.15

The Linux 2.4.19 kernel with gigabit kernel modifications could
get 61% of the maximal 2.4.Gbps performance with 16 flows. A
standard Linux 2.4.19 kernel achieved at most 38% of the maximal
performance with 16 flows.

4.2 Performance with Web traffic
These tests attempted to measure the impact on Web traffic of large
bulk transfer users. In particular they explore whether Scalable
TCP users have a detrimental effect on existing TCP users. In these
tests, three receiver and server pairs each generated traffic equiv-
alent to 1400 active Web users.16 Two machine pairs generated

15For a combined IP and TCP header using the timestamp option
the maximal capacity is about 96% of the stated interface capacity.

16For each pair of machines 1400 users was deemed to be the max-
imum number of web users that could be emulated without intro-

transfer requests of 2 Gigabytes in size, in the same way as the ba-
sic throughput test, with eight transfers in progress across the two
machines at any one time. The parameters used for the Web traffic
model are given in Table 4; these parameters are the same as those
measured in [5] to generate self-similar traffic. The Web traffic was
made repeatable in the sense that the sample paths of user think
times, embedded pages, inter-object times and page-sizes were the
same for a given user across each test. This repeatability allowed
the Web traffic to be run in isolation and then with additional traf-
fic to measure the impact of the bulk traffic on the Web transfers.
Notice that the load of a web user is elastic because the next page
is not requested until the current one is received. Furthermore be-
cause the sample paths in each test is identical, if the total traffic
transferred in two tests is identical then this implicitly shows that
the loss and delay characteristics are also similar. Table 5 displays
the results of the experiments on mixing the traffic types.

In none of the tests did the Web traffic experience any noticeable
change in throughput. This offers evidence to suggest that the de-
sign of Scalable TCP has indeed provided a solution with negli-
gible impact on existing traffic. The standard Linux 2.4.19 kernel
with no modifications achieved 40% of the maximal possible sys-
tem throughput over the time period. Applying the gigabit kernel
modifications improved traditional TCP performance and achieved
52% of the maximal possible throughput. The bulk transfers using
the Scalable TCP algorithm boosted the total traffic transferred to
75% of the maximum possible throughput.

A weakness of the experiment presented here is that the background
traffic only forms about 45% of the total capacity. Hence in or-
der to be confident that Scalable TCP users do not adversely affect
background traffic more experiments covering a wider range of sce-
narios are required. It remains further work to evaluate the perfor-
mance and impact of Scalable TCP in the presence of a wider range
of background traffic conditions.

5. RELATED WORK
There are several other approaches to improving TCP performance
in highspeed wide area networks which only alter the sender side
of a TCP connection and do not impose additional requirements on
network devices.

Several authors have made the case for using TCP Vegas [2, 17]
and similar variants [3] in highspeed networks. The argument pro-
ceeds by observing that TCP Vegas uses network buffer delay as an
implicit congestion signal as opposed to drops. Hence if network
buffer delay can be controlled and used as a signaling mechanism,

ducing overload artifacts due to host saturation. Furthermore this
traffic is not completely representative of Web traffic observed in
real networks because only one round trip time was available for
experimental purposes.

Component Probability density function Parameters Mean

Think times (sec) (Pareto) p(x) = αkαx−(α+1), x > k k = 10.0, α = 2.0 20.0

Objects per page (Pareto) p(x) = αkαx−(α+1), x > k k = 3.0, α = 1.5 9.0

Request file sizes (bytes) (Pareto) p(x) = αkαx−(α+1), x > k k = 12000, α = 1.2 72000

Inter object times (sec) (Pareto) p(x) = αkαx−(α+1), x > k k = 0.5, α = 1.5 1.5

Table 4: Summary of distributions and parameters used in the Web user TCP connection model.

Type of bulk transfer users Web traffic transferred 2 Gigabyte transfers completed

No bulk transfers 65GB n/a
TCP in 2.4.19 65GB 36
TCP in 2.4.19 with buffer scaling 65GB 58
Scalable TCP 65GB 96

Table 5: Performance with 4200 concurrent Web users and 8 bulk transfer users over 1200 seconds.

it should be possible to run the network at very high utilizations.
This approach may prove to be successful but is challenging to
implement. To succeed TCP Vegas implementations are needed
that can run robustly in environments where noise affects delay es-
timates; noise could arise from heterogeneous network buffering
schemes, operating system scheduling, network firewall process-
ing, and cross traffic which does not control buffer delay such as
traditional TCP or UDP streams.

Others have used mechanisms to make one logical connection be-
have like multiple TCP connections to improve performance in
high bandwidth wide area networks; this can be achieved either at
the transport layer [4] or at the application layer by opening multi-
ple connections. The results displayed in Table 3 show that this can
be a pragmatic solution to improve throughput. However it can be
difficult to set the required protocol parameters in a way that con-
sistently provides good performance without causing a detrimental
effect on existing network traffic when congestion occurs.

