
A Semantic Model of Types and Machine Instructions for
Proof-Carrying Code

Andrew W. Appel
Bell Laboratories�and Princeton University

Amy P. Felty†

Bell Laboratories

Abstract

Proof-carrying code is a framework for proving the
safety of machine-language programs with a machine-
checkable proof. Previous PCC frameworks have de-
fined type-checking rules as part of the logic. We show
a universal type framework for proof-carrying code that
will allow a code producer to choose a programming lan-
guage, prove the type rules for that language as lemmas
in higher-order logic, then use those lemmas to prove the
safety of a particular program. We show how to handle
traversal, allocation, and initialization of values in a wide
variety of types, including functions, records, unions, ex-
istentials, and covariant recursive types.

1 Introduction

When a host computer runs an untrusted program, the
host may want some assurance that the program does no
harm: does not access unauthorized resources, read pri-
vate data, or overwrite valuable data. Proof-carrying code
[Nec97] is a technique for providing such assurances.
With PCC, the host – called the “code consumer” – spec-
ifies asafety policy, which tells under what conditions a
word of memory may be read or written or how much of a
resource (such as CPU cycles) may be used. The provider
of the program – the “code producer” – must also provide
a program-verification-style proof that the program satis-
fies these conditions. The host computer mechanically
checks the proof before running the program.

Two significant advantages of PCC are that (1) these
proofs can be performed on the native machine code,
so that no unsoundness can be introduced in translation
from the proved program to the program that will exe-�On sabbatical 1998-99.

†Current address: University of Ottawa, afelty@site.uottawa.ca
In The 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 243–253, January 2000,cACM.

cute (in contrast, a JIT compiler can be 106 lines of code
and therefore cannot possibly be free of bugs), and (2)
for sufficiently simple safety policies and for programs
compiled from type-safe source languages, the proofs can
be constructed fully automatically. Unlike typed assem-
bly language [MWCG98], PCC can use both typesand
dataflow to prove safety.

Necula has demonstrated two instances of PCC safety
policies: one for a subset of C [Nec98] and another for an
extremely restricted subset of ML [Nec97]. In our work
we have generalized the approach and removed many re-
strictions:

1. Instead of building type-inference rules into the
safety policy, we model the types via definitions
from first principles, then prove the typing rules as
lemmas. This makes the safety policy independent
of the type system used by the program, so that pro-
grams compiled from different source languages can
be sent to the same code consumer.

2. We show how to prove safe the allocation and ini-
tialization of data structures, not just the traversal of
data.

3. We show how to handle a much wider variety of
types, including records, tagged variants, first-class
functions, first-class labels, existential types (i.e. ab-
stract data types), union types, intersection types,
and covariant recursive types.

4. We move the machine instruction semantics from
the verification-condition generator to the safety
policy; this simplifies the trusted computing base at
the expense of complicating the proofs, which is the
right trade-off to make.

upd(f ;d;x; f 0) =def 8z:(d = z^ f 0(z) = x)_ (d 6= z^ f 0(z) = f (z))
add(d;s1;s2)(r;m; r 0;m0) =def upd(r;d; r(s1)+ r(s2); r 0)^m= m0:
addi(d;s;c)(r;m; r 0;m0) =def upd(r;d; r(s)+c; r 0)^m= m0
load(d;s;c)(r;m; r 0;m0) =def readable(r(s)+c)^upd(r;d;m(r(s)+c); r 0)^m= m0
store(s1;s2;c)(r;m; r 0;m0) =def writable(r(s2)+c)^upd(m; r(s2)+c; r(s1);m0)^ r = r 0
jump(d;s;c)(r;m; r 0;m0) =def 9r 00: upd(r;17; r(s)+c; r 00)^upd(r 00;d; r(17); r 0)^m= m0
bgt(s1;s2;c)(r;m; r 0;m0) =def (r(s1)> r(s2)^upd(r;17; r(17)+c; r 0)^m= m0)_ (r(s1)� r(s2)^ r = r 0^m= m0)
beq(s1;s2;c)(r;m; r 0;m0) =def (r(s1) = r(s2)^upd(r;17; r(17)+c; r 0)^m= m0)_ (r(s1) 6= r(s2)^ r = r 0^m= m0)

Figure 1: Semantic definition of machine instructions.

2 Example

To illustrate, we use an imaginary word-addressed ma-
chine with a simple instruction set and instruction encod-
ing.

OPCODE

add 0 d s1 s2 rd rs1 + rs2

addi 1 d s c rd rs+c
load 2 d s c rd m(rs+c)
store 3 s1 s2 c m(rs2 +c) rs1

jump 4 d s c rd pc; pc rs+c
bgt 5 s1 s2 c if rs1 > rs2 thenpc pc+c
beq 6 s1 s2 c if rs1 = rs2 thenpc pc+c

Example 1. We wish to verify the safety of the follow-
ing short program.

100 : 2210 r2 m(r1)
101 : 4070 jump(r7); r0 pc

The code producer will provide the program (i.e., in this
case the sequence of hexadecimal integers (2210,4070))
and a proof that if these integers are loaded at address
100 then it will be safe to jump there. The program’s
precondition is that register 1 points to a record of two
integers and register 7 points to a return address.

The logic comprises a set of inference rules and a
set of axioms. The inference rules are standard natural-
deduction rules of higher-order logic with natural num-
ber arithmetic and induction, augmented with just a few
predicates and rules concerning the readability, writabil-
ity, and “jumpability” of machine addresses, and the de-
coding and semantics of machine instructions.

