
IS
S

N
 0

24
9-

63
99

ap por t
de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Higher-order abstract syntax in Coq

Joëlle Despeyroux , Amy Felty et André Hirschowitz

N˚ 2556
Mai 1995

PROGRAMME 2

Higher-order abstract syntax in CoqJoëlle Despeyroux �, Amy Felty �� et André Hirschowitz ���Programme 2 � Calcul symbolique, programmation et génie logicielProjet CroapRapport de recherche n�2556 � Mai 1995 � 18 pagesAbstract: The terms of the simply-typed �-calculus can be used to express the higher-order abstract syntax of objects such as logical formulas, proofs, and programs. Supportfor the manipulation of such objects is provided in several programming languages (e.g.�Prolog, Elf). Such languages also provide embedded implication, a tool which is widelyused for expressing hypothetical judgments in natural deduction. In this paper, we show howa restricted form of second-order syntax and embedded implication can be used together withinduction in the Coq Proof Development system. We specify typing rules and evaluationfor a simple functional language containing only function abstraction and application, andwe fully formalize a proof of type soundness in the system. One di�culty we encountered isthat expressing the higher-order syntax of an object-language as an inductive type in Coqgenerates a class of terms that contains more than just those that directly represent objectsin the language. We overcome this di�culty by de�ning a predicate in Coq that holds onlyfor those terms that correspond to programs. We use this predicate to express and provethe adequacy for our syntax.Key-words: Higher-order abstract syntax, Coq, theorem proving, logical framework, typetheory, �-calculus. (Résumé : tsvp)This article appeared in M. Dezani and G. Plotkin, editors, Proceedings of the international conferenceon Typed Lambda Calculi and Applications (TLCA), volume 902, pages 124-138. Springer-Verlag LectureNotes in Computer Science, 1995.�INRIA, Sophia-Antipolis. Email: joelle.despeyroux@sophia.inria.fr��AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, USA. felty@research.att.com���CNRS URA 168, University of Nice, 06108 Nice Cedex 2, France. andre.hirschowitz@sophia.inria.fr
Unité de recherche INRIA Sophia-Antipolis

2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone : (33) 93 65 77 77 – Télécopie : (33) 93 65 77 65

Syntaxe abstraite d'ordre supérieur en CoqRésumé : Les termes du �-calcul simplement typé peuvent être utilisés pour décrire ensyntaxe abstraite d'ordre supérieur des objets tels que des formules logiques, des preuvesou des programmes. Des langages de programmation tels que �Prolog et Elf permettent demanipuler ces objets. Ces langages permettent aussi d'employer l'implication plongée (`em-bedded implication'), possibilité largement exploitée pour exprimer les jugements de la dé-duction naturelle. Dans cet article, nous montrons comment utiliser une forme restreinte desyntaxe abstraite d'ordre deux et d'implication, conjointement avec l'induction, dans le sys-tème de développement de preuves Coq. Nous spéci�ons les règles de typage et d'évaluationd'un langage fonctionnel simple contenant seulement l'abstraction et l'application et nousformalisons une preuve de préservation des types dans le système. Le problème est que lasyntaxe d'un langage objet donnée à l'ordre supérieur par un type inductif génère trop determes. La solution présentée ici consiste à dé�nir un prédicat Coq vrai sur les seuls termesqui correspondent à des programmes. Nous utilisons ce prédicat pour exprimer et prouverl'adéquation de notre syntaxe.Mots-clé : Syntaxe abstraite d'ordre supérieur, Coq, théories typées, �-calcul.

Higher-order abstract syntax in Coq 31 IntroductionAbstraction in the �-calculus can be used to represent various binding operators such asquanti�cation in formulas or abstraction in functional programs. By making use of theimplementation of the �-calculus in programming languages that support it, the programmeris freed from such concerns as implementing substitution algorithms and correctly handlingthe scope and names of bound variables. Many examples exist and illustrate the usefulnessof higher-order syntax in programming and theorem proving. For example, the LogicalFramework (LF) [10] provides a uniform framework for specifying a large class of languagesand inference systems. A variety of logics and typed �-calculi have been speci�ed usingit [2]. Theorem provers for several of these logics have been speci�ed and implemented inthe logic programming language �Prolog, which provides support for the manipulation ofobjects expressed in higher-order syntax [5, 6]. The �Prolog language has also been used tospecify program evaluators and transformers [7, 8]. Elf, a logic programming implementationof LF, has been used to specify and verify properties of inference systems [11, 14] andcompilers [9]. In many of these examples, embedded implication (i:e:, an implication on theleft of an implication) is used, providing an elegant mechanism for handling scoping of setsof assumptions during proof construction, or of contexts during program evaluation.Higher-order syntax and hypothetical judgments can be expressed in many theoremprovers. However, there is little experience using them in proofs. In this paper, we illustratethe use of a restricted form of second-order syntax and embedded implication in the CoqProof Development system [4] by de�ning typing rules and evaluation for a simple functionallanguage containing only function abstraction and application. We prove type soundnessfor this language, i:e:, that evaluating a term preserves its type. By using this syntax muchof the details of proofs, in particular those concerning substitution and names and scopes ofvariables, are greatly simpli�ed. In addition, this work represents a step towards the goalof providing support for higher-order abstract syntax and allowing both programming andprogram veri�cation in a uni�ed setting.We have chosen the Coq Proof Development System because it implements the Calculusof Inductive Constructions (CIC) [13], a type theory which provides a notion of inductivede�nitions. De�ning a type inductively provides a principle of structural induction andan operator for de�ning functions recursively over the type. These operators can be useddirectly and there are no requirements placed on the user to prove their correctness. However,in order to use the built-in support for induction, we had to overcome two obstacles.The �rst obstacle is that negative occurrences of the type being de�ned are not allowedin inductive de�nitions. If L is the type of terms of the language being de�ned, the usual wayto express the higher-order syntax of an abstraction operator such as function abstractionin our example is to introduce a constant such as Lam and assign it the type (L! L)! L.That is, Lam takes one argument of functional type. Thus function abstraction in theobject-language is expressed using �-abstraction in the meta-language. As a result, boundvariables in the object-language are identi�ed with bound variables in the meta-language.In inductive types in Coq, negative occurrences such as the �rst occurrence of L in theabove type are disallowed. As in [3], we get around this problem by introducing a separateRR n�2556