This work builds on the Highspeed TCP proposal [6] and uses
the same arguments to achieve good sharing with legacy appli-
cations. The Scalable TCP algorithm is similar to the algorithm
that would arise if the response curve of a Highspeed TCP connec-
tion was set to be proportional to 1

p
. However the Scalable TCP

algorithm utilises constants to increment and decrement the win-
dow rather than Highspeed TCP’s parameterization by the current
window size. This makes Scalable TCP simpler to implement and
model mathematically; this work shares the analysis and design
methods used to engineer other ECN TCP variants [11, 13].

6. CONCLUSION
Scalable TCP presents a simple change to the congestion window
update algorithm which improves throughput in highspeed wide
area networks. The performance improvement can be dramatic
for senders using the Scalable TCP algorithm in bulk transfer net-
works; the improvement attributable to the algorithm can some-
times be over 100%. The scheme also promises to interoperate
well with legacy traffic; results from the experiment conducted with
Web traffic using traditional TCP stacks in parallel with several
Scalable TCP flows performing bulk transfers showed negligible
impact on the Web traffic transferred. Further work is still needed
to consider a wide range of background traffic scenarios. A surpris-
ing result of the experiments performed is that simple optimizations
to kernel device drivers can improve traditional TCP performance

by over 100% when compared to a standard kernel.

More work is needed to consider the impact of heterogeneous round
trip times. There may be a requirement to correct the bias TCP
has toward connections with smaller round trip times; the methods
used for scalable ECN variants [11] could provide a good starting
point for such modifications. Additional work could also consider
more complex workload models which capture the needs of the
applications that may be run on highspeed wide area networks.

7. ACKNOWLEDGMENTS
Jean-Philippe Martin-Flatin offered valuable comments on early
drafts of this paper and useful advice. Helpful discussions on the
design of Scalable TCP were had with Frank Kelly, Sally Floyd,
and Glenn Vinnicombe. Useful feedback was also received from
Les Cottrell, Richard Hughes-Jones and Sylvain Ravot. Thanks
also go to the DataTAG testbed support teams at CERN, Caltech
and StarLight without whom this work would not be possible. The
reviewers deserve thanks for their valuable feedback that improved
the quality of this paper. This work was funded by the IST Pro-
gramme of the European Union (grant IST-2001-32459, DataTAG
project), the Royal Commission for the Exhibition of 1851, and
AT&T Labs - Research.

8. REFERENCES
[1] M. Allman. TCP Byte Counting Refinements. ACM

Computer Communication Review, 29(3), July 1999.

[2] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End
Congestion Avoidance on a Global Internet. IEEE Journal on
Selected Areas in Communications, 13(8):1465–1480,
October 1995.

[3] D. H. Choe and S. H. Low. Stabilized Vegas. In Proc. of the
39th Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL, October 2002.

[4] J. Crowcroft and P. Oechslin. Differentiated End-to-End
Internet Services using a Weighted Proportional Fair Sharing
TCP. Computer Communication Review, 28(3), July 1998.

[5] A. Feldmann, A. Gilbert, P. Huang, and W. Willinger.
Dynamics of IP Traffic: A Study of the Role of Variability
and the Impact of Control. In SIGCOMM 1999, Boston, MA,
August 1999.

[6] S. Floyd. HighSpeed TCP for Large Congestion Windows.
Internet Draft <draft-floyd-tcp-highspeed-02.txt>, February
2003. Work in progress.

[7] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An
Extension to the Selective Acknowledgement (SACK)
Option for TCP. Internet RFC 2883, July 2000.

[8] S. Floyd, K. K. Ramakrishnan, and D. Black. The Addition
of Explicit Congestion Notification (ECN) to IP. Internet
RFC 3168, September 2001.

[9] V. Jacobson. Congestion Avoidance and Control. In
SIGCOMM 1988. An updated version is available via ftp:
//ftp.ee.lbl.gov/papers/congavoid.ps.Z.

[10] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High performance. Internet RFC 1323, May 1992.

[11] T. Kelly. On Engineering a Stable and Scalable TCP Variant.
Technical Report CUED/F-INFENG/TR.435, Laboratory for
Communication Engineering, Cambridge University, June
2002.

[12] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgment Options. Internet RFC 2018,
October 1996.

[13] A. Misra and T. J. Ott. Performance Sensitivity and Fairness
of ECN-Aware ’Modified TCP’. In Networking 2002:
Networking Technologies, Services, and Protocols;
Performance of Computer and Communication Networks;
and Mobile and Wireless Communications, Second
International IFIP-TC6 Networking Conference
Proceedings.

[14] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP Reno Performance: A Simple Model and its Empirical
Validation. IEEE/ACM Transactions on Networking,
8(2):133–145, April 2000.

[15] W. R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols.
Addison-Wesley, 1994.

[16] G. Vinnicombe. On the stability of networks operating
TCP-like congestion control. In Proc. of the 15th IFAC World
Congress on Automatic Control, Barcelona, Spain, July
2002.

[17] E. Weigle and W. Feng. A Case for TCP Vegas in
High-Performance Computational Grids. In Proc. of the 9th
IEEE International Symposium on High performance
Distributed Computing (HPDC’01), San Francisco, CA,
August 2001.

