
Review of Existing Analysis Tools
for SELinux Security Policies:

Challenges and a Proposed Solution

Amir Eaman1,2(B), Bahman Sistany2, and Amy Felty1

1 School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, Canada

{aeama028,afelty}@uottawa.ca
2 Irdeto Canada Corporation, Ottawa, Canada

bahman.sistany@irdeto.com

Abstract. Access control policy management is an increasingly hard
problem from both the security point of view and the verification point
of view. SELinux is a Linux Security Module (LSM) implementing a
mandatory access control mechanism. SELinux integrates user identity,
roles, and type security attributes for stating rules in security policies.
As SELinux policies are developed and maintained by security adminis-
trators, they often become quite complex, and it is important to care-
fully analyze them in order to have high assurance of their correct-
ness. There are many existing analysis tools for modeling and analyzing
SELinux policies with the goal of answering specific safety and function-
ality questions. In this paper, we identify and highlight current gaps in
these existing tools for SELinux policy analysis, and propose new tools
and technologies with the potential to lead to significant improvements.
The proposed solution includes adopting a certified access control policy
language such as ACCPL (A Certified Access Core Policy Language).
ACCPL comes with formal proofs of important properties, and our pro-
posed solution includes adopting it to facilitate various analyses and
proof of reasonability properties. ACCPL is general, and our goal is to
design a certified domain-specific policy language based on it, specialized
to our task.

Keywords: SELinux · Access control · Security policies · Analysis tools

1 Introduction

On Linux based systems, many security exploits attempt to target system dae-
mons that often run with elevated or even unlimited privileges (e.g. as root).
Once the attacker gets access to a daemon, the whole system is compromised
since the attacker obtains permanent root privileges on the system. The tradi-
tional Discretionary Access Control (DAC) mechanism that Unix/Linux systems
use leaves important security decisions up to the discretion of the individual users

c© Springer International Publishing AG 2017
E. Aı̈meur et al. (Eds.): MCETECH 2017, LNBIP 289, pp. 116–135, 2017.
DOI: 10.1007/978-3-319-59041-7 7



Review of Existing Analysis Tools for SELinux Security Policies 117

and administrators, resulting in an ad-hoc system where some applications or
daemons are well configured whereas others have too many unnecessary permis-
sions. SELinux [18] as an access control mechanism at the operating system level
integrates DAC and Mandatory Access Control (MAC). MAC, and in particu-
lar SELinux, mandates a central policy-driven approach to access control and
regulates DAC’s access decisions. SELinux works based on the principle of least
privilege, and every grant of access must have the corresponding allow rule in
the security policy to permit that access. This means that when DAC allows
access to a subject, the access request still needs to be checked by MAC as well.
If an access request is denied by DAC, MAC will not get involved.

The policy language used to develop SELinux policies is a complex lan-
guage encompassing an integration of Role-Based Access Control (RBAC), Type
Enforcement (TE), and Multi-Level Security (MLS) [16]. Partly as a result of
this fact and partly due to the way the language has been designed to specify
fine-grained access control needs (among other reasons), the policies typically
are comprised of thousands of policy statements; this makes policy development
and analysis very difficult. The complexity of resulting SELinux policies means
that for example, safety guarantees cannot be given, defeating the main purpose
for SELinux in the first place. Even when a policy is considered both safe and
functional, each addition, deletion or modification of the policy has the potential
to break the baseline. The need for analysis tools for SELinux policies has been
recognized from almost the very beginning with the expectation that such tools
would be the silver bullet for SELinux security administrators.

This paper aims to identify and highlight current gaps in existing tools
and technologies for SELinux policy analysis, which could potentially lead
to improvements and new tools and technologies. A proposal toward clos-
ing the gaps identified in the technology and tools discussed in this paper is
given. Section 2 describes basic concepts of access control. Section 3 presents the
SELinux policy language structures that are used for expressing SELinux poli-
cies. In Sect. 4, existing tools developed by different research teams are analyzed,
and important problems are identified. Section 5 describes identified challenges
for SELinux and proposes a solution for overcoming these challenges by adopting
a certified access control policy language. Finally, Sect. 6 concludes.

2 Preliminaries

2.1 Access Control

Access control can be described as a security service that guards protected
resources against unauthorized access [4]. Access control, as an IT security ser-
vice, deals with three primary entities in a system: subjects that require access
to resources, objects or resources that are accessed by subjects, and actions that
are performed by subjects on objects. Actions can range from being as simple as
reading data to sharing or executing data [16]. The final protected system must
satisfy information security measures consisting of confidentiality, integrity, and
availability (known as the CIA triad).



118 A. Eaman et al.

2.2 Access Control Models

Access control models define the structure and language for describing system
policies and relevant procedures for processing them. Three widely used models
for different access control policy types were mentioned earlier: Discretionary
Access Control (DAC), Mandatory Access Control (MAC), and Role-Based
Access Control (RBAC) [23].

RBAC maps users to roles, which are sets of authorized permissions. RBAC
lumps users together in bunches and assigns permissions to these groups; thus,
a user can have a specific permission if the permission is assigned to a role that
is associated with the user.

The traditional DAC model relies heavily on user identity, which can lead to a
compromise of the whole system in the case when the attacker obtains root priv-
ileges on the system. The owner grants privileged access to objects. DAC defines
an access control list for every object in the system. DAC-based systems are
coarse-grained since, trivially, DAC cannot provide fine-grained controls using
only user identity as the basis of decisions. Two user privileges that are possible
in these systems are admin and non-admin.

MAC overcomes drawbacks of DAC to restrict access to objects solely on
user identity by abstracting system resources into subjects and objects. MAC
assigns security attributes to system resources and provides a foundation for
security administrators to define access control policies for their environments,
which requires more systems administration. Different MAC security models
target the preservation of different security objectives in the system, provided
by defining fixed security rules as their access control policies. Three important
security models for MAC include the Bell-LaPadula (BLP) model preserving
confidentiality, the Biba model preserving integrity, and the Clark-Wilson model
preserving integrity [23]. We describe each in more detail below.