We refer to the axioms as thesafety policy. For Exam-
ple 1, we will use the following safety policy:

1: 8v: (v� 50)! readable(v)
2: 8v: (v� 100)! writable(v)
3: 8r;m:(r(17) = r0(7))! safe(r;m)
4: r0(1)> 50
5: r0(17) = 100

Axioms 1 and 2 describe what addresses are readable
and writable. Axioms 3–7 describe the initial state of
the machine, comprising a register-bankr0 and a memory
m0, each of which is a function from integers to integers.
Axiom 3 says that any future stater;m whose program
counterr(17) is equal to what’s inr0(7) is a safe state; or
in common terms, initiallyr7 is a valid return address (we
write r(7) andr7 interchangeably). Axiom 4 says thatr0

1
is an address in the readable range, and axiom 5 says that
the program counterr17 is initially 100.

The predicates readable, writable, and safe are primi-
tives. They are not defined; instead their meaning is en-
capsulated by inference rules that are used to build proofs
about them. A sound safety policy would insure that from
any machine stater;m, if safe(r;m), then execution pro-
ceeding from that state will never load from an unread-
able location or store to an unwritable location.

We also include axioms to describe the untrusted code
that has just been loaded. Although these are not part of
the predefined safety policy, the code producer and code
consumer can each calculate these axioms from the code
itself:

6: m0(100) = 2210
7: m0(101) = 4070

We have implemented our logic in Twelf [PS99],
which is an implementation of the Edinburgh logical
framework [HHP93]. All the theorems in this paper have
been checked in Twelf.

Theorem. safe(r0;m0).
This theorem is the one that the code producer must

prove; the code consumer will check the proof before
jumping to address 100. But before describing the proof,
we must show the inference rules for reasoning about ma-
chine instructions.

3 Instruction execution

Each instruction defines a relation between the machine
state (registers, memory) before execution and the ma-

format(w;a;b;c;d) =def 0� a< 16^0� b< 16^0� c< 16^0� d < 16^w= a�163+b�162+c�16+d:
decode(v;m; i) =def(9d;s1;s2: format(m(v);0;d;s1;s2)^ i = add(d;s1;s2))_ (9d;s1;c: format(m(v);1;d;s1;c)^ i = addi(d;s1;c))_ :::

Figure 2: Instruction decoding.

chine state afterwards. We treat the program counter as
part of the register set (r17) even though it’s not really
namable in an instruction opcode. Figure 1 shows the
definition of this relation for each of the instructions add,
addi, load, and so on.

On a von Neumann machine, each instruction is rep-
resented in memory by an integer. Ourdecoderelation
(Figure 2) is a predicate on three arguments(v;m; i) and
says that addressv in memorymcontains the encoding of
instructioni.

If our machine permitted execution only of readable
instructions, or only of instructions in a special text seg-
ment, we would have to add these conditions on the pa-
rameterv of thedecoderelation.

We can now write the step relation(r;m) 7! (r 0;m0)
(Figure 3) which says that the execution of one instruc-
tion in state(r;m) leads to state(r 0;m0). This holds only
for safe and legalinstruction executions, because the defi-
nition of theload relation requires that the loaded address
be readable, and the definition ofstore requires that the
stored address be writable, and thedecoderelation fails
to hold at all for illegal instructions.

Finally, we capture the notion of continued execution
by the inference rulemultistep (Figure 3), which is a
coinduction principle based (loosely) on the Floyd-Hoare
while rule.

Our model of instruction semantics differs from the
“verification-condition generator” of Necula [Nec97].
Our approach makes it possible to model function-pointer
types and moves complexity from the code consumer
to the prover. Bugs in the code consumer compromise
safety whereas bugs in the code producer cannot.

4 The global invariant

To prove our program safe, we construct an invariantI
that holds at all times. We start by informally annotating
each instruction with a precondition.

I100(r;m) = jumpable(r7)^ readable(r1)
100 : 2210 r2 m(r1)

I101(r;m) = jumpable(r7)
101 : 4070 jump(r7)

where

jumpable(v) =def 8r 0;m0:r 0(17) = v! safe(r 0;m0)):

Our definitions allow for the possibility that a store in-
struction will overwrite the program, which allows us to
prove the safety of self-modifying code. But our simple
example does not overwrite itself, and this fact is a nec-
essary part of our invariant:

prog(m) =def decode(100;m; load(2;1;0))^decode(101;m; jump(0;7;0))
Now our global invariant is just the combination of the

prog invariant with all the local ones:

I(r;m) =def prog(m)^(r(17) = 100^ I100(r;m)_ r(17) = 101^ I101(r;m)_ jumpable(r(17)))
To prove our theorem safe(r0;m0) we use themultistep

rule. First we showI(r0;m0), and then thatI is preserved
under thesteprelation.

Axioms 6 and 7, along with the definition of the
decode relation, prove that prog(m0) holds. Axiom 5(r0(17)= 100) means that the remaining proof obligation
for I(r0;m0) is I100(r0;m0), which can be proved directly
from axioms 3, 4, and 1.

To show that the invariant is conserved, we work by
cases:� r1

17 = 100^ I100(r1;m1): By prog(m1) we have
decode(r1

17;m1; load(2;1;0)). Lettingr2 = r1[17 7! r1
17+

1;2 7!m1(r1
1)℄ andm2 =m1, and using readable(r1

1) from
I100, we have(r1;m1) 7! (r2;m2). Sincer1

7 = r2
7, by I100

we have jumpable(r2
7). Thusr2

17 = 101^ I101(r2;m2) is
proved. Sincem1 = m2, prog(m2) holds.� r1

17 = 101^ I101(r1;m1): By prog(m1) we have
decode(r1

17;m1; jump(0;7;0)). Letting r2 = r1[17 7!
r1
7;0 7! r1

17℄, we have jump(0;7;0)(r1[17 7! r1
17 +

1℄;m1; r2;m1) by the definition of jump. Thus we
have (r1;m1) 7! (r2;m1). We can use the definition
of the upd relation, along with jumpable(r1

7), to show
jumpable(r2

17), which satisfies one of the disjuncts of the
I relation.� jumpable(r1

17) implies safe(r1;m1) directly by the
definition of jumpable withr 0;m0 instantiated byr1;m1.