4 J. Despeyroux, A. Felty & A. Hirschowitztype var for variables and giving Lam the type (var ! L) ! L. We must then add aconstructor for injecting variables into terms of L. Thus, in our restricted form of higher-order syntax, we still de�ne function abstraction using �-abstraction in Coq and it is stillthe case that �-convertible terms in our object-language map to �-convertible terms in Coq,but we cannot directly de�ne object-level substitution using Coq's �-reduction. Instead wede�ne substitution as an inductive predicate. Its de�nition is simple and similar to the onefound in [12].The second obstacle is that de�ning the type L as an inductive type with the usualconstructors for application and abstraction plus the special constructor for variables givesa set of terms in Coq that is �too large�. That is, there are more terms in L than thosethat correspond to objects in the object-language. To solve this problem for our functionallanguage, we succeeded in the task of de�ning an object-level predicate, which we call valid,that is true only for those terms that correspond to programs. This predicate, however,does allow some terms that do not directly represent programs, namely, those that areextensionally equal to terms that do. We de�ne extensional equality for the type L in Coq,and consider that each term of the object-language is in fact represented by an equivalenceclass of terms determined by this equality relation.This work extends two related projects where higher-order syntax is used in formal proof.In [9], Elf is used in compiler veri�cation. In Elf, there is no quanti�cation over predicates,and thus induction principles cannot be expressed inside the language. As a result, muchof the detail of proofs must be done outside the system. Tools such as schema-checking [14]have been developed to help with this task. In [3], a di�erent approach to higher-ordersyntax in Coq is adopted. There, like here, a separate type var for variables is introducedand Lam is de�ned as above. However, instead of directly representing (closed) terms ofthe object-language by terms of type L, closed and open terms of the object-language areimplemented together as functions from lists of arguments (of type L) to terms of type L.Semantics are given on these functional terms. A predicate on these terms is introducedwhich de�nes valid terms to be the expected ones. Induction over terms is carried out byusing the induction principle for this predicate. Here, we instead de�ne typing and evaluationdirectly on (closed) terms of type L. We succeed in reasoning about them by directly usingthe induction principles generated by their de�nitions.The rest of the paper is organized as follows. In Section 2, we de�ne the higher-ordersyntax of our functional language in Coq. In Sections 3, 4, 5, and 6, we show that oursyntax adequately represents our object-language. In Section 3, we give a de�nition of ourobject-language in LF for which adequacy has already been proved, and in Section 4, weexpress a translation between the LF and Coq syntaxes. In Section 5, we explain which kindof terms should be ruled out and the need for extensionality. In Section 6, we implement thepredicate valid which selects terms that represent terms of the object-language and provethe correctness of this implementation. In Section 7, we de�ne and implement substitution inCoq and prove its correctness. Although the de�nitions of valid and substitution are simple,�nding them was one of the main challenges of this work. In de�ning them, and in the proofsin this paper, we succeeded in avoiding any need to refer to variable names or occurrences ofINRIA

Higher-order abstract syntax in Coq 5variables in terms, or a notion of fresh variables not occurring in terms. Section 8 presentsthe Coq de�nitions for typing and evaluation in the object-language, which specify the usualnatural semantics style presentation of these judgments, and discusses the Coq proof of typesoundness. In Section 9, we conclude and discuss future work.Notation. In proving the adequacy of our representation and correctness of substitution,we will often use notation close to the syntax of Coq. To make the distinction, for thosede�nitions or statements not intended to be Coq or LF de�nitions, we will use (*) as asuperscript on Coq keywords.2 Specifying Provisional SyntaxWe assume the reader is familiar with the Calculus of Inductive Constructions. We simplynote the notation used in this paper, much of which is taken from the Coq system. Let Mand N represent terms of CIC. The syntax of terms is as follows.Prop j Set j Type j MN j �x : M:N j 8x : M:N j M ! N jM ^N j M _N j 9x : M:N j :M j M = N j Rec M N jInductive Definition M : N fM1 j : : : j Mng jCase x : M of M1) N1; : : : ;Mn) NnHere 8 is the dependent type constructor and the arrow (!) is the usual abbreviation whenthe bound variable does not occur in the body. Of the remaining constants, Prop, Set,Type, �, Rec, and Case are primitive, while the others are de�ned. Rec and Case are theoperators for de�ning inductive (Case) and recursive (Rec) functions over inductive types.Equality on Set (=) is Leibnitz equality.A parameter is introduced using the Parameter keyword and inductive types are introdu-ced with an Inductive Set or Inductive De�nition declaration where each constructor is givenwith its type, separated by vertical bars.We specify a provisional syntax for our object-language, the �-calculus, by introducinga type for variables and de�ning terms and types inductively.Parameter var : Set:Inductive Set L =V ar : var ! L j App : L! L! L j Lam : (var ! L)! L:Inductive Set tL = TV ar : var ! tL j Arrow : tL! tL! tL:For instance, (Lam (�x : var: (App (V ar x) (V ar x)))) encodes the function �x:(x x).This syntax is provisional since, although it is clear how to encode each term of the object-language as a term of type L, for most instantiations of the type var, the type L containsexotic terms, that is, terms that do not encode any �-term. Describing these terms and�nding a way to rule them out is the subject of the next few sections.The following induction principle for L is generated by the system and proven automa-tically. It illustrates a general form of induction over higher-order syntax.RR n�2556

