
Privacy in Data Mining Using Formal Methods
�

Stan Matwin
��� �

, Amy Felty
�
, István Hernádvölgyi

�
, and Venanzio Capretta

�
�

SITE, University of Ottawa, Canada,
�
stan,afelty 	 @site.uottawa.ca

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland�
Siemens PSE, Hungary, istvan.hernadvolgyi@siemens.com�

Department of Mathematics and Statistics, University of Ottawa, Canada
venanzio.capretta@mathstat.uottawa.ca

Abstract. There is growing public concern about personal data collected by both
private and public sectors. People have very little control over what kinds of data
are stored and how such data is used. Moreover, the ability to infer new knowl-
edge from existing data is increasing rapidly with advances in database and data
mining technologies. We describe a solution which allows people to take control
by specifying constraints on the ways in which their data can be used. User con-
straints are represented in formal logic, and organizations that want to use this
data provide formal proofs that the software they use to process data meets these
constraints. Checking the proof by an independent verifier demonstrates that user
constraints are (or are not) respected by this software. Our notion of “privacy cor-
rectness” differs from general software correctness in two ways. First, properties
of interest are simpler and thus their proofs should be easier to automate. Sec-
ond, this kind of correctness is stricter; in addition to showing a certain relation
between input and output is realized, we must also show that only operations that
respect privacy constraints are applied during execution. We have therefore an
intensional notion of correctness, rather that the usual extensional one. We dis-
cuss how our mechanism can be put into practice, and we present the technical
aspects via an example. Our example shows how users can exercise control when
their data is to be used as input to a decision tree learning algorithm. We have
formalized the example and the proof of preservation of privacy constraints in
Coq.

1 Introduction

Privacy is one of the main concerns expressed about modern computing, especially in
the Internet context. People and groups are concerned by the practice of gathering in-
formation without explicitly informing the individuals that data about them is being
collected. Oftentimes, even when people are aware that their information is being col-
lected, it is used for purposes other than the ones stated at collection time. The last
concern is further aggravated by the power of modern database and data mining oper-
ations which allow inferring, from combined data sets, knowledge of which the person
is not aware, and would have never consented to generating and disseminating. People

In Proceedings of the 7th International Conference on Typed Lambda Calculi and Applica-
tions, April 2005, c

�
Springer-Verlag.

have no ownership of their own data: it is not easy for someone to exclude themselves
from, e.g. direct marketing campaigns, where the targeted individuals are selected by
data mining models.

This state of affairs has been amply observed by the legal community, particularly
by the segment of it interested in human rights [EPI05]. One of the main concepts
that has emerged from research on societal and legal aspects of privacy is the idea of
Use Limitation Principle (ULP). That principle states that the data should be used only
for the explicit purpose for which it has been collected. It has been noted, however,
that “...[ULP] is perhaps the most difficult to address in the context of data mining
or, indeed, a host of other applications that benefit from the subsequent use of data in
ways never contemplated or anticipated at the time of the initial collection.” [IPC98].
A special case of the ULP is the principle of opting out vs. opting in: in most cases one
needs to limit explicitly the access to one’s data: this approach is called “opting-out”. It
is widely felt (e.g. [Rie01]) that a better approach would be opting-in, where data could
only be collected with an explicit consent for the collection and specific usage from the
data owner.

In this paper, we propose and prototype a novel approach which gives an individual
the ownership of her data: a person may express permissions stating the purposes for
which the data may or may not be used. We show a mechanism by which such permis-
sions can be reinforced in a data mining environment. The core of this approach is the
use of formal methods for proving properties of programs. We use a theorem prover
with a highly expressive logic – the Coq Proof Assistant [Coq03]. This system provides
a high degree of power and flexibility for constructing proofs and it is widely used to
develop formal proofs of correctness of software. We are able to express data mining
programs directly in the logic of the theorem prover, and express privacy properties
easily. In the spectrum from less formal to more formal, this kind of system is on the
formal end, meaning that the method is more rigorous than many others and thus can
provide a higher degree of assurance of correctness than less formal methods. This high
degree of assurance is not without cost, of course; the price that must be paid for it is
that more work must be done to apply such methods. Proofs can be difficult to construct
and require a high degree of interaction and knowledge on the part of the user. We ad-
dress this issue by modularizing our programs and proofs. In particular, we structure the
code so that for each data mining algorithm we consider, we filter out the difficult part
of the proof so that it can be done once and for all by an expert, and isolate the code that
is likely to change so that the lemmas that are required for this code are straightforward
and easy to prove. It should be possible to simplify the task of proving such lemmas
even further by exploiting the similarities of such lemmas, and designing algorithms to
help automate their proofs.

One aspect that sets privacy verification apart from customary algorithm correct-
ness is that privacy concerns put constraints on the operation of the program. A tra-
ditional correctness requirement states a relation between the input and the output of
an algorithm and verification consists of proving that the particular software realizes
this relation. In our case, the requirement is not on the input-output relation but on the
operations that the algorithm performs while running: we impose that no privacy vio-
lating operation can be executed. Traditionally, two programs are considered logically

equivalent if they implement the same input-output relation; therefore if one of the two
satisfies a specification, so does the other. However, we want to discriminate programs
on the basis of how they process their input into output. In order to realize such dis-
crimination while at the same time preserving the classical logical understanding of
functions, we decided to overload the output produced by the program so that a trace of
the potentially privacy-breaking operations is preserved in the result.