(r;m) 7! (r 0;m0) =def 9i; r 00:decode(r(17);m; i)^upd(r;17; r(17)+1; r 00)^ i(r 00;m; r 0;m0)
Inv(r;m) 8r1;m1: Inv(r1;m1)! (safe(r1;m1)_ (9r2;m2: (r1;m1) 7! (r2;m2)^ Inv(r2;m2)))

safe(r;m) multistep

Figure 3: Themultistepinference rule of the logic.

5 Types

We have demonstrated that it is possible to prove a pro-
gram safe. But for applications in proof-carrying code,
it will be necessary to prove safety of large programs
completely automatically. Such proofs can be based on
dataflowor ontypes.

Although it is possible to construct proofs by purely
dataflow-based techniques such assoftware fault isola-
tion [WLAG93], in this paper we will concentrate on
types. Necula’s PCC logic for an ML subset [Nec97]
has inference rules such as the following (expressed in
slightly different notation):

v :m τ1� τ2

readable(v)^ readable(v+1)^m(v) :m τ1^m(v+1) :m τ2

record2e

v :m list(τ) v 6= 0

readable(v)^ readable(v+1)^m(v) :m τ^m(v+1) :m list(τ) list e

These rules relate typing judgements directly to the
layout of typed values in machine memory, which is es-
sential to proofs about machine-language programs. We
write the judgementv :m τ with the colon subscripted by a
machine memorym, since a judgement that holds in one
memory state might not hold in another. (Necula writes
m` v : τ.)

The disadvantage of inference rules for types. Nec-
ula’s PCC system includes typing rules in the safety pol-
icy, that is, in the trusted computing base. He proves the
soundness of these rules by a metatheorem. Such a safety
policy will require the code producer to use a particular
type system, with values laid out in memory in a particu-
lar way – in effect, the safety policy will force the use of
a single programming language and a single compiler.

Our approach allows each code producer to define the
type system that its own mobile code uses. Of course, the
type system must be sound; we allow the code producer
to prove the typing rules as lemmas (provable in the ob-
ject logic) rather than define new inference rules with a
soundness metatheorem (which would be difficult for the
code consumer to check).

We view the judgementv :m τ as syntactic sugar for
τ(m)(v), an application of the predicateτ to memorym

and integer (or address)v. To illustrate, we will define
the untagged integer type, cartesian product type, and list
type as predicates, and prove (as theorems) the typing
rules shown above.

Any one-word bit pattern qualifies as an untagged inte-
ger, so theint predicate accepts any value in any memory:

int(m)(v) =def true:
Cartesian products can be defined in terms of the con-

tents of two adjacent memory words:

record2(τ1;τ2)mv=def

readable(v)^ readable(v+1)^ τ1 m(m(v))^ τ2m(m(v+1))
Now therecord2e rule shown above can be proved as a
theorem, directly from the definition of record2.

We can go on to define union types, list types, and so
on, with corresponding traversal theorems. But Necula’s
PCC system gives no rules for creation (i.e., allocation
and initialization) of data structures such as records and
lists. From our definition of record2 we could certainly
prove the theorem,

readable(v)^ readable(v+1)^m(v) :m τ1^m(v+1) :m τ2

v :m τ1� τ2
record2i

But this is not enough! Any program that creates a new
record value must initialize it by storing two values into
memory. The step rule for the store instruction is

store(s1;s2;c)(r;m; r 0;m0) =def

writable(r(s2)+c)^
upd(m; r(s2)+c; r(s1);m0)^ r = r 0

which relates a memorym (before the store) to a memory
m0 (after the store). Now suppose we have the following
program fragment:

I103(r;m) = r1 :m int� (int� int)^ r3 :m int
103 : m(r2) r3

I104(r;m) = r1 :m int� (int� int)^r3 :m int^m(r2) = r3

104 : m(r2+1) r3
I105(r;m) = r1 :m int� (int� int)^ r2 :m int� int

After storing two integers into memory at addressesr2

andr2 +1 we can legitimately use the record2i rule to

prover2 :m0 int� int with respect to the new memorym0 to
which I105 will be applied. But unfortunately, we cannot
prover1 :m0 int� (int� int), becauseI103 establishes that
fact aboutr1 in adifferentversion ofm. Practically speak-
ing, we don’t know whether one of the store instructions
overwrites a field of the record atr1 so as to invalidate the
typing judgement.

The following theorem is certainly provable:

v :m τ1� τ2 upd(m;x;y;m0) x 6= v x 6= v+1
v :m0 τ1� τ2

but how can we organize the proof so as to establish that
x 6= v?

The solution is to reason carefully about heap alloca-
tion, distinguishing the allocated region of the heap from
the unallocated region, as the next section will explain.

6 Heap Allocation

A call-by-value pure functional program allocates new
data-structure values on a heap, and never updates old
values. (Imperative languages are much harder to reason
about, so we leave that for future work.) The program
(and run-time environment) keeps track of which loca-
tions are allocated and which are free on the heap. In a
very simple system anallocation pointer– a register or
memory location – points to the boundary between allo-
cated and unallocated memory. A more complex system
might use a data structure to keep track of which blocks
of memory are allocated.