6 J. Despeyroux, A. Felty & A. Hirschowitz8P : L! Prop:(8v : var:(P (V ar v)))!(8m;n : L:(P m)! (P n)! (P (App m n)))!(8E : var ! L:(8v : var:(P (E v)))! (P (Lam E)))!8e : L:(P e):By asserting var as a parameter, the theorems we prove will hold for any instantiationof this type. The important ones to consider will be those that satisfy any axioms we assertwhich make assumptions about this type. All those that we will need here should follow fromthe var nat assumption below which asserts a surjective mapping from var to the naturalnumbers.Inductive Set nat = 0 : nat j S : nat! natAxiom var nat : 9s : var ! nat: 8n : nat: 9v : var: (s v) = n:3 Specifying Syntax in LFTo prove that our syntax adequately represents our object-language, we begin with an LFsignature for the �-calculus, for which adequacy has already been proven [2]. In LF, thesyntax is introduced simply by declaring the type l0 for terms and two constructors forapplication and abstraction.l0 : Typeapp0 : l0 ! l0 ! l0lam0 : (l0 ! l0)! l0:The set of (���-equivalence classes of) LF terms generated by this signature has threeimportant properties, which we state informally as follows:1. All terms of the object-language can be represented (as trees) using only the twoconstructors (induction principle).2. Each term has a unique representation (injection principle).3. Any two terms that are extensionally equal are also equal (extensionality principle).The formulation of these principles, which we will not give here, involves LF terms of typel0, l0 ! l0, l0 ! l0 ! l0, etc. We will use this sequence of types in the translation of ourobject-language from the LF representation to the Coq representation in the next section.Thus we give a formal de�nition:De�nition� ln := if n = 0 then l0 else l0 ! ln�1:In the context of this sequence of types, instead of the original two constructors, the inductionand injection principles involve what we call the higher-order constructors, which are de�nedas follows: INRIA

Higher-order abstract syntax in Coq 7De�nition� ref = �n : nat:�i 2 [0::n � 1]:�xn�1; : : : ; x0 : l0:xiDe�nition� app = �n : nat:�e; e0 : ln:�xn�1; : : : ; x0 : l0:(app0 (e xn�1 : : : x0) (e0 xn�1 : : : x0))De�nition� lam = �n : nat:Case n of0) �e : l1: (lam0 e)(S m)) �e : lm+2: �xm; : : : ; x0 : l0:(lam0 (e xm : : : x0)):These higher-order constructors will allow us to give a very simple translation from theabove LF syntax into Coq (see below). Note that they are not LF terms. However, for eachn � 0 and i < n, the terms (ref n i), (app n), and (lam n), which we abbreviate as refn;i,appn, and lamn, are LF terms. These three families of higher-order �-terms have naturalinterpretations in any Cartesian closed category with re�exive objects (cf [1] de�nition 9.3.1page 219). The interpretation there is highly semantic in nature. Our purpose here is syntax,and our motivation for the above de�nitions is not the use of object-level �-reduction.In [3], our provisional syntax was used to yield and manipulate an implementation ofl0, and in fact of the ln's. There, adequacy caused no problem, but the �nal syntax andsemantics were invaded by (object-level) lists. Here we will succeed in implementing syntaxand semantics without object-level lists.4 Translation Between LF and Coq SyntaxesIn order to express our translation we de�ne the Coq counterpart of the types ln and thecorresponding higher-order constructors.De�nition� Ln := if n = 0 then L else var ! Ln�1:De�nition� Ref = �n : nat:�i 2 [0::n � 1]:�xn�1; : : : ; x0 : var:(V ar xi)De�nition� App = �n : nat:�e; e0 : Ln:�xn�1; : : : ; x0 : var:(App (e xn�1 : : : x0) (e0 xn�1 : : : x0))De�nition� Lam = �n : nat:Case n of0) �e : L1: (Lam e)(S m)) �e : Lm+2:�xm; : : : ; x0 : var:(Lam (e xm : : : x0)):As before, we use abbreviations Refn;i, Appn, and Lamn.To show the correspondence between Coq terms of type L and LF terms of type l0, webegin by de�ning the following natural translation Trans from the ln's into the Ln's.Inductive De�nition� Trans : 8n : nat: ln ! Ln ! Prop= Trans ref : 8n : nat:8i 2 [0::n � 1]:(Trans n refn;i Refn;i)j Trans app : 8n : nat:8a; b : ln:8a0; b0 : Ln: (Trans n a a0)!(Trans n b b0)! (Trans n (appn a b) (Appn a0 b0))j Trans lam : 8n : nat:8e : ln+1:8f : Ln+1: (Trans (n+ 1) e f)!(Trans n (lamn e) (Lamn f)):RR n�2556