The Bell-LaPadula model ensures confidentiality of information by not allow-
ing a subject to write objects of lower security level and not allowing a subject to
read objects of higher security level. BLP security rules restrain the transfer of
information from a higher security level subject to a lower security level object
in a system.

The Biba integrity model protects the integrity of information by enforcing
a policy defined by particular security rules. These security rules include rules
that do not allow a subject to read objects of a lower integrity level and do not
allow a subject to write objects of a higher integrity level.

The Clark-Wilson model focuses on the integrity of information and uses four
security categories as the language for defining access control policy rules [4].
Policy rules control the integrity of the system by ensuring the integrity of the
security categories of the model. These categories are:

– Constraint Data Items (CDIs): objects that are integrity protected.
– Unconstrained Data Items (UDIs): objects that are not integrity protected.
– Integrity Verification Procedures (IVPs): verifiers to check CDI integrity.



Review of Existing Analysis Tools for SELinux Security Policies 119

– Transformation Procedures (TPs): certified procedures to transition CDIs or
UDIs to other CDIs. TPs are supposed to be a filter to control information
transfers from low or high integrity objects to high integrity objects.

3 SELinux Overview

SELinux is a Linux-based access control framework developed by the United
States National Security Agency (NSA) [18]. SELinux is compiled into the kernel
and supported through the Linux Security Module (LSM). LSM is a kernel-level
security framework that provides the possibility of attaching various security
mechanisms to the Linux kernel, such as SELinux, without directly depending
on the kernel objects. SELinux implements the MAC model within Linux-based
distributions and provides more granular control of security. SELinux primarily
involves labeling that divides system resources into subjects, which are processes,
and objects, such as files and sockets. Every system resource receives a label
which is a combination of values of the user, role, and type attributes. These
attribute-value pairs form the security context for system resources.

3.1 SELinux Architecture

The SELinux security module implements the Flask architecture in a Linux envi-
ronment [14]. A feature of the Flask architecture is the separation of security
policy logic from the enforcement mechanism. The Security Server is a kernel
component responsible for making security decisions, and the Object Manager
enforces these security decisions in the system. The Access Vector Cache (AVC),
is another component of the SELinux architecture. AVC stores the security pol-
icy look-up results to improve the performance of the decision-making proce-
dure. Searching the AVC is faster, so access requests that have been previously
processed can be quickly answered without searching the entire security pol-
icy again. Figure 1 depicts the core decision-making architecture of SELinux.
Attributes used to determine the decisions of the SELinux access control mech-
anism are described in the following section.

Object
Manager

Security 
Server

Access
Vector
Cache

subject

object
Security 
Policy

Searching

Query for 
Permissions

Query for 
permissions

Decisions
from
cache

Decisions
From security 
policy

Allow/Deny

Access 
request

Fig. 1. Core decision-making architecture in SELinux



120 A. Eaman et al.

3.2 SELinux Access Control Criteria

The SELinux attributes include user, role, type or domain, and level, each
described below.

SELinux introduces its own user attribute, and the Linux user attribute is
mapped to the SELinux one [16]. The mapping of Linux users to SELinux users
can be viewed using the Linux shell command “semanage login l.”

The role attribute comes from RBAC. The SELinux security policy deter-
mines which users are authorized for each role. In particular, these roles are used
for making role-based access control decisions. They specify which domains are
authorized for which users and thus permit user entry into these domains. The
shell command “seinfo -r” lists roles that are available in the system.

The SELinux type attribute is the most important attribute within a security
context. Terminologically, to help distinguish subjects and objects, types and
domains mean the same thing, but domains classify subjects, while types classify
objects.

The SELinux level attribute is the final attribute in the security context.
This attribute is used only in the MLS access control mechanism, which is not
the main policy type of the SELinux access control framework. MLS policies use
the level attribute for expressing rules that restrict access requests, which makes
it a suitable access control scheme for military type environments. SELinux can
be loaded into the Linux kernel without accommodating MLS [8].

Labeling is the main functionality of SELinux with the goal of labeling all
system resources with a proper security context. SELinux primarily focuses on
Type Enforcement (TE) related to the type/domain field of security contexts.
TE allows creation of different domains in the system through assigning subjects
to domains, and subsequently associating them with objects. All of these autho-
rized associations are stated in a SELinux security policy by using TE rules. In
addition to TE, SELinux allows the expression of restrictions on the other fields
of the security context.

3.3 The SELinux Security Policy Language

A SELinux security policy is a collection of statements that defines the thresh-
old for accepting an access request. SELinux denies interaction of subjects and
objects by default; in particular, with an empty SELinux policy every access
request will be denied. Figure 2 lists syntax of important SELinux security pol-
icy rules. Some main rules of the SELinux policy language related to TE, or to
user and role components of security context are described.

Type Enforcement (TE) Rules of SELinux mainly include two kinds of
rules [16]: Access Vector (AV), and Type Rules, which consist of Object Transi-
tion Rules and Domain Transition rules. Access Vector (AV) rules allow, audit,
or deny interaction between two types. AV rules include allow, dontaudit,
auditallow, and neverallow statements [14]. For example, consider the AV rule
in Fig. 2 appearing on the first line. This rule allows the process with domain
SourceDType to have actions perm1 or perm2 on the object of type TargetType



Review of Existing Analysis Tools for SELinux Security Policies 121

allow SourceDType TargetType : class1 {perm1 perm2};

type_transition SourceDomain TargetType: class1 new_type

type_transition SourceDomain TargetType: process new_type;

constrain classobject_list permission_list B(t1,r1,u1,t2,r2,u2)

Fig. 2. Sample rules of a SELinux security policy

and object class of class1. An object class specifies a possible instance of all
resources of a certain kind, such as files, sockets, and directories.

Object Transition Rules in SELinux can be used to specify the type of
objects that will be created at runtime. For example, consider the object tran-
sition rule on the second line in Fig. 2. This type transition means objects
of type TargetType that are newly created by a process with the domain of
SourceDomain will take the default type new type instead of TargetType. The
object class class1 specifies the object category of SourceDomain and new type.

Domain Transition Rules change the domain of a subject to a new domain.
For example, consider the domain transition rule on the third line in Fig. 2. This
domain transition states that if a process of the domain SourceDomain executes
a file with the type TargetType, the new domain of the process will be new type.