The typing judgementv :m τ1� τ2 should imply that
the addressesv andv+1 are in the allocated set. We can
make this explicit by making the allocated seta a param-
eter of the typing judgement:v :a;m τ. Now we define
record types a bit differently than in the previous section
(wherea is an allocation predicate andv2 a is syntactic
sugar fora(v)):

record2(τ1;τ2)(a;m)v=def

v2 a^ (v+1)2 a^ readable(v)^ readable(v+1)^ τ1 (a;m)(mv)^ τ2 (a;m)(m(v+1))
Maintaining the allocation pointer. Consider a pro-
gram that uses registerr6 as an allocation pointer, so that
the “standard” allocation predicate is

a(v) =def v< r6

Abstracting overr andm, we say that

stda(r;m)(v) =def v< r(6)
If all memory beyond address 100 is readable and

writable, and the program itself occupies addresses 100–
299, then we might start withr6 = 300 and increaser6 as

the program executes. The program will initialize (i.e.,
store) new data structures beyondr6; to ensure that the
prog invariant holds, we must continually maintain the
invariantr6 � 300.

Allocating a record. Figure 4 shows a program that
creates a new record value by storing the two fields at lo-
cationsr6 andr6+1 and then increasingr6 by 2. Clearly,
at the pointI109 r2 satisfies all the conditions in the right-
hand side of the definition of record2(τ;τ)(stda(r;m);m),
proving the judgementr2 :stda(r;m);m τ� τ.

But at the same time, there is a pre-existing record
value inr1 that will still be needed after the new record is
created – that is, both the preconditionI106 and the post-
conditionI110 mentionr1 :a;m τ. The trick is to maintain
this judgement even as the stores create “different”m’s
and increasingr6 creates “different”a sets.

We will define avalid type as one satisfying these con-
ditions:

valid(τ) =def8a;a0;m;v: (a� a0)! τ(a;m)v! τ(a0;m)v^ 8a;m;m0;v: (8x2 a: m(x) = m0(x))!
τ(a;m)v! τ(a;m0)v

The first condition is that a typing judgementv :a;m τ is
invariant under increasing the size of the allocated set;
the second is that the judgement is invariant under storing
any value at any unallocated location.

This valid predicate is strong enough to enable safety
proofs for programs that traverse, allocate, and initial-
ize data structures built from valid types. On the other
hand, valid does not guarantee preservation of typing
judgments through updating of already allocated fields,
so we are restricted to type systems that use immutable
data structures.

If τ is a valid type, then the judgementr1 :a;m τ will
be preserved through all the operations betweenI106 and
I110. Each typing predicate that we wish to use in our
proof of safety must be proved valid. We will show such
theorems in the next section.

Morrisett et al. [MWCG98] show how to prove safety
of allocation based on a type system for partially initial-
ized records. We have not chosen to do this; instead,
the approach we have shown in this section uses dataflow
analysis to reason about the contents of the partially ini-
tialized record. We believe this will work well, since
record initialization is an essentially local phenomenon.

Heap exhaustion. We can model a bounded-size heap
as follows. Axiom 2 of the safety policy would be written
as

2: 8v: (100� v< 1000)! writable(v):
At each initializing store, it would be necessary to prove
that the address is� 100 and< 1000. The former can be

I106(r;m) = r6 � 300^ r1 :stda(r;m);m τ
106 : m(r6) r1

I107(r;m) = r6 � 300^ r1 :stda(r;m);m τ^m(r6) :stda(r;m);m τ
107 : m(r6+1) r1

I108(r;m) = r6 � 300^ r1 :stda(r;m);m τ^m(r6) :stda(r;m);m τ^m(r6+1) :stda(r;m);m τ
108 : r2 r6+0

I109(r;m) = r6 � 300^ r1 :stda(r;m);m τ^m(r2) :stda(r;m);m τ^m(r2+1) :stda(r;m);m τ^ r2 = r6

109 : r6 r6+2
I110(r;m) = r6 � 300^ r1 :stda(r;m);m τ^ r2 :stda(r;m);m τ� τ

Figure 4: A program that allocates and initializes a record.

proved as before from the invariant (e.g.I107 of Figure 4.
The latter requires the program to include an instruction
of the formif r6+2� 1000gotoexit. Immediately after
such an instruction (which is the heap-limit check that
any reasonable program would have to perform anyway),
it is easy to establish thatr6 < 1000.

7 Type constructors

Almost all the types used in ML programs can be de-
fined and proved valid in our system: record types, tagged
union datatypes, function types, abstract types, polymor-
phic types, and covariant recursive types. We have not
yet succeeded in defining contravariant recursive types,
as the next section will discuss.

We start with some primitives:

consttyi (a;m)v=def v= i
The constant type, that is, 6 :a;m constty(6).

char(a;m)v=def 0� v< 256
The character (or tiny integer) type.

boxed(a;m)v=def v� 256
The type of boxed (noncharacter) values.

ref τ(a;m)v=def v2 a^ readable(v)^ τ(a;m)(mv)
The type of (immutable) references to memory
words containing values of typeτ.

arefτ(a;m)v=def v2 a^ readable(v)^9a0: a0 � a^v 62 a0^ τ(a0;m)(mv)
The type of acyclic references, that is, the referenced
data structure does not contain pointers back to ad-
dressv.

offset i τ(a;m)v=def τ(a;m)(v+ i)
The type of valuesv such thatv+ i has typeτ.

field i τ =def offset i(ref τ)
The type of a record field at offseti containing a
value of typeτ. If acyclic records are desired, then
aref can be used instead ofref.

union(τ1;τ2)(a;m)v=def τ1(a;m)v_ τ2(a;m)v
The typeτ1[τ2 of values that belong either toτ1 or
τ2.