8 J. Despeyroux, A. Felty & A. HirschowitzProposition�: The above de�nition Trans de�nes, for each n, an injective map from ln toLn.The proof of this proposition relies heavily on the induction and injection principles men-tioned earlier. For a similar statement and a fully mechanized proof of it, see [3]. Our nexttask is to characterize the image of this translation, which in fact is the subset of terms inLn that specify �-terms, and thus are the terms we are interested in. The natural de�nitionthat selects this subset is the following one (see [3]):Inductive De�nition� V alid : 8n : nat: Ln ! Prop= V alid ref : 8n; i : nat:(i < n)! (V alid n Refn;i)j V alid app : 8n : nat:8e; e0 : Ln:(V alid n e)! (V alid n e0)! (V alid n (Appn e e0))j V alid lam : 8n : nat:8e : Ln+1: (V alid (n+ 1) e)! (V alid n (Lamn e)):Indeed, we have the following result, whose proof is straightforward.Theorem� : For each integer n, Trans yields a bijection between terms of type ln andterms of type Ln satisfying (V alid n).Note that V alid is not a Coq predicate. Furthermore, it is not clear how to de�ne a Coqpredicate for each instance of n without using the de�nition for n + 1 (see the V alid lamcase). This is precisely the task we will turn to now, at least for n = 0. We will succeed onlymodulo extensionality (see Section 6). Note that the V alid ref case becomes irrelevantwhen n = 0 and thus only closed terms satisfy (V alid 0). Our solution will replace theproposition (V alid (n + 1) e) with an equivalent one that depends on n instead of n + 1,thus allowing us to drop n altogether. One obvious candidate is 8v : var:(V alid n (e v)).However, as we will see, this is not su�cient and does not rule out all the necessary terms.5 Exotic Terms, Extensionality and Extended ValidityThere are three kinds of exotic terms that the type L may contain. We illustrate by instan-tiating var to nat. In this case, we have irreducible functional terms of type nat ! L thatuse a Case operator. Exotic terms of type L are generated through the Lam constructor.The �rst kind of exotic term is illustrated by the following term:exot1 = (Lam �x : nat:Case x : nat of 0) (V ar 0) (S n)) (V ar (S n))):The above term is extensionally equal to the term (Lam �x : nat:(V ar x)), and thus wecould accept it as a well-formed term. Extensional equality is de�ned as the following Coqde�nition.
INRIA

Higher-order abstract syntax in Coq 9Inductive De�nition eqL : L! L! Prop= eqL var : 8x : var(eqL (V ar x) (V ar x))j eqL app : 8m1;m2; n1; n2 : L:(eqL m1 n1)! (eqL n2 m2)! (eqL (App m1 m2) (App n1 n2))j eqL lam : 8M;N : var! L:(8x : var:(eqL (M x) (N x)))! (eqL (Lam M) (Lam N)):It will be di�cult to de�ne predicates which are able to distinguish V alid-terms from termsextensionally equal to them. For instance our predicate subst (see below) does not. Wecircumvent this problem by considering that a �-term is in fact represented by an equivalenceclass of terms for this eqL relation.The second kind of exotic terms are the open ones, namely those with �free variables�such as exot2 = (V ar (S 0)). These open terms will play a role in our approach; we will�rst introduce a meta-level predicate V alid v, a slight modi�cation of V alid allowing openterms; we will then succeed in de�ning a Coq predicate valid which implements (V alid v 0)up to extensionality.The third kind of exotic term is more problematic and we de�nitely want our validpredicate to discard them. These are terms that contain functions that are not �uniform�in their argument. For example, let exot3 :=�f; x : nat:Case x : nat of 0) (V ar x) (S n)) (App (V ar f) (V ar n)):The term (Lam �f : nat:(Lam �x : nat:(exot3 f x))) does not represent a �-term.In order to integrate the �rst kind of exotic term, we de�ne the meta-level predicateV alid ext which selects terms extensionally equal to V alid ones. For this, we have toextend eqL to the sequence of types Ln. Note that for each integer n, eqLn is a Coq term.De�nition� eqL0 = eqL:De�nition� eqLn+1 = �e; f : Ln+1:8v : var:(eqLn (e v) (f v)):De�nition� V alid ext = �n : nat:�e : Ln:9e0 : Ln:((eqLn e e0) ^ (V alid n e0)):In order to integrate exotic terms of the second kind, we start by introducing a fourthhigher-order constructor V .De�nition� V = �n : nat:�v : var:�x1 : var: : : : �xn : var:(V ar v):Note that although V is not a Coq term, for each n, (V n) is a Coq term in Ln+1, whichwe denote by Vn. Similarly, Vn;v denotes (V n v). We are now in a position to mimicour characterization of well-formed closed terms through V alid and V alid ext to obtain thefollowing predicates, V alid v and V alid v ext, which characterize our open terms.
RR n�2556