SELinux policies also include Constraints. Software developers use con-
straints to introduce new criteria for granting access requests to objects. Con-
straints can refine an explicitly allowed access request through enforcing extra
considerations for certain users, roles, and types in the decision-making process of
the access, expressed as boolean conditions. For example, consider the fourth line
in Fig. 2. B(t1,r1,u1,t2,r2,u2) is a boolean expression expressing constraints
on the type, role, and user of the source entity security context (t1,r1,u1) and
target entity security target (t2,r2,u2). This constraint defines the require-
ments under which the operations in permission list are allowed for the class
objects in classobject list. If these requirements are not met by an access
request, the operations in permission list will be denied.

The policy language that is used to develop SELinux policies is a complex
language consisting of a combination of RBAC, TE, and optionally MLS rules.
As mentioned, SELinux policies typically include thousands of policy state-
ments, which makes development and analysis of SELinux policies quite difficult.
SELinux policy language statements enable security administrators to configure
the required permissions for accesses. Sample policy rules for an application
(called App here) are shown in Fig. 3. These rules define a single domain entry
to execute App through a domain transition.

3.4 SELinux Policy Analysis Tools

Many analysis tools have been proposed to help policy administrators analyze
SELinux policies with respect to these properties. Among existing tools, some
are developed while others are at a prototype stage. The typical structure of
policy analysis tools is demonstrated in Fig. 4. The complexity of the SELinux



122 A. Eaman et al.

require {
attribute domain;
attribute file_type;
attribute exec_type;
type sysadm_t;
attribute sysadm_r;
class process transition;
role sysadm_r; }

type app_t;
typeattribute app_t domain;
type app_exec_t;
typeattribute app_exec_t file_type;
typeattribute app_exec_t exec_type;

role sysadm_r types app_t;
type_transition sysadm_t app_exec_t : process app_t; 
allow sysadm_t app_exec_t : file {getatr execute}; 
allow app_t app_exec_t : file entrypoint;
allow sysadm_t app_t : process transition;

Adding types and attributes 
that are required by the rules

Declaring new types and 
classify them by attributes

Defining default 
transition and its 
required access

Assigning roles to types

Fig. 3. App program security policy rules in SELinux

policy language makes analyzing SELinux policies and even implementing poli-
cies very difficult. As a result, virtually all analysis tools provide some kind of
other intermediate language for SELinux security administrators, as shown in
Fig. 4.

SELinux
Policy

Policy
Model

Analysis
Tools

Translation
(Modeling)

Result(s)

Question(s)

Fig. 4. Typical structure of SELinux analysis tools

3.5 Access Faults

In SELinux, access is a unique combination of (1) a source domain, (2) a desti-
nation type, (3) associated action(s), and (4) a destination object class. Almost
all policy analysis tools try to detect different access faults that are implic-
itly leaked through security policy rules. Access faults are caused by implicitly
assigning privileges using type attributes or default types available in the security
policy [19,20] or generating rules from the SELinux audit log [28].

There are several kinds of access faults. Any access that doesn’t meet the
security goals of the system is called a sneak access. A backdoor access occurs



Review of Existing Analysis Tools for SELinux Security Policies 123

when the policy accepts a request that was not explicitly allowed in the speci-
fication, but was introduced manually by policy developers or automatically by
some tools that audit SELinux logs. These backdoors are usually inserted in a
policy in order to run a legitimate program that has some problems reaching
its required resources because of SELinux access control. Wrong actions are any
access in which proper actions are not allowed by the security policy. Missing
actions are any access in which the intended actions are not allowed because of
improper policy rules.

3.6 Answering Security Questions

SELinux analysis tools answer questions about the properties of a policy con-
figuration using two fundamental methods, Information Flow [2,8] and Access
Control Spaces [11].

Information flow is about the reachability of a resource from another resource
where some information is transferred by performing a particular operation. For
example, there is an information flow between a subject S 1 to a subject S 2 if
S 1 can perform a write operation on some objects on which S 2 can perform a
read operation [29].

A subject’s access control space is composed of all realizable permissions of
the subject. The access control space of a subject forms a set which can be
classified as the following five subspaces [11].

– Specified Permissions: permissions that are currently assigned to the subject
according to the current specification

– Permissible Permissions: permissions assigned to the subject that are autho-
rized by the policy developers

– Prohibited Permissions: permissions whose assignment violates security goals
– Unknown Permissions: permissions that are neither permissible nor prohibited
– Obligated Permissions: permissions that the subject must have according to

policy rules

Zanin and Manicini [31] replace the access control space concept by the concept
of an Accessibility Space, which introduces additional specific sets over possi-
ble permissions of an entity. Accessibility spaces remove unknown permissions
as SELinux is based on a closed world assumption [31]. Information flow uses
abstract views over the possible permissions in the available configuration of
a security policy; hence, it can be considered as using just two subspaces, the
allowed subspace and the denied subspace, to check the properties of the policy.

3.7 Querying SELinux Security Policies

SELinux analysis tools help identify policy conflicts that are caused by pol-
icy violation against specifications that describe protection needs of the sys-
tem. To identify conflicts and check that security goals are achieved, security



124 A. Eaman et al.

administrators can query policies about safety, completeness, integrity, separa-
tion of duty (SoD), as well as some other questions that identify conflicts by
posing questions about access faults and other high level security goals.

A policy specification is safe if subjects have no sneak access to resources in
the system and all security goals are satisfied by the specification. A policy is
complete if all intended permissions are specified in the policy; in other words, all
requests are explicitly allowed or prohibited in a complete policy [21]. Integrity
and safety have almost the same security aims, but integrity uses security models
such as Biba to identify conflicts rather than just focusing on the realization of
security specifications to check security goals. Separation of duty can be consid-
ered as another kind of integrity checking that is defined with a simple security
model. SoD means separating the domain of subjects into those that execute an
executable file and those that create or modify the executable files [15].

