
A Certified Core Policy Language

Bahman Sistany∗† and Amy Felty∗
∗School of Electrical Engineering and Computer Science

University of Ottawa, Ottawa, Canada
†Irdeto Canada Corporation, Ottawa, Canada

Email: bahman.sistany@irdeto.com, afelty@uottawa.ca

Abstract—We present the design and implementation of a
Certified Core Policy Language (ACCPL) that can be used to
express access-control policies. We define formal semantics for
ACCPL and use the Coq Proof Assistant to state theorems about
this semantics, to develop proofs for those theorems and to
machine-check the proofs ensuring correctness guarantees are
provided. The main design goal for ACCPL is the ability to reason
about the policies written in ACCPL with respect to specific
questions such as safety. In addition, ACCPL and the established
proofs are integrated such that extensions to expressive power
may be explored by also extending identifiable proof statements
in the direction of the added expressivity. To this end, ACCPL
is small (the syntax and the semantics of ACCPL only take a
few pages to describe), although we believe ACCPL supports the
core features of many access-control policy languages.

I. INTRODUCTION

We describe the design of a Certified Core Policy Language

(ACCPL) for expressing access control policies and its imple-

mentation in the Coq Proof Assistant [1].1

Using Coq to implement ACCPL was an important factor

in its design, allowing us to address the trade-off between

expressive power and ease of formal proof of correctness. The

semantics of ACCPL are specified by a translation from policy

statements together with an access request and an environment

containing all the relevant facts, to decisions. We present

results showing the translation functions behave correctly with

respect to the decision question that asks whether a request to

access a resource may be granted or denied, given a policy.

The translation functions also cover the case where a given

policy does not apply to a request in which case a decision

of non-applicable is rendered. Our results show that for each

access request, the translation algorithm terminates on all input

policies with a decision of granted, denied or non-applicable.

To motivate the design of ACCPL, let us review the defini-

tion of “access-control”: Authorization refers to the process of

rendering a decision about whether to permit or deny access to

a resource or asset of interest, hence the term “access-control.”

In order to harmonize access control in large environments

with many subjects and objects and disparate attributes, the

Policy-based Access Control (PBAC) [8] model has been

proposed. PBAC allows for a more uniform access-control

model across the system. PBAC systems help create and

1Our complete proof development in Coq is available at http://www.site.
uottawa.ca/∼afelty/accpl/.

enforce policies that define who should have access to what

resources, and under what circumstances. Because of the cited

advantages, along with its generality and widespread use,

PBAC is the model ACCPL implements.

A. A Core Policy Language for PBAC Systems

Currently, the most popular Rights Expression Languages

(REL)s include the eXtensible rights Markup Language

(XrML) [16], and Open Digital Rights Language (ODRL) [5].

Both of these languages are XML-based and are considered

declarative languages. RELs, or more precisely Digital Rights

Expression Languages (DRELs) deal with the “rights defini-

tion” aspect of the Digital Rights Management (DRM) ecosys-

tem of digital assets. DRM refers to the digital management

of rights associated with the access or usage of digital assets.

The eXtensible Access Control Markup Language

(XACML) [9] is another access control policy specification

language that is general, high-level, and allows policies to

be defined in a wide variety of domains. Like ODRL and

XrML, it is based on XML and the PBAC model. ODRL and

XrML differ from XACML by their focus on digital assets

protection and in general DRM, hence the term Digital Rights

Expression Languages (DREL).

For a variety of reasons, we found XACML, ODRL and

XrML all to be ill-suited as the basis for a core policy

language. First, they are all large languages that provide

numerous features but suffer from a lack of formal semantics.

Second, all of these languages cover much more than policy

expressions leading to access decisions; they also address

enforcement of policies. Third, they are limited in terms of

what can be built on top of them.

A policy language that was designed with logic and formal

semantics in mind and also one that was small and extensible

was clearly needed. We use Pucella and Weissman’s subset

of ODRL [12] as the basis for ACCPL and in doing so treat

digital rights as our main access-control application without

loss of generality with respect to other applications, with the

final goal of performing formal verification on policies written

in ACCPL.

B. Formal Semantics for PBAC Languages

Formal methods help ensure that a system behaves correctly

with respect to a specification of its desired behavior [10]. This

specification of the desired behavior is what is referred to as

semantics of the system.

391

2017 15th Annual Conference on Privacy, Security and Trust

978-1-5386-2487-6/17/$31.00 ©2017 IEEE
DOI 10.1109/PST.2017.00054

To formalize the semantics of PBAC languages several

approaches have been attempted by various authors. Most

are logic based [3], [12] while others are based on finite-

automata [4], operational semantics based interpreters [13] and

web ontology (from the Knowledge Representation Field) [6].

As described below, our work can be viewed as an extension

of [12].