More specifically, we start from the Weka repository of Java code which implements
a variety of data mining algorithms [WF99]. We modify this code to include checks that
the privacy constraints that we allow users to specify are met. We also restructure the
code to help facilitate proving properties of it. We write it in the functional programming
language of Coq, taking care to ensure that the part of the code which checks that users’
privacy constraints are met is clearly identifiable. It is this part of the code that we need
the flexibility to change. In particular, we want to consider a possibly large variety of
privacy constraints, and so we must be able to modify the code as we modify or add
new constraints. In general, the lemmas required of this added privacy-checking code
will be considerably simpler than lemmas that will be needed about the algorithm as a
whole.

This work extends earlier work, which outlined the main ideas and began with a
simple algorithm as an example [FM02]. This first example was a program to perform
a database join operation, and accommodated users who requested that their data not
be used in such an operation. Here we consider a significantly more complex algorithm
– a decision tree learning algorithm, we illustrate our method of structuring programs
and proofs to tackle the complexity of using formal methods, and we provide a deeper
analysis of the issues that arise in making this work practical.

The remainder of this paper is organized as follows: we describe the architecture
of our approach, show that it has the desired properties, illustrate how it applies to the
learning of decision trees, present the formalization of a particular privacy property, and
discuss the acceptance and implementation of our general approach.

2 Architecture

In order to describe the architecture of our approach, let us introduce the players that
participate in privacy-conscious data mining:

User � is a consumer or a citizen wishing to state her permissions with respect to
her data as it is involved in different data mining processes. Specifying permissions
could be as simple as choosing options, both positive and negative, from some fixed
set. Data miner ����� is an organization involved in processing the data about a number
of � s. � denotes the database schemata of the databases representing that data, while�

denotes a set of data mining algorithms that ����� runs on the data. 	 denotes the
binaries of the software implementation of

�
. Data mining software developer ��
��

develops software (source code) implementing
�

. ��
�� provides ����� s with 	 . ��
����
is an independent, generally trusted organization that verifies that � ’s permissions are
respected by ����� in the course of the normal operation of ����� . Observe that no single
player owns all the data.

Our main idea is as follows. User � sets permissions ����� ��� ��� : what can and can-
not be done with her data � by an algorithm in

�
. Any claim that software respects

these permissions can be stated as a theorem 	
������� � about S. Proof �������� � of
this theorem can be checked: if the proof holds, then the program has the property
of respecting � � . �
���� checks both that ���� � � � is a proof of 	���� � � � , and that
the binary software 	 run by ����� is a compiled form of . (For example, ��
���� could
compare the hashed result of compilation of with hashed 	 , so that �
���� needs no
access to 	 , just to its hashed form.)

Graphically, we present this architecture in Fig. 1. Arrows pointing from within a

Check
Source

PC (D, A) Check
Binary

PCR (, S)PCT (, S)S

Dev Org

VeriC

B

B

Fig. 1. Architectural diagram of the proposed method

box representing player � to a box representing player � show that � makes an object
at the beginning of the arrow available to � . For instance, an organization on behalf of
consumers makes the set of permissions � � � ��� ��� from which each individual � can
make choices available to ��
�� and ��
���� . The dashed line between and 	 represents
the verifiable link that 	 is the executable of . As can be seen from this diagram, the
architecture has the following properties:

– The user decides what is and what is not permitted to happen with the data. In that
sense, a user’s data belong to her.

– Users’ permissions are verifiably enforced: it can be proven that the data mining
software respects them (or not). Consequently, it can be proven as well that the
declared use of the data is adhered to, as long as ����� respects the proposed archi-
tecture. In that sense, ULP becomes verifiable as well.

– The scheme is robust against cheating by ��
�� or ����� . ��
�� cannot present a proof
of a theorem other than 	
������� � because �
���� recreates the statement of this
theorem from � � and . ����� cannot run binaries of anything other than (about
which ��
���� can verify that it satisfies permissions) as �
���� can verify the 	 is
indeed a binary version of that .

3 Example

The decision tree learning algorithm we use is the basic ID3 algorithm from [Mit97].
Decision trees classify examples by following, for a given example, a path from the root
to a leaf. This path is determined by the values of the attributes of a given example. The
leaf on that path gives the class of the example. Decision tree induction algorithms, such
as ID3, take as input examples described by their attributes; each example comes with
its class. The output of a decision tree induction algorithm is a decision tree like the one
shown in Fig. 2. Among many possible decision trees consistent with the input, ID3
chooses heuristically the one with the highest expected accuracy on unseen data – this
will be the best tree. We began by implementing this algorithm in Java. Similar, though
somewhat more complex versions can be found in the Weka code. We also implemented
the same algorithm in the functional programming language SML because it is a smaller
step to go from SML to Coq. To illustrate, we apply our program to fictitious data about
loan applications. In that data, people are represented by (among other things) their
earnings to expenses ratio, whether or not they live in a single dwelling, and whether
they live in the suburbs or in the inner city. The tree produced by ID3 from this dataset
is shown in Fig. 2.

Earnings/Expenses

14,000

Residence

5,000 5,0004,000

Single Dwelling

2504,750 4,900 100

Medium HighLow

Approve

(+)

(++)

No YesInner City Suburb
(+,++)

Reject Approve Reject Approve

Fig. 2. Example Decision Tree

We have added numbers to each node, indicating the number of training examples
considered. For example, the entire training set contains 14,000 records, of which 5,000
are passed on and used to build the tree rooted at the high ratio branch.

