
J. Funtional Programming, 14(1):3{19, January 2004 1Dependent Types Ensure Partial Corretness ofTheorem ProversAndrew W. AppelPrineton University, 35 Olden Street, Prineton, NJ 08544, USA(e-mail: appel�prineton.edu)Amy P. Felty,University of Ottawa, 800 King Edward Ave., Ottawa, Ontario K1N 6N5, Canada(e-mail: afelty�site.uottawa.a)AbstratStati type systems in programming languages allow many errors to be deteted at ompiletime that wouldn't be deteted until runtime otherwise. Dependent types are more expres-sive than the type systems in most programming languages, so languages that have themshould allow programmers to detet more errors earlier. In this paper, using the Twelf sys-tem, we show that dependent types in the logi programming setting an be used to ensurepartial orretness of programs whih implement theorem provers, and thus avoid runtimeerrors in proof searh and proof onstrution. We present two examples: a tati-styleinterative theorem prover and a union-�nd deision proedure.1 IntrodutionMany theorem proving systems implement tatis and tatials, whih provide ex-ible goal-direted proof searh. Tatis redue goals to subgoals, while tatials areprimitives for ombining tatis into larger ones that an perform multiple proofsteps. They also allow programming of proof searh strategies. Some of the �rstprovers using this style of proof searh (e.g. LCF (Gordon et al., 1979) and HOL(Gordon & Melham, 1993)) were written in ML, whose pattern mathing, exep-tion handling, and polymorphi type system are useful in writing tatis onisely.Felty (1993) showed that Lambda Prolog's (Nadathur & Miller, 1988) higher-orderuni�ation, baktraking, and polymorphi type system provided a more expres-sive notation for writing tatis and tatials. Spei�ally, higher-order abstratsyntax is more useful and expressive than ML pattern mathing, baktraking ismore onise than exeption handling, but Lambda Prolog's prenex-polymorphitype system is essentially similar to ML's.In this paper we will disuss the advantages of a dependent type system over ML-style polymorphism for writing theorem provers. Dependent types ould be used in afuntional language (suh as ML) or a logi-programming language (suh as LambdaProlog); we use the logi-programming language Twelf (Pfenning & Sh�urmann,1999). This means that the style of prover we illustrate is similar to those presented

2 Appel and Feltyby Felty (1993), but the issue of ML-style types vs. dependent types is orthogonalto the issue of ML-style or Prolog-style ontrol and data strutures. A deade ofexperiene with tatial Felty's prover has shown that this tehnique is expressiveand powerful, and ould be used as the ore of a full interative theorem proversimilar in strength to many existing provers suh as HOL and Isabelle that havebeen used in a variety of large-sale appliations; we expet that the dependentlytyped variant of Felty's approah would sale just as well.A problem in the implementation of theorem provers (tatial and other) is thatthey may have bugs. That is, the \proof" onstruted by the prover may not bevalid. There are at least two ways that industrial-strength theorem provers defendagainst invalid proofs:� Edinburgh LCF (and Isabelle (Paulson, 1994), HOL, et.) have an unforgeableabstrat data type theorem. An attempt by a prover to onstrut an invalidproof will be deteted at run time when some (privileged) proof-onstrutorfuntion detets mismathed arguments.� Coq (Barras et al., 1998) (and Elf, Twelf, et.) require provers to onstrutproof witnesses that an be heked (in priniple) by a small and reliabletype-heker that's independent of any (omplex, unreliable) theorem prover.Provers in Coq and Twelf have usually been written in ML (Caml and Stan-dard ML, respetively); although eah of these systems ontains a depen-dently typed language (funtional and logi-programming, respetively), thatlanguage is meant for desribing objets in the objet logi, and not as alanguage for programming provers.But in eah ase, bugs in the tatis (or other proof-searh algorithm) will bedeteted only when the tatis are exeuted: either when they attempt to use a proofonstrutor with bad arguments, or when a proof witness fails the type-heker.Stati type systems (suh as ML's) have the advantage over dynami type systems(suh as Lisp's) that many errors are deteted muh earlier, without needing to runthe program on an adequate sample of test ases. The languages in whih theabove-desribed theorem provers are implemented { Standard ML, Caml, LambdaProlog{ all have stati heking. But ML-style polymorphism is not strong enoughto ath all programming errors.We had experiene in building a ompliated tatial prover prototype (in LambdaProlog) for a proof-arrying ode appliation (Appel & Felty, 2000). We had a olle-tion of ompliated, ad-ho tatis (as required by G�odel's inompleteness theorem,any suÆiently powerful prover will be ompliated and ad-ho). As we maintainedthe prover, from time to time we found that it built invalid proofs; to debug, wehad to do runtime traing of appropriately stripped-down test ases to isolate theproblem.As we will show, using a dependently typed programming language an yield apartial orretness (i.e., soundness) guarantee for a theorem prover: if the implemen-tation type-heks, then any proof (or subproof) that it builds will be valid. Thereis no total orretness (i.e., ompleteness) guarantee: that is, the prover might still