10 J. Despeyroux, A. Felty & A. HirschowitzInductive De�nition� V alid v : 8n : nat: Ln ! Prop= V alid v var : 8n : nat:8v : var:(V alid v n (Vn v))j V alid v ref : 8n; i : nat:(i < n)! (V alid v n Refn;i)j V alid v app : 8n : nat:8e; e0 : Ln:(V alid v n e)! (V alid v n e0)! (V alid v n (Appn e e0))j V alid v lam : 8n : nat:8e : Ln+1:(V alid v (n+ 1) e)! (V alid v n (Lamn e)):De�nition� V alid v ext =�n : nat:�e : Ln:9e0 : Ln:((eqLn e e0) ^ (V alid v n e0)):In the next section, we will implement (V alid v ext 0) and (V alid ext 0).6 Implementing ValidityAs stated earlier, for any n, the challenge of de�ning a Coq predicate implementing (V alid n)is to remove the dependence of the Lam case on (n + 1). We show here how we success-fully overcome this di�culty for the case when n = 1 and de�ne the Coq predicate valid1implementing (V alid 1) modulo extensionality. Since we only need (V alid 0), we can thenimplement it directly (modulo extensionality) using valid1.We denote by V Ln the subset of V alid v ext-terms in Ln and by V L the union of theV Ln's.The basis of our implementation of (V alid 1) is the following fact which shows that weare able to express quite simply (V alid 2) in terms of (V alid 1) (modulo extensionality).Proposition� Separate val : 8e : var ! var ! L:(8v : var:(V alid v ext 1 (e v)))!(8v : var:(V alid v ext 1 �u : var:(e u v)))! (V alid v ext 2 e):Proof: It follows from the induction and injection principles that equivalence classes (moduloeqLm) of terms of V Lm are in one-one correspondence with (second-order abstract syntax)trees built from the higher-order constructorsRefm;i, Appm, Lamm, and Vm;v . Here a treeis a set of (abstract) paths together with a map from this set to our set of constructors.Let e be a term satisfying the assumptions. We pick three values u,v and w in var. (Notethat by the var nat axiom, we know there are in�nitely many terms of type var. Here, werequire at least three). By the �rst assumption, both (e u v) and (e u w) are values ofthe (V alid v ext 1) function (e u), thus their associated trees di�er at most in some leaves,where they both have a Vm, with di�erent arguments. By the second assumption, a similarstatement holds for the trees associated with (e w v) and (e u v). By transitivity, we inferthat for any four-tuple (u; v;w; x) in var, the trees associated with (e u v) and (e w x) di�erat most in some leaves, where they both have a Vm with di�erent arguments. We denote byP the set of paths p where the constructor associated with (e u v) is V : the �rst argumentof this V is an integer depending on p, which we denote mp, while the second is of type var,INRIA

Higher-order abstract syntax in Coq 11depending on p, u, and v, and we denote it by (�p u v)). We have to prove that for each pin P , �p is either one of the two projections or a constant function. We know that for anyu, �v:(�p u v) is either constant or the identity. Similarly, for any u, �v:(�p v u) is eitherconstant or the identity. The following lemma will complete our proof and illustrate why atleast three distinct variables are needed.Lemma�: Let var be a set with at least three elements. Let � be a function from var�varinto var satisfying the property that for any u, �v:(� u v) and �v:(� v u) are either constantfunctions or the identity. Then � is either a constant function or one of the two projections.Proof: First suppose that for some u, �x:(� u x) is a constant w di�erent from u. Then forany v di�erent from w, �x:(� x v) has to be constant and equal to w. Now choose u0. Forx di�erent from w, (� u0 x) is equal to w. Since there are at least two such x's, �x:(� u0 x)has to be constant and equal to w.The same argument applies when for some u, �x:(� x u) is a constant w di�erent fromu. In the remaining cases, (� u v) can only be u or v.Now suppose that for some u, �x:(� u x) is the constant function �x:u. Using theprevious assumption, we deduce that for any v di�erent from u, �x:(� x v) is the identity.Now for any u0, �x:(� u0 x) takes the value u0 at least twice, and hence is the constantfunction �x:u0, and we are done.In the remaining case, �x:(� u x) is the identity for any u, thus � is the second projection.The above proposition is crucial since it has the corollary below, which concerns the setof termsWL1 also de�ned below, and allows a direct implementation of (V alid v ext 1). Wedenote by V V L1 the set of (V alid v 1)-terms. Note that V L1 is the set of terms extensionallyequal to terms in V V L1.De�nition�: We de�ne WL1 as the smallest among the subsets W of L1 satisfying thefollowing conditions:1. W contains �x:(V ar x).2. W contains �x:(V ar u) for any u in var.3. W contains �x:(App (a x) (b x)) for any pair (a; b) of terms in W .4. W contains �x:(Lam (e x)) for any e of type var ! var ! L satisfying the twoconditions:(a) for any u in var, (e u) is in W ;(b) for any u in var, �x:(e x u) is in W .
RR n�2556