Users concerned with privacy may want to restrict how their data is used in training
sets to build decision trees. In a typical data mining application the learned decision tree
is just a symbolic structure, disconnected from the data used to build its nodes. Business
analysts will typically inspect the tree and decide that they are interested in individuals
represented by some nodes in the tree, e.g. the rightmost leaf in Fig. 2 (people with high
disposable income and likely owning property might be selected for a direct marketing
campaign of a life insurance policy, or for a tax audit). Analysts will then perform what
is called data drilling, i.e. they will request full access to the data subset that resulted

in the tree leaf. In such a context, users may want to specify that they do not want their
data to be used to build any part of the decision tree unless there is some minimum
number of training examples used to build that part of the tree. This may protect them
from being singled out or uniquely identified with the condition leading to the leaf in
which they find themselves. The ID3 algorithm can be modified to stop building parts
of the tree where such constraints are violated. We made this modification, and added
two constraints to the data: one of the “single dwelling” loan applicants requires at least
500 people in the training set, and another with the low ratio value requires at least
6,000. The tree resulting from our modified algorithm is the same as Fig. 2 without
the branches below the nodes marked with (+). Thus, in the new tree, the low ratio and
single dwelling branches will result in no decision. It would be easy, and probably more
desirable, to modify the tree so that such branches give some default decision. We leave
out this kind of detail when we discuss the proof below.

Data miners might consider such user-imposed constraints to be too restrictive. One
alternative is to continue building the tree, and to prune only the leaf node that contains
the person whose constraints are violated. Suppose in our example, the person who
requires at least 6,000 people in the training set lives in the suburbs. The tree obtained
by removing subtrees below nodes marked (++) is the tree obtained from this version
of the algorithm. (There is no change to the single dwelling branch in this case.) As
before, we will want to modify the two branches that are pruned to give some default
decision instead of no decision at all.

These two versions of the algorithm hint at some of the trade-offs and compro-
mises needed between data miners and customers. Instead of discussing this further,
we simply note here that (as discussed later), for practical purposes it will be necessary
to design a user-friendly language in which users can express constraints. In such a
language, we can have a variety of options including the two just discussed here, thus
providing increased flexibility.

To obtain an implementation of the ID3 algorithm in Coq’s functional language, we
began with a direct translation from the SML code and then modified it to use recur-
sion in a style that is more amenable to Coq’s reasoning power. Our implementation
is modular. We first present a general tree-building procedure that does not depend on
specifics such as how to determine the labels of the children of each node or which
privacy constraints must be checked. This implementation structure allows us to struc-
ture the proof so that we can exploit general mathematical properties of our tree data
structures as well as general properties of functions which process such trees.

As mentioned above, we need to overload the output of the algorithm to obtain a
trace of the possibly privacy-infringing operations. In the example, the original algo-
rithm produces a search tree that does not contain information about the training data
used in its construction. We modify it by labeling each node of the tree with the set of
corresponding training data. In this way, the privacy constraints can be verified directly
on the output tree. This information can (and should) be discarded before using the
tree. This operation can be part of a post-processing phase that also includes replacing
branches that give no decision with default decisions as discussed above. We present
the algorithm and discuss the formal proof development showing that this code satisfies
the required privacy constraints in the next section.

4 The Formal Development

Coq implements the Calculus of Inductive Constructions (CIC), a powerful higher-order
logic. In its theory, data types and logical propositions are represented with the same
formalism. There are two sorts of types, ����� for data structures and ���	��
 for proposi-
tions. An element

�� ����� is a type whose terms are elements of the corresponding data
structure. An element � � ���	��
 is a type whose terms are proofs of the corresponding
proposition.

The type constructors on ����� (and ���	��
) are: function types (implication)
��� 	 ,

with abstraction denoted by � � � ����� and application by ����� � ; binary cartesian products��� 	 (conjunction
���); binary disjoint unions

�� 	 (disjunction
��!); and

dependent products �"� � ��� 	 (universal quantification #$� � ��% � �"� �).
Two very important constructs of Coq are inductive and coinductive definitions. The

notation to define them is similar, but there are deep differences in their meaning. Below
left is the general form of the declaration of an inductive or coinductive type:

��&�' �)(+*	,.-	/)021 354 �� �����
��6 � �8796 � �

...
�;: � �"7�: � �

(+*	,.-	/)021 354�*	<=0>� �����? �@*	<=0
 �.*	<=0A�B*	<=0

&�' (+*5,�-	/)021 354C/ ' *5<=0>� �����? �D/ ' *5<=0
 �D/ ' *5<=0E�F/ ' *5<=0

In the general form, the symbols 7HG represent sequences of argument assumptions. This
declaration introduces a new ����� , � ; its elements are constructed by applying the con-
structors �;G to elements satisfying the assumptions 7HG . The 7�G s can contain occurrences
of
�

itself, provided that they respect a positivity restriction [CP90, PM93]. In this case
the elements of

�
can be constructed recursively. For example, the set

*5<=0
defined in

the middle above contains natural numbers represented as ? , � ? � , � � ? � � , etc.
Coinductive types are defined in an almost identical way and are subject to the

same positivity restrictions [Gim98]: The difference between the two constructs is that
the recursive elements of an inductive type must be well-founded, while those of a
coinductive type are allowed to be infinitely descending. For example, in the set

/ ' *5<=0
defined on the right above, it is possible to construct a term consisting in a infinite
sequence of applications of the constructor: � � � JIKILI � � � , which is not allowed
for

*	<=0
.

Inductive and Coinductive definitions can be given for elements of ���	��
 as well;
and the definition of (co)inductive dependent types and predicates is allowed.

The definition of the type for trees is one of the delicate points in the development.
We have adopted an implementation methodology that consists of adapting the data
types to the structure of the algorithms to be verified. This implementation philoso-
phy has proved very effective in previous work [BC01, MM04, BC04] and it greatly
simplifies the representation of algorithms and the verification of their properties.