intersection(τ1;τ2)(a;m)v=def τ1(a;m)v^ τ2(a;m)v
The typeτ1\ τ2.

record2(τ1;τ2) =def field 0τ1 \ field 1τ2

A definition of the two-element record type equiva-
lent to the one given in section 6 but more concise.

sum(τ1;τ2) =def

record2(constty 0; τ1) [record2(constty 1; τ2)
A tagged disjoint sum type.

money =def record2(constty 0; int)[record2(constty 1; int)[record3(constty 2; int; int)
Equivalent to the ML datatype,

money = COIN of int
| BILL of int
| CHECK of int * int

existential(F)(a;m)v=def 9τ: (Fτ)(a;m)v^valid(τ)
An existential type, useful in defining abstract data
types [MP88] and function closures [MMH96].

universal(F)(a;m)v=def 8τ: valid(τ)! (Fτ)(a;m)v
An universal type, useful for polymorphic functions.

Now we must prove all these types and constructors
valid. The typesconstty, char, boxedare invariant with
respect to increasinga or updatingm at an unallocated
location because their definitions don’t use thea or m ar-
gument at all.

Type ref(τ) is valid if τ is valid:

1. a� a0! τ(a;m)w! τ(a0;m)w for all w, so the im-
plication will hold for the particularw= m(v).

2. if m = m0 at all allocated locations, then
τ(a;m)(m(v)) ! τ(a;m0)(m(v)) by validity of
τ. And since v 2 a, then m(v) = m0(v), so
τ(a;m0)(m(v))! τ(a;m0)(m0(v)) by congruence.

Offset i τ is valid if τ is valid by instantiation ofv+ i
for v in the definition of validity ofτ.

Union and intersection types are valid (if their compo-
nents are valid) by an equally simple argument.

A valid type constructor is one that preserves validity,
as do ref and offset(i). It is easy to show that the compo-
sition of valid constructors preserves validity; therefore,
field types, record types, and sum types are valid if their
component types are valid.

It is trivial to prove that the type existential(F) is valid
if F is a valid constructor.

From these definitions, we can derive introduction and
elimination for all of our type constructors. For example,

v2 a^v+12 a^
readable(v)^ readable(v+1)^
m(v) :a;m τ1^m(v+1) :a;m τ2

v :a;m τ1� τ2
record2i

8 Function types

We will build function values (and function types) in
three stages. First-order continuations – that is, machine-
code addresses with arguments – belong to thecodeptr
type. A continuation closure(cont)is a code pointer with
an environment. And a function closure(func) is also a
code pointer with an environment, but the arguments of
this code pointer include acont. A compiler could gener-
ate these closures by following the typed closure conver-
sion algorithm of Morrisett et al. [MWCG98].

A codeptr is an address to which control may be passed
provided that its precondition is met. In a type-based
proof, the precondition is mainly in the form of typing
judgements. We can take address 106 from Figure 4 as
an example; we can jump to location 106 from any ma-
chine state satisfyingI106 and theprog invariant. Let us
separate this invariant into two parts, the “standard” in-
variant and the part specific to entry-point 106:

stdp(r;m) = prog(r;m)^ r6� 300

I 0
106(r;m) = r1 :stda(r;m);m τ

Notice that entry-point 106 uses the “standard” repre-
sentation of the allocated set, that is, stda(r;m). Not all
program locations do; a program is free to spillr6 to a
memory location, or to defer incrementingr6 until a se-
ries of allocations is complete. In such cases, a program
point’s allocated-set would be represented asv< m(ap)
orv< r6+k instead of stda(r;m)(v) = v< r(6). However,
we can make the restriction that any address to which we
attribute thecodeptrtype must usestda.

We can abstractstdafrom I 0
106 to yield the component

of the invariant that deals just with the formal-parameter
type(s) of that entry point:

P106(a;m) r = r1 :a;m τ

This predicate has almost the form of a type, except with
anr parameter instead ofv. That is, it specifies the “type”
of the register bank, or rather, the types of some subset of
the registers – the formal parameter types.

For any such parameter-preconditionP, we define

codeptr(P)(a;m)v=def8r 0;m0: r 0(17) = v^stdp(r 0;m0)^P(stda(r 0;m0);m0)(r 0)! safe(r 0;m0)
This says thatv is a codeptr with formal parame-

ters P if, for any future register-bankr 0 and memory
m0, if the program-counter is at locationv, the standard-
preconditionstdpholds, and the types of the registers sat-
isfy P, then it’s safe to continue.

In order for codeptr(P) to be a valid type,P must be
a valid register-type – that is, it must be invariant with
respect to increasing the allocated set or modifying mem-
ory at unallocated locations. It is easy to show thatP106

is valid if τ is valid. In general ifτ1;τ2; ::: are valid types,
then the predicate

r i1 :a;m τ1^ : : : r ik :a;m τk

is a valid formal-parameters predicate.
Let us define a family of predicates paramsk – for var-

iousk – as the standard calling sequence ofk arguments:

params1 (τ1) (a;m) r =def

r1 :a;m τ1

params2 (τ1;τ2) (a;m) r =def

r1 :a;m τ1^ r2 :a;m τ2

params3 (τ1;τ2;τ3) (a;m) r =def

r1 :a;m τ1^ r2 :a;m τ2^ r3 :a;m τ3

Thus, with respect to the program of Figure 4 we can
make the following judgement:

stdp(r;m) ! 106 :stda(r;m);m codeptr(params1(τ)):
Continuation closures. In a programming language
with nested lexical scopes for function definitions, an in-
ner function may have free variables (which are bound
only in an outer scope). The implementation of such a
function must include bothcontrol (e.g., a code pointer)
andenvironment(a data structure in which values for the
free variables can be found). Since two functions of the
same type may have different sets of free variables, the
type of the environment should not be part of the func-
tion type. We solve this problem in the standard way: we
use an existential type to hide the type of the environment
[MMH96].