4 Taxonomy for SELinux Policy Analysis Tools

Table 1 compares eighteen SELinux analysis tools. The comparison considers
available features and techniques utilized in the tools. The table shows that dif-
ferent analysis tools have different capabilities in terms of providing safety, com-
pleteness, integrity, and SoD analyses. The other features that are compared in
Table 1 are browsing a policy, rewriting a policy, and building customized queries.
The analysis tools employ various forms of query language syntax to allow secu-
rity administrators to make queries for checking specific properties of the security
policy. Various techniques are utilized as methods of analysis; they model the
security policy with well-known concepts such as mathematical sets [31], infor-
mation visualization [15,30], and computer security models [1]. Some analy-
sis methods expand all macros, while some perform on-demand expansion of
macros [2] in the policies. SELint [19] goes further and replaces policy rules
with proper macros of the policy rules, which provides the capability to sug-
gest improvements. The last three tools in Table 1—SEAL, EASEAndroid, and
SELint—are for analyzing Security Enhancements for Android (SEAndroid),
which is an Android port of the SELinux MAC mechanism [20]. Because most
of the tools in Table 1 are not available publicly, the information provided here
is based on the studies conducted for the tools as presented by the authors. In
Sect. 4.1, we briefly discuss some aspects of each tool. Other information can be
read directly from the table. In Sect. 4.2 we discuss some general problems.

4.1 Tool Descriptions

APOL [25] is a member of the SETools suite [16]. A user loads a SELinux
security policy file or a compiled binary policy file to APOL to begin the analysis
procedure. By loading the policy file, the user can select attribute items from
enabled lists, which are loaded according to the rules in the SELinux security
policy file. Then, the user can use regular expressions to specify a search in
several analysis modules for particular attributes. A great number of SELinux



Review of Existing Analysis Tools for SELinux Security Policies 125

Table 1. Analysis tools for SELinux security policies
A
n
a
ly
si
s
to

o
l

S
a
fe
ty

a
n
a
ly
si
s

C
o
m
p
le
te
n
e
ss

a
n
a
ly
si
s

In
te
g
ri
ty

a
n
a
ly
si
s

S
o
D

a
n
a
ly
si
s

In
fo
rm

a
ti
o
n

fl
o
w

a
n
a
ly
si
s

M
e
th

o
d

o
f
a
n
a
ly
si
s

P
o
li
c
y
b
ro
w
si
n
g

R
e
w
ri
ti
n
g
th

e
p
o
li
c
y

M
e
th

o
d

o
f
m
o
d
e
li
n
g

Q
u
e
ry

la
n
g
u
a
g
e

M
a
c
ro

e
x
p
a
n
si
o
n

APOL � � � � Information flow � Syntactic analysis Selecting

attributes from

menus

�

SLAT � � � Information

flow-Model

checking

XSB logic � (Regular

expressions)

�

XcelLog � � � Information

flow-Deductive

spreadsheets

Sets of values Writing set

formulas

�

GOKYO � � � AC spaces-TCB AC spaces-Graphcal

AC model (Sets)

� �

PAL � � � � � Logic

programming

XSB logic �

SELAC � � AC spaces-

Mathematical

set

25 Sets �

SPTrack � � Data

visualization

Graphs �

SEGrapher � � � Data

visualization -

Clustering

Graphs-Clustering

of nodes

Selecting types

from menus

�

SEAnalyzer � � � Colored Petri

nets

Diagrams & Sets � �

LOPOL � � Deductive

database

� Logical relations Datalog query �

SEEdit � � � Higher level

language, SPDL

� Grouping

permissions-Access

log user decision

PVA � � � � � Information

visualization

techniques

� � Semantic substrates

- Adjacency matrix

Graphical user

interface

�

GPA � � � Information

visualization

techniques

Semantic substrates

- Adjacency matrix

Graphical user

interface

�

Sepol2HRU � � HRU security

model

HRU Model

simulation

�

SCIATool � � � Colored Petri

nets,

Information

flow, AC space

� NA Wizard-Style

query

�

SEAL � � � Information flow Syntactic analysis �
EASEAndroid Semi-supervised

learning

� Parsing the audit

log

�

SELint Information flow Syntactic analysis �



126 A. Eaman et al.

analysis tools (e.g., [20,29,30]) use APOL libraries for their development and
often a comparison of the ease of use as compared with APOL is carried out.

Guttman and Herzog [8] describe a four-step procedure used in the SLAT tool
for verifying security goals in SELinux configurations. These steps include mod-
eling, expressing goals, enforcing goals of the model, and implementation. The
language that encodes the security goals is based on information flow diagrams,
and security goals are expressed using a language similar to regular expressions.
Five different access control relations are defined to model SELinux configura-
tions, which are based on key concepts of SELinux. The authorization relation
uses access control relations to authorize class-permission pairs for a process
against a resource. Finally, a model checker verifies establishment of security
goals of the policy.

XcelLog [21] combines policy rules and deductive spreadsheets (DSS) for
taking advantage of deductive reasoning. The transformation of policy rules
to deductive spreadsheets is a semi-automated process. Cells of the deductive
spreadsheets are capable of containing a set of values or recursive formulas.

GOKYO [12] tries to reveal various conflicts in the policy and find missing
or incorrect constraints. GOKYO resolves these constraints, according to the
concept of access control spaces, which can reduce the complexity of the policy.
The process of resolving conflicts is based on removing the unknown subspace
and performing a kind of balancing among different kinds of rules in the policy.
The approach creates a near-minimal trusted computing base (TCB) in the
SELinux policy model and verifies whether the TCB is integrity-protected.

PAL [2] (Policy Analysis using Logic-Programming) is implemented using
the XSB logic programming language. A XSB program translates a policy to a
set of facts and builds queries that are answered from these facts. This technique
is macro-preserving, which means that the macros in the policy get expanded
on demand. As stated in [2], PAL’s use of macros that are not fully expanded
is efficient and unique in contrast to other tools such as SLAT, APOL, and
GOKYO.

SELAC [31] (SELinux Access Control) models each language construct in the
security policy language as a mathematical set. A collection of sets is constructed
in an incremental way from the specification. As stated in the paper, SELAC
has removed the redundant space, unknown space, and general subspaces that
are used in GOKYO.

SPTrack [6] represents SELinux security policies as interaction graphs. The
nodes in an interaction graph are security contexts made up of subjects or
objects. The edges in this graph are possible interactions among nodes, all of
which are included according to rules in the policy. The edges of the graph are
colored based on the criticality levels of paths between nodes.