12 J. Despeyroux, A. Felty & A. HirschowitzCorollary�: If type var has at least three terms, thenWL1 contains V V L1 and is containedin V L1.Proof: We �rst check that V L1 is a subset of L1 satisfying the above four conditions. It isclear for the �rst three. For the fourth one, if e is such that for any u in var, (e u) and�x:(e x u) are in V L1, then by the Separate val proposition, e satis�es (V alid v ext 2) andthus is eqL2 equivalent to some V alid v-term e0. Thus �x:(Lam (e x)) is eqL1 equivalent to�x:(Lam (e0 x)) which satis�es (V alid v 1) by V alid v lam. It follows that �x:(Lam (e x))satis�es (V alid v ext 1). SinceWL1 is the smallest set satisfying the above conditions,WL1is contained in V L1.We now check that V V L1 is contained in any such W . We choose such a W and weprove by induction that any term t satisfying (V alid v 1) is inW . Induction is on the lengthof the proof of (V alid v 1 t). If t has a height of 1, then t is of the form �x:(V ar x) or�x:(V ar u), and hence it is in W . If t has bigger height, then the head constructor is eitherApp or Lam. If t = �x:(App (a x) (b x)), then by inversion of the de�nition of V alid v, aand b both satisfy (V alid v 1). By the induction hypothesis, they are in W , and thus so is t.If t = �x:(Lam (e x)), then by inversion of the de�nition of V alid v, e satis�es (V alid v 2).This implies that for any u in var, (e u) and �x:(e x u) are in V V L1, and thus in W sincethe height of these terms is smaller than the height of t.We conjecture that WL1 is in fact equal to V V L1 but have not yet proved it.Now we state our Coq de�nitions. The de�nition of valid1 is derived directly from thede�nition of WL1 above and selects exactly the terms of type var ! L that we want.Inductive De�nition valid1 : (var ! L)! Prop= valid1 var : 8v : var:(valid1 �x : var:(V ar v))j valid1 ref : (valid1 �x : var:(V ar x))j valid1 app : 8e; e0 : var ! L:(valid1 e)! (valid1 e0)! (valid1 �x : var:(App (e x) (e0 x)))j valid1 lam : 8e : var ! var ! L:(8u : var:(valid1 �v : var:(e u v))^ (valid1 �v : var:(e v u)))!(valid1 �x : var:(Lam (e x))):Inductive De�nition valid0 : L! Prop= valid0 var : 8v : var:(valid0 (V ar v))j valid0 app : 8a; b : L:(valid0 a)! (valid0 b)! (valid0 (App a b))j valid0 lam : 8e : var ! L:(valid1 e)! (valid0 (Lam e)):De�nition valid = �e : L:9e0 : L:((eqL e e0)^ (valid0 e0)):De�nition closed = �t : L:((valid0 t)^8e : var ! L:(valid1 e)! 8x : var:(t = (e x))! 8y : var:(eqL (e y) t)): INRIA

Higher-order abstract syntax in Coq 13It follows easily from the above statements that the valid predicate implements (V alid v ext 0)and that closed implements (V alid ext 0).Note that (valid0 exot1) does not hold, but (valid exot1) does if we take e0 in thede�nition of valid to be (Lam �x : nat:(V ar x)). Note also that in order for (Lam �f :nat:(Lam �x : nat:(exot3 f x))) to satisfy valid0, �f : nat:(Lam �x : nat:(exot3 f x)) mustsatisfy valid1. Although it is the case that 8u : var:(valid1 �v : var:(exot3 v u)) holds,8u : var:(valid1 �v : var:(exot3 u v)) does not. In fact, no term with a Case operator willsatisfy valid0. However, we must include those that are extensionally equal to terms withno Case operator in order to correctly implement substitution, which we de�ne in the nextsection.7 SubstitutionIn order to specify evaluation for our language, we must specify �-reduction which for ourrepresentation is the operation that, given a redex of the form (App (Lam �x : var:M) N),replaces all occurrences of (V ar x) in M by N . To do so, we de�ne a Coq predicate subst.We proceed as we did to de�ne valid, here starting with a de�nition of Subst of type8n : nat:Ln+1 ! L0 ! Ln ! Prop. The proposition (Subst n E p r) holds if E has theform �x : var:F and r is the term obtained by replacing all occurrences of (V ar x) in F byp. Although we de�ne it relationally, Subst is functional on the �rst three arguments.Inductive De�nition� Subst : 8n : nat:Ln+1 ! L0 ! Ln ! Prop= Subst ref rename : 8n : nat:8p : L0(Subst n Refn+1;n p �x1: : : : :�xn:p)j Subst ref keep : 8n : nat:8p : L0:8i 2 [0::n � 1]:(Subst n Refn+1;i p Refn;i)j Subst var : 8n : nat:8v : var:8p : L0:(Subst n (Vn+1 v) p (Vn v))j Subst app : 8n : nat:8p : L0:8A;A0 : Ln+18B;B0 : Ln:(Subst n A p B)! (Subst n A0 p B0)!(Subst n (Appn+1 A A0) p (Appn B B0))j Subst lam : 8n : nat:8p : L0:8A : Ln+2:8B : Ln+1:(Subst (n+ 1) A p B)! (Subst n (Lamn+1 A) p (Lamn B)):As before this de�nition cannot be directly transformed into a Coq de�nition because itrequires an in�nite series of de�nitions where for each n (Subst n) requires that of (Subst (n+1)). As before, we must implement (Subst 0). As for (V alid 0), we cannot do it directly,but instead must work modulo extensionality. In particular, we implement:De�nition� Subst ext = �n : nat:�e : Ln+1:�p : L0:�r : Ln:9e0 : Ln+1:9p0 : L0:9r0 : Ln:(eqLn+1 e e0)! (eqL0 p p0)! (eqLn r r0)! (Subst n e0 p0 r0):Note that if (Subst n E p r) holds, thenE, p and r are V alid v-terms, and if (Subst ext n E p r)holds, then E, p and r are V alid v ext-terms. The property below is crucial and re-RR n�2556