A continuation is a function that never returns (or
rather, its return is the completion of the whole program).

Continuations, like functions, need closures and environ-
ments. For any typeτ, cont(τ) is the continuation taking
a τ argument in register 1. However, the code entry point
will also have to take an environment (of typeσ) in reg-
ister 2.

cont(τ) =def

existential(λσ: record2(codeptr(params2(τ;σ)); σ))
To apply a continuation valuev, one must first fetch the

codeptrc from m(v+0) and put it in some register, say
r5. One must put a value of typeτ in r1. One must fetch
the environmente from m(v+ 1) into r2. One must en-
sure that the standard precondition stdp(r;m) holds.The-
orem: Then it is safe to jump to the address contained in
r5. Proof: by expansion of definitions.

Function closures. A function is just a continuation
with an additional argument that is itself a continuation.
That is, the function typeα ! β takes one argument
that is a value of typeα, and another argument of type
cont(β). Since functions may have free variables, we
make function closures in the same way as for continu-
ations – so the codeptr component of a function has an-
other argument of typeσ, the environment type.

func(α;β) =def

existential(λσ:
record2(codeptr(params3(α;cont(β);σ)); σ))

Calling a function is done almost exactly as calling
a continuation, except thatr1 contains the argument,r2

contains the continuation-closure, andr3 contains the
function environment.

The type-constructors cont and func are valid because
they are just compositions of other valid constructors (ex-
istential, record, codeptr, params).

We have described functions with heap-allocated con-
tinuations – not stack-allocated frames – because they are
easier to reason about, easier to implement, suitably effi-
cient, and used by a compiler [Sha98] that can plausibly
serve as a front-end for our PCC system. Of course it is
also possible to reason effectively about stack-allocated
frames [MCGW98, KKR+86].

9 Recursive Datatypes

In order to define recursive datatypes, we introduce a sub-
typing relation defined as logical implication:

subtype(τ1;τ2) =def 8a;m;v: τ1(a;m)(v)! τ2(a;m)(v):
We writeτ1 v τ2 to denote this relation. Using this rela-
tion, we define the following rec predicate:

rec(f) =def 8τ: valid(τ)! f (τ) v τ! τ(a;m)(v)

The recursive types are all types rec(f) for which the least
fixed point of the argument functionf is rec(f). It can
be shown that any functionf that preserves validity and
also satisfies the following monotone predicate has this
property.

monotone(f) =def 8τ1;τ2: τ1v τ2! f (τ1)v f (τ2)
In particular, we prove that wheneverf satisfies these
properties, both f (rec(f)) v rec(f) and rec(f) v
f (rec(f)) hold, and thus the following theorem holds.

preservesvalidity(f) monotone(f)
rec(f)(a;m)(v)$ f (rec(f))(a;m)(v) roll unroll

This theorem allows us to fold and unfold recursive types.
Unfolding is useful for proofs of safety for programs that
traverse recursive datatypes, while folding is useful in
proofs involving allocation. Using the rec operator we
can define (for example) polymorphic lists:

list(τ) =def rec(λτ0: constty 0[boxed\ record2(int;τ))
The address used for pointers to cons cells must not be 0,
so we use a boxed address to point to cons cells.

In order to build arbitrary recursive datatypes using any
of the constructors of section 7, we have proved that they
preserve both validity and monotonicity. For the con-
structor ref, for example, we proved monotone(ref). For
constructors that take two arguments, we must show that
the constructor is monotone in both. For example, we
showed monotone2(union), where:

monotone2(f) =def 8τ1;τ2;τ0
1;τ0

2:
τ1 v τ2! τ0

1 v τ0
2! f (τ1;τ0

1)v f (τ2;τ0
2)

We want to be able to automate the proofs that show that
any datatype built from these constructors is monotonic
and preserves validity. This automation is in fact easy as
long as we prove the right set of lemmas. The lemmas
we have proved allow us to structure proofs for arbitrary
datatypes so that they contain exactly one lemma appli-
cation for each constructor that appears in the datatype.
The following lemma about union illustrates the form of
the lemmas that we use for this purpose:

valid mono(f) valid mono(g)
valid mono(λτ: (f τ)[(g τ)) vm union

where validmono is:

valid mono(f)=def preservesvalidity(f)^monotone(f):
We prove analogous lemmas for ref, aref, offset, field,
intersection, sum, and records of any number of argu-
ments.

Allowing function types in recursive datatypes
presents a further challenge. Not all types satisfy the

monotone criterion; only covariant types do. In these
types occurrences of the type being defined can only ap-
pearpositively, that is, they must appear to the left of an
even number of function arrows in an ML declaration.
For instance, in the following examples:

τ1 =c1 of int j c2 of int! τ1

τ2 =c1 of int j c2 of τ2! int
τ3 =c1 of int j c2 of (τ3! int)! τ3

τ4 =c1 of int j c2 of ((τ4! int)� int)! (τ4� int)
the first, third, and fourth satisfy the restriction. Prov-
ing that they do requires proving antimonotone(codeptr),
where we define:

antimonotone(f) =def 8τ1;τ2: τ1v τ2! f (τ2)v f (τ1):
The antimonotonicity of codeptr results from the appear-
ance of the argument-type predicate to the left of an im-
plication arrow in codeptr’s definition.