SEGrapher [15] begins its analysis with data visualization of the SELinux
policy and then generates optimized graphs using the concept of clustering.
Cluster-based graphs represent policy analysis results, which have been simplified
by the use of clusters. To model a SELinux policy, the tool focuses on the access
vector rules within it. These rules are represented as edges in a directed graph.



Review of Existing Analysis Tools for SELinux Security Policies 127

The building block for clustering the nodes is a focus-graph, based on an object-
type set. An object-type set is the set of all types that an object can access [15].

SEAnalyzer [5] utilizes Colored Petri Net (CPN) diagrams for representing
SELinux security policies and security goals. A rather complex query language
for expressing security goals has been developed for SEAnalyzer with a smaller
character count in comparison to PAL and SLAT.

Lopol [13] takes advantage of deductive database analysis and Datalog
queries. Lopol policy analysis includes analyzing a collection of logical relations
and inference rules. Lopol is capable of rewriting the policy. Rewriting a policy
is performed through goal-projection, which involves reverse compilation of the
inference rules to the policy.

SEEdit [17] uses the concept of integrated permissions to reduce the num-
ber of configuration elements. Integrated permissions group related permissions
into a single unit, which causes the removal of the macro entities from the pol-
icy. SEEdit creates security policies using a higher-level language called SPDL.
SPDL tools consist of two sections including an allow generator and a template
generator. The former reads the access log to generate an SPDL based specifica-
tion for permitting access. The latter uses the user’s knowledge to generate an
SPDL configuration to make a program that is problematic due to access control
restrictions run correctly. Finally, an SPDL converter generates the policy file.

PVA [29] and GPA [30] tools use a visualized-based framework for analyzing,
expressing policy queries, and identifying policy violations of a SELinux policy.
The concepts and proposed framework in GPA have been slightly enhanced in
PVA. The framework begins by representing the policy layout using two visual
mechanisms: Semantic Substrates and Adjacency Matrices. The framework pro-
vides a visual query formulation that helps system administrators specify precise
queries on the policy. Subsequently, the framework generates a policy violation
graph to represent the violations that are identified by the integrity model.
The integrity model is based on Biba and the concepts of Trusted Computing
Base (TCB) and Transaction Procedure in the Clark-Wilson security model.
The framework introduces some approaches, such as filtering and ignoring, to
modify the policy graph in order to remove any policy violations. GPA proposes
identifying and protecting the TCB of a system using the Information Domain.

Sepol2HRU [1] establishes an isomorphic mapping between a SELinux access
control system and a HRU security model as defined in [9]. Transforming the
SELinux security policy to a HRU model allows the application of the analysis
tools available for the HRU model to SELinux security policies. Transforming a
policy to a HRU model is a three-step procedure. (1) The elements in an SELinux
access control system such as rules and types are mapped to heterogeneous
mathematic standard concepts like sets, matrices, and functions. (2) These ele-
ments are rewritten to a single composed matrix. (3) The authorization scheme
is inferred. Sepol2HRU outputs the SELinux security policy as an HRU model
description in a single file in a XML-based format.

SCIATool [32] integrates three policy analysis methods including access con-
trol spaces, information flows, and colored Petri-nets. The architectural design



128 A. Eaman et al.

of the SCIAtool is based on the modularity principle. SCIATool’s approach to
integrity analysis is the use of a TCB which means that integrity analysis verifies
that subjects inside the TCB are prohibited from reading incorrect information
from non-trusted objects.

SEAL [20] is a tool for SEAndroid policy analysis. Finding problematic pat-
terns in SEAndroid policies is the main purpose of the study in [20]. The identi-
fied patterns consist of overuse of default types, overuse of predefined domains,
forgotten or seemingly useless rules, and potentially dangerous rules.

EASEAndroid [28] proposes a semi-supervised learning approach to refin-
ing SEAndroid security policies. SEAndroid security policies require continuous
refinements due to continuous updates to Android and to emerging new attacks.
A policy is refined based on analyzing the audit log and information in one
access event. The tool parses information available on access events, which pro-
vides information for building access patterns. These access patterns act as a
knowledge base for the learning process of the approach.

SELint [19] helps Original Equipment Manufacturers (OEMs) to produce
better SEAndroid policies by optimizing the security policy. SELint has sev-
eral plugins, including simple macro expansion, parameterized macro expansion,
risky rules, unnecessary rules, and user neverallow rules. Plugins that operate
on macros try to replace certain kinds of rules with macros. In contrast, other
analysis tools seek to remove macros because the semantics of the m4-based
language, i.e. macro language, is uncertain [10].

4.2 SELinux Security Policy Problems

Analysis tools can help administrators to check system security goals. However,
most analysis tools provide some other intermediate language for SELinux secu-
rity administrators. Although these extra facilities can help with the analysis of
policies, at the same time, they often add more complexity to the whole access
control process because they require equally complex semantics. On the other
hand, developing policies in SELinux leads to quite complex policies, and devel-
oping a policy is a cumbersome and error-prone process [10]. Moreover, analysis
tools only provide low-level queries, which fail to cover the very large potential
query space of SELinux policies [11]. The following is a user’s concern about
SELinux policies from the Fedora SELinux support mailing list [24]:

What directories and files does Guix [a package program] need to touch?
... What kinds of labels do I need to introduce to my system? What kinds
of tools do I need to use to integrate a Guix policy to the prebuilt policies?
... After all, most software developers ignore SELinux and won’t bother
publishing a complete access requirement specification.

5 SELinux Challenges and Proposed Solution

The SELinux policy language doesn’t have formal semantics. Its semantics is
given in terms of a natural language description. Expressing the semantics of



Review of Existing Analysis Tools for SELinux Security Policies 129

an access control policy language in a natural language (e.g. English) results in
ambiguity in the specification of behavior of policy statements. For this reason,
along with reasons mentioned earlier, i.e. the complexity of the language, and the
fact that policies are expressed at a very fine-grained level, both the development
and the analysis of policies are difficult. Consider the last three lines of Fig. 3.
They are included to protect the entrypoint access [16] of the app t domain.
Removing any one of these rules will break the intended protection because in
order for a domain transition to occur, all three rules are required. The first rule
provides execution permission for the domain sysadm t on the file with the type
app exec t; the second rule provides an entrypoint for the domain app t; the
third rule provides a type transition to the new type app t from the current type
sysadm t. The fact that SELinux rules are so fine-grained adds to the complexity
of SELinux. Both writing and analyzing policies are difficult tasks. It is hard for
administrators to express the desired protection using such a low-level language.