14 J. Despeyroux, A. Felty & A. Hirschowitzduces (Subst ext (n + 1)) to (Subst ext n). Here t@x denotes the term �x1; : : : ; xn :var:(t x1 : : : xn x), where the value of n can be determined from context.Lemma� : 8n : nat:8E : Ln+2:8p : L0:8r : Ln+1:(V alid v ext (n+ 2) E)! (V alid v ext 0 p)! (V alid v ext (n+ 1) r)!(8v : var(Subst ext n E@v p r@v))! (Subst ext (n+ 1) E p r)Proof: Let r0 be a term such that (Subst ext (n + 1) E p r0). Using the fact that replacingall the arguments (except the variable being substituted) by a value before or after thesubstitution leads to the same result, we have that 8v : var:(Subst ext n E@v p r0@v)holds. From the fact that Subst is functional, we know that for all v of type var, r@v andr0@v are eqLn equivalent. This directly implies that r and r0 are eqLn+1 equivalent.Note that this lemma would not hold without extensionality.This property leads to the following implementation of (Subst ext 0).Inductive De�nition subst : (var ! L)! L! L! Prop= subst ref : 8p : L:(subst �x : var:(V ar x) p p)j subst var : 8v : var:8p : L:(subst �x : var:(V ar v) p (V ar v))j subst app : 8p : L:8A;A0 : (var! L):8B;B0 : L:(subst A p B)! (subst A0 p B0)!(subst �v : var:(App (A v) (A0 v)) p (App B B0))j subst lam : 8p : L:8A : var ! var! L:8B : var ! L:(8v : var:(subst (�x : var:(A x v)) p (B v)))!(subst (�x : var:(Lam (A x))) p (Lam B)):De�nition subst ext = �e : var ! L:�p : L:�r : L:9e0 : var ! L:9p0 : L:9r0 : L:(8v : var:(eqL (e v) (e0 v)))! (eqL p p0)! (eqL r r0)! (subst e0 p0 r0):The correctness of these de�nitions is expressed by the following statement whose proofis straightforward. (The second part follows directly from the lemma above).Proposition� : 8E : var ! L:8p; r : L:(Subst ext 0 E p r)! (subst ext E p r). Conversely,8E : var ! L:8p; r : L:(valid1 E) ! (valid p) ! (valid r) ! (subst ext E p r) !(Subst ext 0 E p r).In proving properties of our object-language, we may choose to use either subst orsubst ext. In the next section, we choose the former.8 An Example Proof: the Subject Reduction TheoremIn this section, we specify type assignment and evaluation for our object-language by intro-ducing inductive types for each. We then outline the proof of type soundness (also calledsubject reduction) which we have fully formalized in Coq. INRIA

Higher-order abstract syntax in Coq 15For typing, we �rst introduce a predicate for assigning variables to types along with twoassumptions about it stating that each variable has a unique type and that there is a variableat every typeParameter typvar : var ! tL! Prop:Axiom uniq var type : 8x : var:8t; s : tL:(typvar x t)! (typvar x s)! (s = t):Axiom exists new var : 8t : tL:9x : var:(typvar x t):Like var, typvar is introduced as a parameter, and thus the theorems we prove will holdfor any instantiation. Here, the important ones to consider will be those for which we canprove the above axioms. Note, for example, that these two axioms hold trivially if we takevar to be tL and typvar to be equality on tL.The usual natural deduction style inference rules for assigning simple types to untypedterms is speci�ed by the following inductive type.Inductive De�nition type : L! tL! Prop= type V ar : 8x : var:8s : tL:(typvar x s)! (type (V ar x) s)j type App : 8e; e0 : L:8t0; t : tL:(type e (Arrow t0 t))! (type e0 t0)! (type (App e e0) t)j type Lam : 8E : var ! L:8t; t0 : tL:(8x : var:(typvar x t)! (type (E x) t0))! (type (Lam E) (Arrow t t0)):The third clause in this de�nition uses a hypothetical judgment with an embedded arrowfor typing �-abstractions. It asserts the fact that (Lam E) has functional type (Arrow t t0)if under the assumption that for arbitrary variable x of type t, it can be shown that theexpression (E x) (the expression obtained by replacing all occurrences of the variable boundby the �-abstraction at the head of E with x) has type t0.Similar de�nitions of type have been given in LF and �Prolog where the predicate de-�ning typing appears on the left of the embedded arrow. Here this would mean replacing(typvar x t) by (type (V ar x) t). Note that this change results in a negative occurrence oftype which is disallowed in Coq. For this reason, we need a separate typvar predicate, justas we needed a separate type var in the de�nition of L.The following induction principle for this de�nition illustrates the general form of induc-tion over inductively de�ned predicates, in particular when they involve embedded universalquanti�cation and implication.
RR n�2556