C. Specific Problem
Policy languages and the policies, sometimes called agree-

ments, written in those languages are meant to implement

specific goals such as limiting access to specific assets. The

tension in designing a policy language is usually between

how to make the language expressive enough, such that the

high-level and often service-oriented goals for policies may

be expressed in the policy language, and how to make the

policies verifiable with respect to the stated goals.
As stated earlier, an important part of fulfilling the verifia-

bility goal for policy languages, is to define formal semantics,

based on which theorems of interest may be declared and

proven. However as is the case for other paper-proofs, often

the language used to do these proofs, is based on intuitive

justifications. As such these proofs are difficult to formally

verify.

D. Contributions
We have designed a policy based access-control language

called ACCPL based on ODRL and starting with definitions

in [12]. The ACCPL framework has been encoded in Coq

which is both a programming language and a proof-assistant.

We have specified and proved ACCPL correct with respect to

properties of interest in Coq which will allow us to extract

programs from the proofs; the executable programs can be

used on specific policies and a query, to render a specific

decision such as “a permission has been granted”.
In addition, ACCPL and the established proofs are inte-

grated such that extensions to expressive power to ACCPL

may be explored by also extending identifiable and cor-

responding proof statements in the direction of the added

expressivity. This integration has been implemented in what

we call the Translation Function Framework (TFF) used for

handling semantics as part of our Coq encodings for ACCPL.
To qualify ACCPL “easy to reason about” we used Tschantz

and Krishnamurthi’s [15] reasonability properties as metrics

of reasonability and designed the language such that ACCPL

would satisfy these properties.
We have made significant modifications to the semantics

of Pucella and Weissman’s language such that an answer

to a request for access to a resource may be determined

unambiguously and for all cases.
Our executable program returns a list of decisions. We

define what it means to extract a single decision from this

list and show that it is always possible to extract a coherent
decision.

Given that ACCPL is a core policy language with semantics

that have been certified correct, we could use ACCPL to imple-

ment various (more expressive) policy languages. In addition

ACCPL could be used as an intermediate language to reason

about interoperability between those policy languages [11],

[7].

II. ACCPL SEMANTICS

We specify the semantics of ACCPL as a translation func-

tion from an agreement together with an access request and

an environment containing all relevant facts, to decisions. The

reader is referred to the Coq code implementing the semantics,

along with all the auxiliary types and infrastructure which

implement the semantics for ACCPL.

A. Types of Decisions

As mentioned, in ACCPL, evaluating a request against

an agreement renders a granted, denied or non-applicable

decision. Including the non-applicable decision was important

for generality and for defining the semantics correctly.

B. Translations

Intuitively a query or request asks the following question

given an agreement: “May subject s perform an action ac to

asset a?” We represent a query by its components, namely the

subject, action and asset that form the query question.

III. CORRECTNESS OF ACCPL

In this section, we discuss the main theorem and some

important supporting theorems, expressing the most impor-

tant properties we have proved about ACCPL. For all other

supporting theorems and for all proofs, the reader is referred

to [14] and the accompanying Coq code, respectively.

A. Correctness of Translation

The trans agreement dec theorem is the declara-

tion of the main correctness result for ACCPL. Together

with proofs for other theorems and lemmas, we have “certi-

fied” ACCPL correct by proving this theorem. The list that

trans agreement returns will contain results one per

each primitive policy found in the agreement. Specifically

the predicate isResultInQueryResult checks for the

existence of a particular result in the given list of results.

The theorem states that for all environments, agreements and

queries, the list that trans agreement produces contains

either a Permitted or a NotPermitted result or the

list will contain neither Permitted nor NotPermitted
results. By mentioning the agreement translation function

(trans agreement) directly in the statement of the theo-

rem trans agreement dec, we tie the correctness prop-

erty to how the translation functions work. To prove the the-

orem, and with each successive subgoal during the interactive

proof process, the definition of the translation function in

scope gets unfolded and used so the translation functions have

to be defined such that each subgoal is discharged and the

proof is completed.

According to the declaration of the trans -
agreement dec theorem, there are three cases that

are mutually exclusive. The first case is when the set has a at

least one Permitted result; we answer the access query in

392

this case with a result of Permitted. The second case is

when the set has at least one NotPermitted; we answer the

access query in this case with a result of NotPermitted.

In the case where all the results are Unregulated we

answer the access query with a result of Unregulated.

B. Mutual Exclusivity of Permitted and NotPermitted

The proof of the theorem trans agreement not -
Perm and NotPerm at once establishes that both

Permitted and NotPermitted results cannot exist in

the same set returned by trans agreement. This result

also establishes the fact that in ACCPL rendering conflicting

decisions is not possible given an agreement.

The proof of the theorem trans agreement -
not NotPerm and not Perm implies -
Unregulated dec shows that in the case where neither a

Permitted nor a NotPermitted result exists in the set

returned by trans agreement, there must exist at least

one Unregulated result.

IV. FUTURE WORK

We describe in [14] how ACCPL meets the reasonability

properties of Tschantz and Krishnamurthi [15] mentioned

earlier. However, we have not yet certified (using formal

proofs) that ACCPL has these properties. We defer formally

proving these properties for ACCPL as future work.