5.1 Existing SELinux Analysis Tools

As mentioned, the complexity of the SELinux policy language itself complicates
both the implementation of policies as well as the ability to analyze them. As a
result, many tools are complex and it is difficult to establish the correctness of
the analyses they perform. One problem with these tools is that they do not use
the same criteria in support of each other; moreover as mentioned, analysis tools
try to provide some other intermediate language for SELinux security admin-
istrators. Although these extra facilities can help with writing various queries,
they require equally complex semantics. Furthermore, existing SELinux analysis
tools barely scratch the surface and only offer the possibility of doing simple
queries.

5.2 SELinux Policy Language Challenges

As a result of our study described in the previous section, we can summarize the
many gaps between the SELinux policy language and current existing analysis
tools:

– SELinux as an access control framework requires third-party analysis tools
to help security administrators write policies and check various properties.

– The inherent complexity of the SELinux policy language has caused a lot of
tools to try to establish intermediate language structures to overcome this
complexity; however, they require equally complex semantics and syntax.

– Software developers continually add new rules to SELinux security policies,
while fine-tuning the policy to handle access problems of newly installed appli-
cations, using the system audit log file. The practice of making every deny
access found in the SELinux audit log into new rules in the policy is extremely
error prone and can lead to compromising the safety of the system, again due
to the complexity of the SELinux access control policy language.



130 A. Eaman et al.

– There is no proof for the correctness of policy analysis tools or formal seman-
tics to make sure their results are reliable. There are informal justifications
for results, but no formal justification of results.

– Overall SELinux lacks clarity as an access control language. The clarity of an
access control policy language can provide better decision making for incre-
mental policy writing, ease of analysis, and ease of reasoning.

The goal of our proposed solution is to make the process of developing and
analyzing policies simpler by adopting a security policy language that is more
coarse-grained, in which administrators can more directly express their security
goals at a higher level, and providing tools to translate such policies to the more
fine-grained level of SELinux

5.3 Ease of Reasoning About SELinux Policies

A particular set of properties which may be used as a basis for formally compar-
ing and contrasting access control policy languages include safety, independent
composition, and monotonicity [26]. An access control policy language that is
safe, independently composable and monotonic is said to be most amenable to
reasoning as compared to one that does not have any of these properties. In
addition, these properties and others mentioned in [22] can be used to classify
different access control policy languages along the reasonability spectrum. Being
able to reason about policies written in an access control policy language directly
leads to another property that is desirable in a policy language. Such a policy
language has the property that formal analysis and verification of specific policy
statements can determine whether or not the policy meets the high-level goals
of the system.

Using the definition of an access control policy language as presented in [26],
the SELinux access control policy language can be considered as a tuple L = (P ,
Q, G, N , � . �) where P is a set of SELinux policies, Q is a set of requests or
queries, G is the granting decisions, and N is the non-granting decisions, with
the constraint G ∩ N = ∅. Let D denote the set of decisions G ∪ N . The last
element of L, � . �, is a function taking a policy p ∈ P to a relation between
Q and D. Given a policy p ∈ P , a query q ∈ Q is assigned a decision of d ∈ D.
L also defines a partial order on decisions such that d ≤ d′ if either d, d′ ∈ N
or d, d′ ∈ G or d ∈ N and d′ ∈ G; in other words, non-granting decisions
are all the same, granting decisions are all the same, and all granting decisions
are considered greater that all non-granting decisions. Note that for SELinux,
D = {Granted,Denied}, G = {Granted} and N = {Denied}. Let DC , TC ,
CLS , and PRM be the set of all domains, types, object classes, and permissions,
respectively, available in a system. Queries are of the form (dc, tc, cls, prm,m)
where dc ∈ DC is the domain type of the subject, tc ∈ TC is the type of the
resource, cls ∈ CLS is the class of the resource, prm ∈ PRM is the permission
or permissions, and m expresses properties of the query that are not about the
Type Enforcement mechanism of SELinux. Two queries q = (dc, tc, cls, prm,m)
and q′ = (dc, tc, cls, prm,m′) have relation q � q′ if m =⇒ m′. In the rest



Review of Existing Analysis Tools for SELinux Security Policies 131

of this section, we assess SELinux with regard to its Type Enforcement (TE)
mechanism to determine if it satisfies the three properties mentioned earlier.
The TE mechanism is based on TE rules available in SELinux policies. SELinux
policies are organized into modules, which allows on-the-fly dynamic loading as
needed. Each policy module has its own set of rules.

An access control policy language is considered safe if a request with less
information will lead to a decision that is less than the decision reached for a
request with more information, according to the defined partial order on deci-
sions [27]. For example, requests with incomplete information should only result
in a grant of access if a request with more complete information results in a
grant of access. Based on this definition, safety can be defined as the following
formula:

∀(p ∈ P ), (q, q′ ∈ Q), (d, d′ ∈ D),
q � q′ & q � p � d & q′ � p � d′ =⇒ d ≤ d′.

Theorem 1. The SELinux access control policy language is not safe with respect
to �.

Proof. Consider the policy module pa below along with requests qa and qb:

pa : allow sAtype t mytype t : file read
role sCrole r type sAtype t

qa = (sAtype,mytype t, file, read, {})
qb = (sAtype,mytype t, file, read, {role ∈ sDrole r})

For request qa, pa produces Granted, while for qb, it produces Denied. Note
that qa � qb, qa � pa � Granted, qb � pa � Denied, but Granted � Denied,
which contradicts safety.