To see how this methodology is applied in our case, consider the following informal
description of the algorithm: The input is a database, that is a list of records, M , repre-
senting the input training data. If the privacy restriction is not satisfied by M (e.g. M is too
small), then the construction of the tree is blocked at this node and the node itself gives
a default result. On the other hand, if M satisfies the privacy restriction, a node is created

and M is partitioned into subsets that will be used to build the children of that node. The
children are determined by choosing the attribute that results in the best classifier. A list
of databases is obtained by dividing M into equivalence classes, one for each value of
this attribute, and a new branch of the tree is created for each element of this list.

This is a top-down construction: The tree is constructed starting from its root node
by specifying the branches at each stage. This is typical of coinductively constructed
trees, because we cannot be sure a priori that the constructed tree is well-founded (it can
be proved a posteriori in our case). On the other hand, inductive trees are characterized
by a bottom-up construction in which the subtrees have to be defined first and the main
tree is built from them.

Therefore, the natural definition of ��� 4K4 � ��� , for any
�� ����� , would be:

&9' (*	,.-	/)021 354 ��� 4K4 � ��� � �����* ' ,D4�� � ��� 1 � 0 ����� 4K4 � ��� �C� ��� 4K4 � ���
This says that a tree consists of a node with a label of type

�
and a list of subtrees.

Unfortunately, this definition is rejected by the type system of Coq, because the as-
sumption

� 1 � 0 ����� 4K4 � ��� � does not satisfy the positivity condition. This condition states
that the type that we are defining (��� 4L4 � ��� in our case) can appear in the assumptions
of a constructor only in a positive position, that is, either by itself or as the result type of
a functional construction. Here it appears inside the

� 1 � 0 � � constructor and it is therefore
rejected. This in spite of the fact that such a definition is sound.

We worked around this limitation of Coq by an alternative definition:

&�' (+*	,.-	/)021 354 ��� 4K4 � ���>� ������ - � 4 * ' ,D4�� ��� ��� 4L4 � ���<	,�, /	�D1
� , � ��� 4K4 � ��� � ��� 4K4 � ���E� ��� 4K4 � ���

The idea here is that we first generate a node � � - � 4 * ' , 4 � � , with label � and no
branches, and then add the subtrees one by one using the constructor

<	,�, /�� 1
� ,
(i.e.

� <	,�, /�� 1
� ,��� �
adds a new child

�
to existing tree

�
). In presenting Coq terms in this

section, for readability, we often leave type parameters and arguments implicit. (For ex-
ample, the parameter � �� ����� � is left out of the above ��� 4L4 � ��� definition and argument�

is left out when we write � � - � 4 * ' , 4 � � instead of � � - � 4 * ' , 4 � � � .) Clearly, all trees
that could be constructed by the previous (rejected) definition can be defined in this new
format. We can actually define a function

* ' , 4 that performs the task that we required
of the constructor in the original definition, and just forget about the roundabout way
we defined trees:

� 1 � � ' 1 *L0A* ' ,D4 � � � �������C� � � 1 � 0 ����� 4K4 � ��� � � � � ��� 4K4 � ��� ���
& <�� 4������ '��* 1
��� � � - � 4 * ' , 4 � �
� / ' *��������! �"� � <	, , /	�D1
� ,�� � * ' ,D4 � ���! � �4D*5,

The keyword
� 1 � � ' 1 *L0 indicates a recursive definition on terms of inductive type. In this

case, the function
* ' ,D4 is defined by recursion on the list

���
. The & <�� 4#� construction

analyzes the structure of
���

(it is either an empty list,
*D1
�

, or a non-empty list with head�
and tail

���
), and uses the function

* ' , 4 recursively on the tail of a non-empty list.
However, now it is possible to construct anomalous trees that did not exist earlier:

The constructor
<	,�, /�� 1
� ,

can be recursively applied infinitely many times to generate
a node with infinitely many branches. The existence of these pathological trees does not
influence in any way the functioning of the algorithm or the proof of correctness.

For coinductive types, there is a construction for recursive definitions similar to� 1 � � ' 1 *=0 , the operation &9' � 1 � � ' 1 *=0 . The difference is in the criteria that the definition
must satisfy: In a

� 1 � � ' 1 *=0 definition the recursive calls must be performed on struc-
turally smaller objects; in a &9' � 1 � � ' 1 *=0 definition there is no restriction on the recursive
calls, but the operation must be guarded, that is, it must guarantee that for every input,
it generates a term with a constructor at its head. For a formal definition of the syntactic
conditions for

� 1 � � ' 1 *=0 and &9' � 1 � � ' 1 *=0 see [Coq93, Gim94].
However, we chose a different (equivalent) way to define recursive functions on

a coinductive type. We exploit instead the categorical characterization of coinductive
types as terminal coalgebras [Hag87] (for a type-theoretic introduction, see also Chap-
ter 3 of [Cap02]; for a comparison of the two approaches, see [Gim94]). A coalgebra,
in our case, is a pair consisting of a set

�
and a function � � � � � 1 � 0 � ��� . Termi-

nality of the coinductive type means that for every coalgebra there exists a function
� / ' < � � 4�� � < 0 � 4K4 � � � � � ��� 4K4 � ��� . Intuitively, given an element � � �

, the term
� / ' < � � 4�� � < 0 � 4K4 � � � is the tree with root node labeled by � and subtrees recursively
constructed by applying � / ' < � � 4�� � < 0 � 4K4 � � to every element of �8� � � . The operator/ ' < � � 4�� � < 0 � 4L4 can easily be defined by &9' � 1 � � ' 1 *=0 :