We prove the composition of a monotone with an an-
timonotone operator, or vice versa, is antimonotone; and
that the composition of antimonotone operators is mono-
tone. Then it follows easily that cont is antimonotone,
and that func(τ1;τ2) is monotone inα if τ1 is antimono-
tone inα andτ2 is monotone inα. Note thatτ2 appears
inside two nested cont operators, establishing its mono-
tonicity.

These and similar results allow us to prove the validity
of the recursive typesτ1;τ2;τ4 shown above. We must
prove (anti)monotonicity lemmas for all the constructors
of section 7. The next section includes an example of
their use.

10 Implementation in Twelf

Our encoding of higher-order logic (the object logic) is il-
lustrated by the following declarations in Twelf (the meta
logic).

tp: type.
int: tp.
form: tp.
arrow: tp -> tp -> tp.
%infix right 14 arrow.

tm: tp -> type.
form: tp.
pf: tm form -> type.

lam: (tm T -> tm U) -> tm (T arrow U).
@: tm (T arrow U) -> tm T -> tm U.
%infix left 20 @.
and: tm form -> tm form -> tm form.
%infix right 12 and.
forall: (tm T -> tm form) -> tm form.

and_i: pf A -> pf B -> pf (A and B).
and_e1: pf (A and B) -> pf A.
and_e2: pf (A and B) -> pf B.
forall_i: ({X:tm T}pf (A X))
-> pf (forall A).

forall_e: pf(forall A)
-> {X:tm T}pf (A X).

A metalogic (Twelf) type is atype, an object-logic type
is atp, and a programming-language type is aty (which
is not in the core logic since it is a definition at the dis-
cretion of the code producer). Object-logic types are con-
structed fromint, the typeform of formulas of the ob-
ject logic, and thearrow constructor. Object-level terms
of typeT have type(tm T) in the metalogic. Quanti-
fying at the metalevel allows us to encode polymorphic
object-level types. Terms of type(pf A) are terms rep-
resenting proofs of object formulaA.

The declarations beginning withlam introduce con-
stants for constructing terms and formulas. Note that the
universal quantifierforall is polymorphic; uppercase
letters denote variables, and free variables are implicitly
quantified at the outermost level. Braces are used for ex-
plicit quantification. The last five declarations encode the
introduction and elimination rules of natural deduction
for conjunction and universal quantification. The com-
plete encoding (about 100 lines of Twelf) includes the re-
maining inference rules of higher-order logic, an encod-
ing of integers (including arithmetic operators and natural
number induction), the multistep rule, and the axioms of
the safety policy. All other objects are definitions and
theorems built from this core signature.

The following are the Twelf definitions of some of the
type constructors as well as the polymorphic lists pre-
sented in section 9.

ty : tp = state arrow int arrow form.

ref : tm (ty arrow ty) =
lam3 [T][S][V] fst S @ V and
readable @ V and T @ S @ (snd S @ V).

offset : tm (int arrow ty arrow ty) =
lam4 [I][T][S][V](T @ S @ (V + I)).

field : tm (int arrow ty arrow ty) =
lam2 [I][T](offset @ I @ (ref @ T)).

record2 : tm (ty arrow ty arrow ty) =
lam2 [T][U](intersect @
(field @ 0 @ T) @ (field @ 1 @ U)).

listf : tm ty -> tm (ty arrow ty) =
[T](lam [T’](union @
(constty @ (const 0)) @
(intersect @ boxed

@ (record2 @ T @ T’)))).
list : tm (ty arrow ty) =
(lam [T](rec @ (listf T))).

The ty declaration gives the type for predicates repre-
senting ML types. Some definitions are omitted. For

examplelam4 is defined in terms oflam and binds
4 variables, andstate is (pair allocset mem-
ory) wherepair is polymorphic, defined in the usual
way with λ-calculus. The following theorem justifies the
use ofrec in the definition oflist.

vm_listf : pf (validtype @ T) ->
pf (valid_mono @ (listf T)) =
[P:pf (validtype @ T)]
(vm_union vm_constty
(vm_intersect vm_boxed
(vm_record2
(vm_validtype P) vm_id))).

Thevm_ lemmas state that the constructors preserve va-
lidity and monotonicity. Thevm_union theorem, for
instance, was presented in the previous section.

11 Conclusion and Future Work

We have described a framework for proof-carrying code
which should be sufficiently general to accommodate real
programming languages on real machines.

Any PCC system must be concerned with keeping the
size of proofs small. Our lemmatization of the typing
rules adds a constant size to any proof, but no multi-
plicative factor. Also, instead of expanding out Hoare-
logic substitutions before proving – as Necula does in
his verification-condition generator – we avoid this po-
tentially exponential blowup in theorem size by using a
step-relation machine semantics. This gives us the poten-
tial for smaller proofs.

Future Work

A variety of directions remain to be explored. We sum-
marize a few here.

Machine instruction sets. To handle real machines, we
plan to encode instruction set architectures such as the
Sparc and Pentium; we will have to handle variable size
instructions and byte addressing.

Contravariant recursive types. Many real program-
ming languages—ML, Java, C—have contravariant re-
cursive types such as this one:

datatype exp = APP of exp * exp
| LAM of exp -> exp

Our current type framework cannot handle this type be-
cause of the occurrence ofexp to the left of the arrow
in theLAM constructor. We plan to adapt the model of
types in MacQueen et al. [MPS86] or in Mitchell and
Viswanathan [MV96] to our notion of types as predicates

on machine states. Doing so requires the formalization
of metric spaces or partial equivalence relations, respec-
tively.

Mutable fields. We also plan to describe mutable data
structures, such as ML refs and Java objects. Handling
references will involve allowing for mutable memory lo-
cations, which will require a more complex notion of al-
location, and thus a more complexvalid typepredicate.