An access control policy language has the independent composition property
if taking into account all policy modules and rendering a decision gives the same
result as combining the decisions obtained from each primitive policy in isolation.
As a result, independent composition can be defined as the following formula, in
which � is the decision composition operator for combining policy decisions and
⊕ is the composition operator defined in the language for combining policies.
Some policy languages, such as FOL [26], allow more than one interpretation
of the operator that combines policies, thus preventing them from having the
independent composition property.

∀(p1, . . . pn ∈ P ), (q ∈ Q), (d1, . . . dn, d∗ ∈ D),
q � p1 � d1 & · · · & q � pn � dn & q � ⊕(p1, . . . , pn) � d∗ =⇒

�(d1, . . . dn) = d∗.

Composing policies in SELinux simply means adding them together to form one
big policy. A request is denied if any one of the individual policies produces
denied. Trivially, SELinux access control always reaches a single decision when
combining all policy modules or decisions.



132 A. Eaman et al.

Theorem 2. The SELinux access control policy language has the independent
composition property.

Proof Sketch. By definition, �(d1, . . . dn) is Denied if any of d1, . . . , dn are
Denied. In this case, the combined policy decision d∗ will also be Denied by the
definition of SELinux policy combination. Otherwise, d1, . . . , dn are all Granted,
and in this case, both �(d1, . . . dn) and d∗ will be Granted, again by definition.

An access control policy language is monotonic if adding another primitive
policy does not change the combined decision from granting to non-granting.

Theorem 3. The SELinux access control policy language is not monotonic.

Proof. Consider policy modules pc and pd below along with request qc :

pc : allow Dtype1 t type2 t : file open
pd : constraint process transition

(u1=user1 and t1=type1 and t2=type2 t)
qc = (Dtype1 t, type2 t, file, open, {user ∈ user2})

The policy pc will result in Granted for the request qc and adding policy module
pd will result in Denied, which changes the decision from Granted to Denied.

5.4 Using a Certified Policy Language to Express SELinux

A small and certifiably correct policy language can be a good candidate for
SELinux style access control. ACCPL (A Certified Core Policy Language) [22] is
a certified policy language that can be used to represent general access control
rules and policies. ACCPL has formal semantics, which include a precise defi-
nition of a function that takes a query and returns an allow or deny decision.
The Coq Proof Assistant [3,7] has been used to develop proofs for theorems
about the expected behavior of ACCPL when evaluating a request according
to the given policy and to machine-check the proofs ensuring correctness guar-
antees are provided. The compactness and verifiability of ACCPL as an access
control policy language provides for ease of analysis and reasoning, in compari-
son to the SELinux policy language. These capabilities are guaranteed because
ACCPL satisfies the ease of reasoning properties of [27]. This fact helps system
administrators to easily manage and check the intended security level of the
system.

ACCPL can be used to encode and implement other policy-based access con-
trol languages such as SELinux policy language, taking advantage of its char-
acteristics. We propose to develop a certified domain-specific policy language
that appropriately accommodates specialized features of the SELinux Type-
Enforcement mechanism. Once we do, we will be able to analyze policies formally
using the proof environment for ACCPL implemented in Coq.



Review of Existing Analysis Tools for SELinux Security Policies 133

6 Conclusion

SELinux is a MAC based access control framework in Linux distributions. The
inherent complexity of SELinux and its approach requires additional manual
interaction of security administrators to develop or analyze policies. The com-
plexity of the SELinux policy language itself complicates both the implementa-
tion of policies as well as the ability to analyze them. Many research projects
have included the design and implementation of analysis tools to overcome this
problem. Because of the lack of clarity and complexity of the policy language, the
implemented tools often utilize languages that are different from but equivalent
to SELinux, with equally complex semantics, or they simplify the languages so
that they do not implement the full SELinux policy language. Thus, these tools
cannot cover the identified SELinux challenges and it is difficult to establish the
correctness of the analyses they perform as well. A certified access control policy
language can provide ease of use and analysis; moreover, it provides an envi-
ronment for verification of its properties. ACCPL (A Certified Core Policy Lan-
guage) is a general certified access control policy language that is more amenable
to analysis and reasoning. We plan to design a certified domain-specific policy
language based on it for our task. Developing a certified analysis tools base on
the certified Type-Enforcement policy language that simplifies and fosters policy
analysis will be another direction of future work.

Acknowledgements. Financial support from the Network of Centres of Excellence
(MITACS) and Irdeto Canada is gratefully acknowledged.

References

1. Amthor, P., Kühnhauser, W.E., Pölck, A.: Model-based safety analysis of SELinux
security policies. In: 5th International Conference on Network and System Security
(NSS), pp. 208–215 (2011)

2. Archer, M., Leonard, E.I., Pradella, M.: Modeling security-enhanced Linux policy
specifications for analysis. In: 3rd DARPA Information Survivability Conference
and Exposition (DISCEX-III), pp. 164–169 (2003)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

4. Bishop, M.A.: The Art and Science of Computer Security. Addison-Wesley Long-
man Publishing Co. Inc., Boston (2002)

5. Chen, Y.-M., Kao, Y.-W.: Information flow query and verification for security
policy of Security-Enhanced Linux. In: Yoshiura, H., Sakurai, K., Rannenberg, K.,
Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 389–404.
Springer, Heidelberg (2006). doi:10.1007/11908739 28

6. Clemente, P., Kaba, B., Rouzaud-Cornabas, J., Alexandre, M., Aujay, G.: SPTrack:
visual analysis of information flows within SELinux policies and attack logs. In:
Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.)
AMT 2012. LNCS, vol. 7669, pp. 596–605. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-35236-2 60

7. Coq Development Team: The Coq Proof Assistant Reference Manual (Version 8.6)
(2016). https://coq.inria.fr/distrib/current/files/Reference-Manual.pdf

http://dx.doi.org/10.1007/11908739_28
http://dx.doi.org/10.1007/978-3-642-35236-2_60
http://dx.doi.org/10.1007/978-3-642-35236-2_60
https://coq.inria.fr/distrib/current/files/Reference-Manual.pdf


134 A. Eaman et al.

8. Guttman, J.D., Herzog, A.L., Ramsdell, J.D., Skorupka, C.W.: Verifying infor-
mation flow goals in Security-Enhanced Linux. J. Comput. Secur. 13(1), 115–134
(2005)

9. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Com-
mun. ACM 19(8), 461–471 (1976)

10. Hurd, J., Carlsson, M., Finne, S., Letner, B., Stanley, J., White, P.: Policy DSL:
high-level specifications of information flows for security policies. In: High Confi-
dence Software and Systems (HCSS) (2009)

11. Jaeger, T., Edwards, A., Zhang, X.: Managing access control policies using access
control spaces. In: 7th ACM Symposium on Access Control Models and Technolo-
gies (SACMAT), pp. 3–12. ACM Press (2002)

12. Jaeger, T., Sailer, R., Zhang, X.: Analyzing integrity protection in the SELinux
example policy. In: 12th USENIX Security Symposium (2003)

13. Kissinger, A., Hale, J.C.: Lopol: a deductive database approach to policy analysis
and rewriting. In: Security-Enhanced Linux Symposium, pp. 388–393 (2006)

14. Loscocco, P., Smalley, S.D.: Meeting critical security objectives with Security-
Enhanced Linux. In: Ottawa Linux Symposium, pp. 115–134 (2001)

15. Marouf, S., Shehab, M.: SEGrapher: visualization-based SELinux policy analysis.
In: 4th Symposium on Configuration Analytics and Automation (SAFECONFIG),
pp. 1–8 (2011)

16. Mayer, F., Caplan, D., MacMillan, K.: SELinux by Example: Using Security
Enhance Linux. Prentice Hall, Upper Saddle River (2006)

17. Nakamura, Y., Sameshima, Y., Tabata, T.: SEEdit: SELinux security policy con-
figuration system with higher level language. In: 23rd Large Installation System
Administration Conference, pp. 107–117 (2009)

18. National Security Agency: Security-Enhanced Linux (2016). https://www.nsa.gov/
what-we-do/research/selinux/

19. Reshetova, E., Bonazzi, F., Asokan, N.: SELint: an SEAndroid policy analysis tool.
CoRR abs/1608.02339 (2016)

20. Reshetova, E., Bonazzi, F., Nyman, T., Borgaonkar, R., Asokan, N.: Characterizing
SEAndroid policies in the wild. CoRR abs/1510.05497 (2015)

21. Singh, A., Ramakrishnan, C.R., Ramakrishnan, I.V., Stoller, S.D., Warren, D.S.:
Security policy analysis using deductive spreadsheets. In: ACM Workshop on For-
mal Methods in Security Engineering (FMSE), pp. 42–50 (2007)

22. Sistany, B.: A certified core policy language. Ph.D. thesis, University of Ottawa
(2016). https://www.ruor.uottawa.ca/handle/10393/34865

23. Stallings, W., Brown, L.: Computer Security, Principles and Practices. Pearson
Education, New York (2008)

24. The Fedora-SELinux Support List: Fedora SELinux Support. https://lists.
fedoraproject.org/admin/lists/selinux.lists.fedoraproject.org/

25. Tresys Technology: APOL (2016). https://github.com/TresysTechnology/setools3
26. Tschantz, M.C.: The clarity of languages for access-control policies. Ph.D. thesis,

Brown University (2005)
27. Tschantz, M.C., Krishnamurthi, S.: Towards reasonability properties for access-

control policy languages. In: 11th ACM Symposium on Access Control Models
and Technologies (SACMAT), pp. 160–169 (2006)

28. Wang, R., Enck, W., Reeves, D.S., Zhang, X., Ning, P., Xu, D., Zhou, W.,
Azab, A.M.: EASEAndroid: automatic policy analysis and refinement for Security-
Enhanced Android via large-scale semi-supervised learning. In: 24th USENIX Secu-
rity Symposium, pp. 351–366 (2015)

https://www.nsa.gov/what-we-do/research/selinux/
https://www.nsa.gov/what-we-do/research/selinux/
https://www.ruor.uottawa.ca/handle/10393/34865
https://lists.fedoraproject.org/admin/lists/selinux.lists.fedoraproject.org/
https://lists.fedoraproject.org/admin/lists/selinux.lists.fedoraproject.org/
https://github.com/TresysTechnology/setools3


Review of Existing Analysis Tools for SELinux Security Policies 135

29. Xu, W., Shehab, M., Ahn, G.: Visualization-based policy analysis for SELinux:
framework and user study. Int. J. Inf. Secur. 12(3), 155–171 (2013)

30. Xu, W., Zhang, X., Ahn, G.: Towards system integrity protection with graph-
based policy analysis. In: 23rd Annual International Federation for Information
Processing (IFIP), Data and Applications Security XXIII, pp. 65–80 (2009)

31. Zanin, G., Mancini, L.V.: Towards a formal model for security policies specification
and validation in the SELinux system. In: 9th ACM Symposium on Access Control
Models and Technologies (SACMAT), pp. 136–145. ACM Press (2004)

32. Zhai, G., Guo, T., Huang, J.: SCIATool: a tool for analyzing SELinux policies
based on access control spaces, information flows and CPNs. In: Yung, M., Zhu,
L., Yang, Y. (eds.) INTRUST 2014. LNCS, vol. 9473, pp. 294–309. Springer, Cham
(2015). doi:10.1007/978-3-319-27998-5 19

http://dx.doi.org/10.1007/978-3-319-27998-5_19

	Review of Existing Analysis Tools for SELinux Security Policies: Challenges and a Proposed Solution
	1 Introduction
	2 Preliminaries
	2.1 Access Control
	2.2 Access Control Models

	3 SELinux Overview
	3.1 SELinux Architecture
	3.2 SELinux Access Control Criteria
	3.3 The SELinux Security Policy Language
	3.4 SELinux Policy Analysis Tools
	3.5 Access Faults
	3.6 Answering Security Questions
	3.7 Querying SELinux Security Policies

	4 Taxonomy for SELinux Policy Analysis Tools
	4.1 Tool Descriptions
	4.2 SELinux Security Policy Problems

	5 SELinux Challenges and Proposed Solution
	5.1 Existing SELinux Analysis Tools
	5.2 SELinux Policy Language Challenges
	5.3 Ease of Reasoning About SELinux Policies
	5.4 Using a Certified Policy Language to Express SELinux

	6 Conclusion
	References