&9' � 1 � � ' 1 *=0�/ ' < � � 4�� � < 0 � 4K4 � 1 � 0C� � � � � 1 � 0 � ��� �C� ��� � 1 � 0 � ���E� ��� 4K4 � ��� � �
� � � � � ��� & <�� 4#��� '��*D1
��� � � - � 4 * ' ,D4 � �

� / ' * � �"�� � � � <	, , /	�D1
� , � / ' < � � 4�� � < 0 � 4K4 � 1 � 0 � � ��� � � �
� / ' < � � 4�� � < 0 � 4K4 � 1 � 0 � � � � �4 *	,

� 4��9*D1 021 ' * / ' < � � 4�� � < 0 � 4L4 � � ��� � 1 � 0 � ��� � � � � ��� 4K4 � ��� � �� � � � � � / ' < � � 4�� � < 0 � 4K4 � 1 � 0 � � ��� � � �

Notice that in the &�' � 1 � � ' 1 *=0 definition of
/ ' < � � 4�� � < 0 � 4K4 � 1 � 0

the recursive calls are
performed on arguments that are not necessarily structurally simpler than the original
input, but they are guarded by the application of the constructor

<	, , /	�D1
� ,
which en-

sures that the construction of the tree proceeds by at least one step. The
� 4��9*D1 021 ' *

keyword introduces a (non-recursive) definition in Coq.
We first define a general decision-tree-building procedure that does not depend on

the specific data used by the ID3 algorithm. In particular, we assume the existence of
the following parameters with their types, but assume nothing about their implemen-
tations:

�F� ��� � � /�� 1
� , � 4D* � 1 � 0 � � � � 1 � 0 � ��� � / ' *�� 0 � <D1 *L0 � � ��� ';' ��� ,�-
	�	� � � %
Node labels will be elements of type

�
. The

/	�D1
� , � 4 * � 1 � 0
function, given an input � ,

will determine the elements of type
�

that will be used to construct the children of
a node labelled with � . The children of a node are uniquely determined by the label,
and there are never two nodes with the same label in any decision tree. The

/ ' *�� 0 � <D1 *=0

predicate identifies the subset of
�

that satisfies a particular property, left unspecified
here. It returns a boolean value

0 � -54 or � < � � 4 . Finally,
,�- 	 	�

is an unspecified default
value of type

�
. Given these parameters, Fig. 3 contains the general implementation

of
,D4=/=1 � 1 ' * 0 � 4K4 . The first definition is a general

� � 0 4 � function which, given an input

��� �����	��
����� ������� ��������� ���"!$#��	��� �&%'�(� �)*�,+-�/.10��2� �)*�3+-�4.5� 6
798)��3):%���;

����=<>
����
+-?3��
@):AB%DCE.F<G� ;5+H�IA(.

�3J=��
4+-?3�2
@):AK+E��� �������4�K% C .�.
���)��L+-?3�2
@)'�M+E��� ���=���/�K% C .�.

��
=N
OF�,��
�� �&� �2
P)��Q?�R	�S� ?�J���� N(�S��
5�T!$� �)*��+-�/.5� 6
� A	0H+E��� �����2�UN(R	V�VLWX?3�2
@)*�,� 8 ��
�F+-?�J��Y� N(�S��
 � �)*��A2.�.

OF�,��
�� �&� �2
P)��Q?�R	�S� �3�S�Q�4���"![Z:�S�Q��+-�4.\� 6
� A	0H+-?3� 8 �]��=#�� 8 �3�S�Q�P�^)��Q?�R	�S� ?�J���� N(�S��
PA2.

OF�,��
�� �&� �2
5N	�Q?@�)&� �2
 �3�S�Q�/���"![Z:�S�Q��+-�4.\� 6
� A	0E� ;5+-?,�2
@)*�,� 8 ��
��A2._�3J=��
4+`)��Q?�R	�S� �3�S�Q�FA2.9���)a�_+a�	R	�S�
@��N	�PN(R	V�VbW�.

Fig. 3. The General Decision Tree Algorithm in Coq

list, replaces every element � that doesn’t meet the constraint ��� � � with some default
value c . The

� 4=/	- � 4 /	�D1
� , � 4 * function uses this
� � 0 4 � function on the list obtained by

calling
/�� 1
� , � 4D* � 1 � 0

. The function
� 4L/ - � 4 0 � 4K4 calls

/ ' < � � 4�� � < 0 � 4K4 with
� 4=/	- � 4 /�� 1
� , � 4 *

as its argument function. Thus we define it by using the characterization of the coin-
ductive type ��� 4K4 � ��� as a terminal coalgebra. The top-level

, 4L/51 � 1 ' * 0 � 4L4 function calls� 4L/ - � 4 0 � 4K4 , but first checks to see that the initial input meets the required constraint. If
not, a degenerate tree of one node with a dummy label is returned.

To instantiate the parameters and specialize this algorithm to ID3, we need several
definitions. We begin by using Coq’s built-in arrays and lists to represent the input
training data. A record is represented as an array of fixed size. Each position in the
array contains a particular field, and we assume the fields are in the same order in each
record in the training data. The training data is a list of such records. Defining an array
in Coq requires the type and number of fields. We leave these unspecified here. They are
formal parameters to our program, which we call

� 1 4�� ,
and

*�- 	 � 1 4�� , �
. For simplicity

we assume that all fields have the same type (i.e. all possible field contents can be
encoded as elements of type

� 1 4�� ,
). We define our array and lists as follows:

� 4��9*D1 021 ' *�d�4=/ ' � , ����< � � <�� � * -
	 � 1 4�� ,�� � � 1 4�� , �
� 4��9*D1 021 ' * �/e � � � 1 � 0 � d$4L/ ' � , �

A privacy constraint is associated with each record. We represent this association as a
function

	�1 * , <=0 < �/d$4L/ ' � , � *	<=0 %
For a record � �/d�4=/ ' � , , � 	�1 * , <=0 < � � specifies

the minimum number of records that must be present in a node of the decision tree for
the algorithm to be allowed to proceed. This number could, for example, be stored as
one of the fields in � , and then

	�1 * ,�<=0 <
would be the function that extracts the value

of this field. Fig. 4 contains the implementation of several functions we will need. The

��� �����	��
� VB�Y
 N 8 � 8 ?�J=�Q?��L� ���4�(O�� �	� �2
 8 �*0��(#��	�2�	� 6
798)��3)
���F��;

����=< �3�-R=�
+-?3��
@)����� C . < +�+aV/��
 N 8 � 8 ��.���� 8
=NM+aV/��
 N 8 � 8 ?�J=�3?������ C �9.�.

��
=N
OF�,��
�� �&� �2
L���E� � 8 ?,W ?,�2
@)*�,� 8 ��
�\�2O�� !>#��	����� 6
� ���,0H+aV/��
 N 8 � 8 ?=J=�Q?������L+a� ��
@]��,J����Q.�.

OF�,��
�� �&� �2
L� � 8 ; N(#��(O�� !>#��	���	� 6
� ���,0H+a� �=
@]��3J4+a� 8 ����� �&� �2
���
@] ;*R	
=?,�&� �2
@)����.�.����

OF�,��
�� �&� �2
X� N�� ?�J��Y� N(�S��
B� O�� !$� �)1�3+�O���.5� 6
� ���,0E� ;P+a� � 8 ; N(#����Q.��3J=�=
_
����,���)��_+a� 8 ����� ��� ��
@)����Q.

Fig. 4. Functions Specific to the ID3 Algorithm

first two functions define the code that checks whether privacy is respected for all the
records in the database. The first function,

	�1 * , <=0 < /��=4=/��
checks that all records in a

certain database have a privacy specification smaller than a given bound. In the second
function, � � 1 3	<	/ � / ' * � 0 � <D1 *=0 , we just require that the boolean relation

	�1 * ,�<=0 < /	�54L/��
is satisfied when � is the size of the database.

We leave out the part of the ID3 algorithm that determines how to partition the
training data by choosing the attribute that results in the best classifier. The details have
no bearing on the privacy issue. We just assume the existence of the following function:

� < � 021 021 ' *D1 * � � -�*	/)021 ' *�� � �/e � � 1 � 0 � d$4L/ ' � ,�� � ';' � �
Given a database M � � �/e , � � < � 021 021 ' * 1 * � � -�*5/ 021 ' *�� M � � returns a list of boolean predi-
cates over

d�4=/ ' � , . Each predicate selects a particular equivalence class.
For our proof, we need no information about this function other than its type. (For

example, we do not even need to know that each predicate selects a subset of M � that is
disjoint from all others.) If there is only one equivalence class, the ID3 algorithm builds
a leaf node and stops. The function

� 4L< � , � in Fig. 4 tests for this case by checking
the length of the list returned by � < � 021 021 ' * 1 * � � -�*5/ 021 ' *�� . When there is more than one
equivalence class, we must compute the partitions of M � . We can easily define a function
that does so according to the predicates returned by � < � 021 021 ' * 1 * � � -�*5/ 021 ' *�� :

� < � 021 021 ' *��>� �/e � � 1 � 0 � �/e �
We omit the definition. This function is used by

1 ,�� /�� 1
� , � 4D* in Fig. 4, which first tests
whether or not this partitioning should be done by calling

� 4L< � , � . In the true case, since
there will be no children, the empty list is returned.

The ID3 algorithm is then obtained by instantiating the parameters introduced above.
First, we instantiate

�
with

�/e
. Thus, we store at each node the actual subset of the

training data used to build the subtree below the node. (Note that our trees do not store
labels such as “Approve”, “Reject”, or “Single Dwelling” as used in Fig. 2. They are not

important for constructing or using the tree.) To complete the algorithm, we instantiate/	�D1
� , � 4 * � 1 � 0
with

1 ,�� /	�D1
� , � 4 * , / ' *�� 0 � <D1 *L0 with � � 1 3	<	/ � / ' * � 0 � <D1 *=0 , and
,�- 	�	 �

with* - ��� , <=0 <
. We define

*�- ��� ,�<=0 <
to be an empty list of training data. This is the label used

for nodes which do not meet the required privacy constraints. Let
1 , � ,D4=/=1 � 1 ' * 0 � 4K4 be

the name of the version of the
,D4=/=1 � 1 ' * 0 � 4K4 function with parameters instantiated in

this way.
To implement the version of the algorithm that keeps more nodes and eliminates

only the leaves marked with (++), the only change needed is to instantiate the
/ ' *�� 0 � <D1 *=0

parameter with the following code:
� 4��9*D1 021 ' * � 4=< � � � 1 35<	/�� / ' *�� 0 � <D1 *=0C� �/e � � ';' �;���
� M � � � � 4L< � , � M � � 1 	 � � 1 4#� � 	�1 * , <=0 < /	�54L/�� M � � � 4D* � 0 � M � � �

instead of instantiating with � � 1 3	<	/ � / ' *�� 0 � <D1 *L0 .
The following definition of the predicate � � 1 3	<	/ � � � 4L, expresses what it means for

user constraints to be satisfied by source code .
� 4 �9* 1 021 ' * � � 1 3	<	/ � � � 4L, � � � � �/e � ��� 4L4 � �/e � �
# M � 6 �2M � � � �/e % � (* 0 � 4K4 M � � � M � 6 � �� # � ��d$4L/ ' � ,�% � (* ��M � � �C� � 	�1 * ,�<=0 < � � � � � 4 * � 0 � M � � �

The predicate � (+* 0 � 4L4 M � � � M � 6 � � expresses the fact that the database M � � is the label
of a node of the tree generated by for the training set M � 6 . The predicate says that if �
is one of the records in M � � then the privacy restriction is satisfied, that is, the number of
records in M � � , � � 4D* � 0 � M � � � , is at least the minimum limit specified for � , � 	�1 * ,�<=0 < � � .
We use the symbol � for the logical version of the order relation to distinguish it from
the boolean version used in the algorithm.