Fω. Our longer-range plan is to cover more of the types
used by a production compiler for a language such as
ML. In particular, we plan to incorporate the type sys-
tem of the FLINT intermediate language [Sha98] (which
will also compile Java [LST99]), for which we will have
to encode the types and kinds of the Fω polymorphicλ-
calculus [Gir72, Rey74].

Other type systems. To show that our approach to
safety policies (which moves information from the
trusted computing base into a semantic model built from
first principles) is truly universal, we plan to build a
model of a type system that is possibly quite different
from that of ML. One possibility is the type system of
Touchstone [Nec98] which has mutable records, but no
function types or union types; or the typed assembly lan-
guage of Morrisett et al. [MWCG98].

Concurrency. Our model is sequential. Concurrency
and asynchronous exceptions can be handled by assum-
ing (in the step relation) that some portions of memory
can change between successive machine instructions, and
some portions will not. The safety policy must guarantee
that certain memory locations (i.e. unshared variables of
this thread) are preserved unchanged.

Automating proof. In an earlier version of our system,
we built a prototype theorem prover which automatically
proved safety of simple programs that traverse and allo-
cate lists. We have lots of ideas about how to augment this
prover. In doing so, it will be necessary to keep proofs
small. Our goal is to develop a set of lemmas that allow
us to build proofs fully automatically that are linear in the
size of the type-annotated intermediate representation of
the compiled program; we believe this is possible for the
kinds of safety proofs we are considering. An example
illustrating this idea is thevm_list theorem in the pre-
vious section whose proof uses exactly as many lemma
constructors as the description of thelistf type uses
type constructors.

Runtime code generation. Because our machine se-
mantics treats machine instructions as data in the Von
Neumann style, there is the potential to prove the safety
of programs that do runtime code generation.

Garbage collection. We have left garbage collection
for future work, but the approach of Wang and Ap-
pel [WA99] looks promising and fits into our framework.

Acknowledgements. We thank Neophytos Michael for
assistance in implementing the toy-machine decode func-
tion in Twelf; Robert Harper, Frank Pfenning, Carsten
Schürmann for advice about encoding logics in Twelf;
Doug Howe, David MacQueen, and Jon Riecke for ad-
vice about recursive types; Greg Morrisett for comments
on an early draft of the paper.

References
[Gir72] J.-Y. Girard. Interprétation Fonctionnelle et

Elimination des Coupures dans l’Arithmétique
d’Ordre Supérieur. PhD thesis, University of
Paris VII, 1972.

[HHP93] Robert Harper, Furio Honsell, and Gordon
Plotkin. A framework for defining logics.Journal
of the ACM, January 1993. To appear. A prelim-
inary version appeared inSymposium on Logic in
Computer Science, pages 194–204, June 1987.

[KKR+86] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin,
and N. Adams. ORBIT: An optimizing compiler
for Scheme.SIGPLAN Notices (Proc. Sigplan ’86
Symp. on Compiler Construction), 21(7):219–33,
July 1986.

[LST99] Christopher League, Zhong Shao, and Valery Tri-
fonov. Representing java classes in a typed in-
termediate language. InProc. 1999 ACM SIG-
PLAN International Conference on Functional
Programming (ICFP ’99), pages 183–196, New
York, 1999. ACM Press.

[MCGW98] Greg Morrisett, Karl Crary, Neal Glew, and David
Walker. Stack-based typed assembly language. In
ACM Workshop on Types in Compilation, Kyoto,
Japan, March 1998.

[MMH96] Yasuhiko Minamide, Greg Morrisett, and Robert
Harper. Typed closure conversion. InPOPL
’96: The 23rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages,
pages 271–283. ACM Press, January 1996.

[MP88] John C. Mitchell and Gordon D. Plotkin. Ab-
stract types have existential type.ACM Trans-
actions on Programming Languages and Systems,
10(3):470–502, July 1988.

[MPS86] David MacQueen, Gordon Plotkin, and Ravi
Sethi. An ideal model for recursive polymophic

types.Information and Computation, 71(1/2):95–
130, 1986.

[MV96] J.C. Mitchell and R. Viswanathan. Effective mod-
els of polymorphism, subtyping and recursion.
In 23rd International Colloquium on Automata,
Languages, and Programming. Springer-Verlag,
1996.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and
Neal Glew. From System F to typed assem-
bly language. InPOPL ’98: 25th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 85–97. ACM
Press, January 1998.

[Nec97] George Necula. Proof-carrying code. In24th
ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 106–119,
New York, January 1997. ACM Press.

[Nec98] George Ciprian Necula. Compiling with
Proofs. PhD thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA,
September 1998.

[PS99] Frank Pfenning and Carsten Schürmann. System
description: Twelf — a meta-logical framework
for deductive systems. InThe 16th International
Conference on Automated Deduction. Springer-
Verlag, July 1999.

[Rey74] John C. Reynolds. Towards a theory of type struc-
ture. InProc. Paris Symp. on Programming, vol-
ume 19 ofLecture Notes in Computer Science,
pages 408–425, Berlin, 1974. Springer.

[Sha98] Zhong Shao. Typed cross-module compilation.
In Proc. 1998 ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’98),
pages 141–152, New York, 1998. ACM Press.

[WA99] Daniel C. Wang and Andrew W. Appel. Garbage
collection = regions + intensional types. Technical
report, Princeton University, October 1999.

[WLAG93] R. Wahbe, S. Lucco, T. Anderson, and S. Graham.
Efficient software-based fault isolation. InProc.
14th ACM Symposium on Operating System Prin-
ciples, pages 203–216, New York, 1993. ACM
Press.