Another direction for future work is to explore different

ways ACCPL could be made more expressive. For example,

we can add various policy combinators and their semantics

to ACCPL using the TFF. As mentioned earlier, the TFF we

have developed for ACCPL is meant to keep the delicate

balance between addition of expressiveness while maintaining

provability of established results.

Another design goal for ACCPL is to make it a target

language for deploying policies written in other languages.

We could capture, implement and study the semantics of

these other policy-based access-control systems using the

TFF and ultimately certify the semantics of those languages

with respect to their specifications, the same way that AC-

CPL has been certified correct. In fact, our current work

includes extending ACCPL to handle the expressive power

of SELinux [2].

V. CONCLUSION

We have presented the design and implementation of AC-

CPL as a small and certifiably correct policy language. ACCPL

is a PBAC system that can be used to express general access-

control rules and policies. In addition we have defined formal

semantics for ACCPL, where we have discovered and added

all possible cases when answering a query on whether to allow

or deny an action to be performed on an asset. We have

subsequently used the Coq Proof Assistant to state theorems

about the expected behavior of ACCPL when evaluating a

request with respect to a given agreement, to develop proofs

for those theorems and to machine-check the proofs ensuring

correctness guarantees are provided. We have in particular

stated, developed and proved correctness results for the se-

mantics of ACCPL.

REFERENCES

[1] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions.
Springer Science & Business Media, 2004. [Online]. Available:
http://www.labri.fr/perso/casteran/CoqArt/index.html

[2] A. Eaman, B. Sistany, and A. Felty, “Review of existing analysis tools
for SELinux security policies: Challenges and a proposed solution,” in
E-Technologies: Embracing the Internet of Things, Proceedings of the
7th International MCETECH Conference, ser. Lecture Notes in Business
Information Processing, vol. 289. Springer, 2017, pp. 116–135.

[3] J. Y. Halpern and V. Weissman, “Using first-order logic to
reason about policies,” ACM Transactions on Information and
System Security, vol. 11, no. 4, 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1380564.1380569

[4] M. Holzer, S. Katzenbeisser, and C. Schallhart, “Towards formal se-
mantics for ODRL,” in Proceedings of the First International Workshop
on the Open Digital Rights Language (ODRL), April 22-23, 2004, pp.
137–148.

[5] R. Iannella., “Open digital rights language (ODRL) version 1.1,” 2002,
[accessed 05-August-2016]. [Online]. Available: http://www.w3.org/TR/
2002/NOTE-odrl-20020919/

[6] A. Kasten and R. Grimm, “Making the semantics of ODRL and URM
explicit using web ontologies,” in The 8th International Workshop for
Technical, Economic and Legal Aspects of Business Models for Virtual
Goods, Namur, Belgium, 2010, pp. 77–91.

[7] X. Maroñas, E. Rodrı́guez, and J. Delgado, “An architecture for the inter-
operability between rights expression languages based on XACML,” in
Proceedings of the 7th International Workshop for technical, economic
and legal aspects of business models for virtual goods, 2009.

[8] NIST, “A survey of access control models,” 2009, [accessed 05-
August-2016]. [Online]. Available: http://csrc.nist.gov/news events/
privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf

[9] OASIS, XACML Version 3.0, 2013. [Online]. Available: http:
//docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

[10] B. C. Pierce, Types and Programming Languages. Cambridge, MA,
USA: MIT Press, 2002.

[11] J. Prados, E. Rodriguez, and J. Delgado, “Interoperability between
different rights expression languages and protection mechanisms,” in
First International Conference on Automated Production of Cross Media
Content for Multi-Channel Distribution. IEEE, 2005, pp. 145–153.

[12] R. Pucella and V. Weissman, “A formal foundation for ODRL,” CoRR,
vol. abs/cs/0601085, 2006. [Online]. Available: http://arxiv.org/abs/cs/
0601085

[13] N. P. Sheppard and R. Safavi-Naini, “On the operational semantics of
rights expression languages,” in Proceedings of the 9th ACM Workshop
on Digital Rights Management, November 9. ACM, 2009, pp. 17–28.
[Online]. Available: http://doi.acm.org/10.1145/1655048.1655052

[14] B. Sistany, “A certified core policy language,” Ph.D. dissertation,
University of Ottawa, 2016. [Online]. Available: https://www.ruor.
uottawa.ca/handle/10393/34865

[15] M. C. Tschantz and S. Krishnamurthi, “Towards reasonability
properties for access-control policy languages,” in SACMAT 2006,
11th ACM Symposium on Access Control Models and Technologies,
June 7-9, Proceedings. ACM, pp. 160–169. [Online]. Available:
http://doi.acm.org/10.1145/1133058.1133081

[16] X. Wang, G. Lao, T. DeMartini, H. Reddy, M. Nguyen, and
E. Valenzuela, “XrML - eXtensible rights markup language,” in
Proceedings of the 2002 ACM Workshop on XML Security, November
22. ACM, pp. 71–79. [Online]. Available: http://doi.acm.org/10.1145/
764792.764803

393