Note here that is a formal parameter. The theorem that is written 	
����� � � is
obtained in this case by the application � � � 1 3	<	/ � � � 4L, 1 ,�� ,D4=/=1 �)1 ' * 0 � 4K4 � . The heart of
the proof of this theorem is a series of lemmas showing that � � � 1 3	<	/ � / ' * � 0 � <D1 *=0 � � �� ���
 is an invariant of all nodes � created by the

1 ,�� ,D4=/=1 �)1 ' * 0 � 4K4 program. The main
theorem follows fairly directly from this property. The version of the algorithm that uses� 4L< � � � 1 3	<	/ � / ' * � 0 � <D1 *=0 instead of � � 1 3	<	/ � / ' * � 0 � <D1 *=0 requires only minor modifications
to two lemmas and their proofs. The whole proof development, including definitions,
lemmas, and proofs, is roughly 500 lines of Coq script.

5 Discussion and Conclusion

Let us turn our attention to some of the practical aspects of the approach we are propos-
ing. These include the additional effort (human and computational) needed to perform
data mining compared to the current practice; the question of access of the players to
the information proprietary to other players; and the limitations of the approach.

Firstly, as already mentioned, proving the theorem 	
����� � � is hard, but this needs
to be done only once. We envisage that ��
�� will perform this as part of the docu-
mentation activities. The proof �������� � must be checked by ��
���� . This check can be
performed automatically. Instead of being done exhaustively, it can be done at random

times, similarly to industrial quality control. Finally, a computational overhead of the
software modified so that permissions are checked during execution of 	 is linear in
the number of � s whose privacy is checked.

Secondly, let us see in more detail what kind of access different players need to
have to software belonging to other players. It is access to that is difficult in practice:
for obvious reasons ��
�� s will be reluctant to let other parties read the source code
of ��
�� ’s proprietary software. We believe that these concerns can be addressed by
carefully analyzing and constraining the access process, and engineering it so that the
source code is only accessed by programs and never by humans. For instance, ��
����
needs access to when checking proof , but that can be done in ��
�� ’s environment,
by an applet or other non-intrusive mechanism for which it is known that it does not
export any information outside that environment.

Let us now look at some issues related to the language in which � s express their
permissions of ��� . The first question is the issue of names of database fields – how
would � know what names of the database fields are needed to describe her permis-
sions? We can see this answered when universal XML standards will normalize the
names of fields in large databases. Alternatively, one can envisage the disclosure of
field names by ����� s participating in the proposed scheme.

Finally, the language of � � s also limits our approach to data properties that can
be expressed syntactically in formal logic. This does not take into account data de-
pendencies that may be true in a given domain and exploited by ����� s that have that
domain knowledge. It may be possible to deduce information from decision trees that
is not covered by privacy constraints. An example from the real world of deductions
from data is mortgage redlining. This is a name for a discrimination technique that has
been used in the past by some US lenders to exclude mortgage loan applicants based
on race and ethnic criteria. Racial redlining has been ruled illegal some years ago, but
many (see [USC98]) allege that lenders use other “attributes” of loan applicants that the
lenders know correlate highly with race, such as a combination of the geographic info
(e.g. ZIP indicating inner city) with household income. This results in the same effect
as racial redlining, and shows the limitation of “syntactic” privacy permissions that can
be sidetracked by having the knowledge of deep relationships between attributes. This
is the case in our example with the loan data and the resulting decision tree in Fig. 2:
while grouping people by race may be forbidden by law, lenders may know that follow-
ing the inner city path in the tree may practically identify racial minorities. In general,
it is important that users be given as much information as possible about what their
chosen privacy constraints cover, and what they don’t.

Most related work on addressing privacy problems in the data mining context [AS00,
ESAG02, Iye02] approaches the problem by applying data transformations that perturb
values of individual data records, changing the “sensitive” fields (e.g. salary informa-
tion). While the value of an individual perturbed field becomes useless, a reconstruction
procedure estimates the original distribution, so that a modified decision tree induction
algorithm gives results close to those that would be obtained on the original, unper-
turbed database. Another branch of this research looks at the privacy aspects when the
data is split either vertically [VC02] (i.e. attributes are partitioned, and one party knows
only a given partition and does not wish to share the values of these attributes with other

parties, while all attributes are needed for data mining), or horizontally [KC02] (i.e. the
database is partitioned into subsets of records, one party knows only the records in its
partition and does not wish to share these records with other parties, while all records
are needed for data mining). None of this work, however, offers any tools to address the
ULP.

A variety of approaches to the privacy problem introduce formal models which can
serve as a starting point for verifying privacy policies. One example, which does begin
to address the ULP, is a language based approach which builds information-flow into
the types of a simplified version of Java [HA04]. Although this work does not address
data mining in particular, it may be possible to integrate this kind of approach with ours
to improve the scope of privacy concerns that can be enforced.