16 J. Despeyroux, A. Felty & A. Hirschowitz8P:L! tL! Prop:(8x : var:8s : tL:(typvar x s)! (P (V ar x) s))!(8E : var ! L:8t; t0 : tL:(8x : var:(typvar x t)! (type (E x) t0))!(8x : var:(typvar x t)! (P (E x) t0))! (P (Lam E) (Arrow t t0)))!(8e; e0 : L:8t0; t : tL:(type e (Arrow t0 t))! (P e (Arrow t0 t))!(type e0 t0)! (P e0 t0)! (P (App e e0) t))!8e : L:8t : tL:(type e t)! (P e t)Call by value semantics for our simple functional language is de�ned by the following induc-tive de�nition. Note the use of substitution in the �-redex case.Inductive De�nition eval : L! L! Prop= eval Lam : 8E : var ! L:(eval (Lam E) (Lam E))j eval App : 8E : var! L:8e1; e2; e3; v1; v2 : L:(eval e1 (Lam E))!(eval e2 v2)! (subst E v2 e3)! (eval e3 v1)! (eval (App e1 e2) v1):The proof of type soundness is quite simple and follows naturally from the de�nitionsand axioms presented in this section, the de�nitions in Section 2, and the de�nition of subst.The main lemma needed for this theorem is that the predicate subst preserves typing. Forthis lemma, we need to de�ne the notion of two terms having the same type. This de�nition,lemma, and the main theorem are stated as follows.De�nition same type = �m;n : L:9t : tL:(type m t)^ (type n t):Lemma subst sr : 8E : var ! L:8p; n : L:(subst E p n)!8x : var:(same type (V ar x) p)! 8t : tL:(type (E x) t)! (type n t):Theorem subj reduction : 8e; v : L:(eval e v)! 8t : tL:(type e t)! (type v t):The proof of the lemma proceeds by induction on (subst E p n), while the proof ofsubject reduction proceeds by induction on (eval e v).9 Conclusion and Future WorkWe have shown by example how higher-order syntax can be used in formal proof. Ourmethod of speci�cation of syntax is in fact quite general. Although we have not yet doneit, we plan to generalize it formally as is done in [3]. For any object-language that can beexpressed in second-order syntax, it is easy to see how to de�ne the corresponding valid andsubst predicates. Proofs of adequacy follow similarly. In doing proofs, the user is then freedfrom concerns of �-conversion, and substitution is greatly simpli�ed. In fact, it is possibleto automate generation of these de�nitions and to automate certain aspects of proof searchthat occur repeatedly in such proofs. Although our proof is already simple (500 lines of Coqscript), it would be further simpli�ed by such automated tools. INRIA

Higher-order abstract syntax in Coq 17In the example presented here, we were able to state type soundness without any mentionof validity. For other statements, however, this is not possible, and care must be taken toinclude assumptions about validity where necessary (typicaly on existencial variables). Notethat a systematic insertion of valid would solve this problem and could be automated. Inour case, this would lead to8e; v : L:(valid e)! (valid v)! (eval e v)! 8t : tL:(type e t)! (type v t);which is weaker than what we actually proved, but expresses the same object-level pro-perty.In addition to type soundness as presented here, several other examples are in progressincluding a proof of correctness of a �Prolog program that computes the negation normalform of formulas in �rst-order logic and a proof of the Church-Rosser property for the�-calculus.Finally, we have not considered here the question of adequacy for our semantic de�nitions.This, together with the correctness of the Coq theorems with respect to the corresponding`meta' theorems will be the subject of future work. The latter will follow naturally (see.Theorem 1. in Section 3.5 in [3]).References[1] A. Asperti and G. Longo. Categories, Types, and Structures. MIT Press, Foundationsof Computing Series, London, England, 1991.[2] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using typed lambda calculus toimplement formal systems on a machine. Journal of Automated Reasoning, 9(3):309�354, Dec. 1992.[3] J. Despeyroux and A. Hirschowitz. Higher-order syntax and induction in coq. In Procee-dings of the �fth Int. Conf. on Logic Programming and Automated Reasoning (LPAR94), Kiev, Ukraine, July 16�21, 1994, 1994. Also available as an INRIA ResearchReport RR-2292, Inria-Sophia-Antipolis, France, June 1994.[4] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring,and B. Werner. The coq proof assistant user's guide. Technical Report 154, INRIA,1993.[5] A. Felty. A logic programming approach to implementing higher-order term rewriting.In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Proceedings of theJanuary 1991 Workshop on Extensions to Logic Programming, pages 135�161. Springer-Verlag LNCS, 1992.[6] A. Felty. Implementing tactics and tacticals in a higher-order logic programming lan-guage. Journal of Automated Reasoning, 11(1):43�81, Aug. 1993.[7] J. Hannan. Investigating a Proof-Theoretic Meta-Language for Functional Programs.PhD thesis, University of Pennsylvania, Technical Report MS-CIS-91-09, Jan. 1991.RR n�2556

18 J. Despeyroux, A. Felty & A. Hirschowitz[8] J. Hannan and D. Miller. From operational semantics to abstract machines. Mathema-tical Structures in Computer Science, 2:415�459, 1992.[9] J. Hannan and F. Pfenning. Compiler veri�cation in LF. In Seventh Annual Symposiumon Logic in Computer Science, pages 407�418, 1992.[10] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. Journal of theACM, 40(1):143�184, Jan. 1993.[11] S. Michaylov and F. Pfenning. Natural semantics and some of its meta-theory in elf. InL.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Proceedings of the January1991 Workshop on Extensions to Logic Programming, pages 299�344. Springer-VerlagLNCS, 1992.[12] D. Miller. Uni�cation of simply typed lambda-terms as logic programming. In EighthInternational Logic Programming Conference. MIT Press, 1991.[13] C. Paulin-Mohring. Inductive de�nitions in the system Coq; rules and properties. InM. Bezem and J. F. Groote, editors, Proceedings of the International Conference onTyped Lambda Calculi and Applications, volume 664, pages 328�345. Springer VerlagLecture Notes in Computer Science, 1993.[14] F. Pfenning and E. Rohwedder. Implementing the meta-theory of deductive systems. InEleventh International Conference on Automated Deduction, pages 537�551. Springer-Verlag LNCS, 1992.

INRIA

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