A wealth of future work is ahead of us. A user-friendly permission language for
� � s, easy to handle by an average person, needs to be designed. As suggested earlier,
it could initially have the form of a set of options from which � would choose her per-
missions, both negative and positive. Tools for proof development that can ease proof
construction in this domain need to be designed. Our current work includes experiment-
ing with the Krakatoa approach [MPMU04] which allows us to work more directly with
the Weka Java code, avoiding the step of translating code into Coq. We hope this ap-
proach will also provide better automation of proofs. Also, the approach presented here
can be combined with the data perturbation method mentioned earlier [AS00]. In our
framework, one could prove that the perturbation techniques are in fact applied to the
data during data mining. Finally, we need to experiment with a specific dataset used by
an organization which will accept to act as the first ����� , and a ��
�� who will provide
access to his on the basis described above.

Acknowledgments

The authors acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada, and Communications and Information Technology Ontario. We also
thank Guillaume Dufay for useful discussions.

References

[AS00] R. Agrawal and R. Srikant. Privacy-preserving data mining. In W. Chen, J. F.
Naughton, and P. A. Bernstein, editors, 2000 ACM SIGMOD International Con-
ference on Management of Data, pages 439–450. ACM, May 2000.

[BC01] Ana Bove and Venanzio Capretta. Nested general recursion and partiality in type
theory. In Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving in
Higher Order Logics: 14th International Conference, TPHOLs 2001, volume 2152
of Lecture Notes in Computer Science, pages 121–135. Springer-Verlag, 2001.

[BC04] Ana Bove and Venanzio Capretta. Modelling general recursion in type the-
ory. To appear in Mathematical Structures in Computer Science. Available at
http://www.science.uottawa.ca/˜vcapr396/, 2004.

[Cap02] Venanzio Capretta. Abstraction and Computation. PhD thesis, Computing Science
Institute, University of Nijmegen, 2002.

[Coq93] Thierry Coquand. Infinite objects in type theory. In Henk Barendregt and To-
bias Nipkow, editors, Types for Proofs and Programs. International Workshop
TYPES’93, volume 806 of Lecture Notes in Computer Science, pages 62–78.
Springer-Verlag, 1993.

[Coq03] Coq Development Team. The Coq Proof Assistant reference manual: Version 7.4.
Technical report, INRIA, 2003.

[CP90] Thierry Coquand and Christine Paulin. Inductively defined types. In P. Martin-
Löf, editor, Proceedings of Colog ’88, volume 417 of Lecture Notes in Computer
Science. Springer-Verlag, 1990.

[EPI05] EPIC. Electronic Privacy Information Center. http://www.epic.org/, 2005.
[ESAG02] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving min-

ing of association rules. In Eighth ACM SIGKDD International Conference on
Knowledge Discovery in Databases and Data Mining, July 2002.

[FM02] Amy Felty and Stan Matwin. Privacy-oriented data mining by proof checking. In
Sixth European Conference on Principles of Data Mining and Knowledge Discov-
ery, volume 2431 of Lecture Notes in Computer Science, pages 138–149. Springer-
Verlag, August 2002.

[Gim94] Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter
Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs and Programs.
International Workshop TYPES ’94, volume 996 of Lecture Notes in Computer
Science, pages 39–59. Springer-Verlag, 1994.

[Gim98] Eduardo Giménez. A Tutorial on Recursive Types in Coq. Technical Report 0221,
Unité de recherche INRIA Rocquencourt, May 1998.

[HA04] Katia Hayati and Martı́n Abadi. Language-based enforcement of privacy policies.
In Proceedings of Privacy Enhancing Technologies Workshop (PET 2004), 2004.

[Hag87] Tatsuya Hagino. A typed lambda calculus with categorical type constructors. In
D. H. Pitt, A. Poigné, and D. E. Rydeheard, editors, Category Theory and Com-
puter Science, volume 283 of Lecture Notes in Computer Science, pages 140–157.
Springer-Verlag, 1987.

[IPC98] IPCO. Data mining: Staking a claim on your privacy, Information and Pri-
vacy Commissioner/Ontario. http://www.ipc.on.ca/scripts/index.asp?action=31&-
P ID=11387&N ID=1&PT ID=11351&U ID=0, January 1998.

[Iye02] Vijay S. Iyengar. Transforming data to satisfy privacy constraints. In Eighth
ACM SIGKDD International Conference on Knowledge Discovery in Databases
and Data Mining, pages 279–287, July 2002.

[KC02] Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed mining of
association rules on horizontally partitioned data. In The ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery (DMKD’2002), June
2002.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.
[MM04] Conor McBride and James McKinna. The view from the left. Journal of Func-

tional Programming, 14(1):69–111, 2004.
[MPMU04] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The Krakatoa tool

for certification of Java/JavaCard programs annotated in JML. Journal of Logic
and Algebraic Programming, 58(1–2):89–106, January–March 2004.

[PM93] C. Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Proper-
ties. In M. Bezem and J.-F. Groote, editors, Proceedings of the conference Typed
Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer Sci-
ence, 1993. LIP research report 92-49.

[Rie01] D. G. Ries. Protecting consumer online privacy – an overview. http://-
www.pbi.org/Goodies/privacy/privacy ries.htm, May 2001.

[USC98] USCM. Mayors attack urban redlining, mortgage discrimination, The US Con-
ference of Mayors. http://www.usmayors.org/uscm/news/press releases/press-
archive.asp?doc id=98, 1998.

[VC02] Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in
vertically partitioned data. In Eighth ACM SIGKDD International Conference on
Knowledge Discovery in Databases and Data Mining, July 2002.

[WF99] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 1999.