Corretness of Theorem Provers 3in�nite-loop or be inomplete in some other way { i.e., fail with a run-time exeption(in ML) or baktraking failure (Prolog).The soure ode for all our examples an be found atwww.s.prineton.edu/~appel/prover/.2 LF and TwelfThe logial framework LF (Harper et al., 1993) allows the spei�ation of logis, andimplementations of LF suh as Twelf (Pfenning & Sh�urmann, 1999) allow hekingof proofs in those logis. Another view of LF/Twelf is that it is a higher-orderdependently typed logi-programming language: Prolog, with higher-order abstratsyntax (as in Lambda Prolog), well-soped dynami lauses, and a dependent typesystem. We will make use of both views of LF/Twelf: we will speify an objetlogi (e.g., �rst-order logi or higher-order logi), and we will also do Prolog-likeprogramming of the prover tatis.The Twelf (Pfenning & Sh�urmann, 1999) implementation of LF has (partial)type inferene, proof searh (i.e., Prolog-style baktraking), and onstraint domains(e.g., the theory of the rational numbers). Twelf has a distinguished type type,the type of all types (and the type of logi-programming goals). A onstrutordelaration delares an axiom or inferene rule of a logi, or a logi-programmingdata-onstrutor, or a logi-programming lause. A de�nition an be used to makea theorem, a lemma, or a de�ned funtion or prediate. 1An objet logi. We will use Twelf to write theorem provers. We begin by de�ningoperators and axioms of an objet logi: here we use �rst-order logi, whih isenoded by the Twelf delarations in Figure 1. Everything we do in this paper alsoworks for higher-order and other logis; but we wish to simplify the presentation.The delaration i : type delares the type i of individuals (over whih the quan-ti�ers range), and o : type delares the type of logial formulas (booleans). Theonstant pf is a dependent type onstrutor: for any formula A, pf (A) is a type;we interpret this type to mean, \proofs of the formula A." That is, if p has typepf (false imp true), then p must be a proof of false imp true.The %use delaration brings in the (built-in) theory of the rational numbers, withonstants 0, 1, 2, 3/2, 248/83, and so on, and operators +, �, > , �. Though wedon't need the full power of the rationals { we use numbers only to index elementsof our hypothesis list { this is Twelf's preferred number system, so it's simplest tojust use it. We de�ne a datatype onstrutor onst : rational ! i to injet rationalonstants into our logi's element type.We de�ne in�x operators imp, and, and or to onstrut formulas. The proof-onstrutor and i (and-introdution) an be read as, \funtion taking a proof of Aand returning (funtion taking a proof of B and returning a proof of A and B)."Thus if p1 : pf (A) and p2 : pf (B), then and i p1 p2 : pf (A and B).1 Or even a logi-programming lause justi�ed by a proof, though we won't use that apabilityin this paper.

4 Appel and Feltyi : type :o : type :pf : o ! type :%use inequality/rationals :onst : rational ! i :imp : o ! o ! o : %in�x right 10 imp :imp i : (pf A ! pf B)! pf (A imp B) :imp e : pf (A imp B) ! pf A ! pf B :and : o ! o ! o : %in�x right 12 and :and i : pf A ! pf B ! pf (A and B) :and e1 : pf (A and B) ! pf A :and e2 : pf (A and B) ! pf B :or : o ! o ! o : %in�x right 11 or :or i1 : pf A ! pf (A or B) :or i2 : pf B ! pf (A or B) :or e : pf (A or B) ! (pf A ! pf C) ! (pf B ! pf C) ! pf C :forall : (i ! o) ! o :forall i : (fx : ig pf (A x)) ! pf (forall A) :forall e : pf (forall A) ! fx : ig pf (A x) :exists : (i ! o) ! o :exists i : fx : igpf (A x) ! pf (exists A) :exists e : pf (exists A) ! (fx : ig pf (A x) ! pf B) ! pf B :false : o :false e : pf false ! pf A :Fig. 1. First-order logi.The proof-onstrutor imp i (impliation-introdution) an be read as, \funtiontaking (funtion from proof of A to proof of B) and returning proof of (A imp B)."Twelf's funtion notation uses square brakets for lambda, thus ([p℄ and i p p) isa funtion with formal parameter p and result (and i p p). Alternately, we anread imp i[p : pf A℄ Q(p) to mean, assuming A is true (with proof p), then theexpression Q(p) is a proof of B; thus A imp B.In the following lemma, represented as a Twelf de�nition, we apply imp i to thisfuntion to get the proof in the body of the de�nition.lemma1 : pf (A imp (A and A)) = imp i ([p : pf A℄ and i p p) : 2As in most presentations of lambda-alulus, the lambda (square brakets) has asyntati sope that extends as far as possible to the right; Twelf an reonstrut2 Unbound apitalized variables are implitly universally quanti�ed, so Twelf would internallyreonstrut this de�nition tolemma1 : fA : og pf (A imp (A and A)) = [A : o℄ imp i ([p : pf A℄ and i p p) :where the urly braes onstrut dependent types: the type of lemma1 is, in e�et, \funtionfrom formula (all it A) to proofs of A imp (A and A)."

Corretness of Theorem Provers 5the type of the funtion argument; and our and binds tighter than imp; so we ouldalso write lemma1 : pf (A imp A and A) = imp i [p℄ and i p p :Using this style of de�nition and proof, we introdue some useful de�nitions andlemmas: not : o ! o = [A℄ A imp false :not i : (pf A ! pf false) ! pf (not A) = imp i :not e : pf (not A) ! pf A ! pf false = imp e :true : o = not false :true i : pf (true) = not i [p℄ p :Notational de�nitions in Twelf are like type abbreviations in ML: the type-hekeran freely expand them when type-heking. Furthermore, the type-heker's uni�eruses rules of beta-eta equivalene. Thus, the proof of the true-introdution ruletrue i must have type pf (true) whih is equivalent (by de�nition) to pf (not false);the right-hand-side of true i is not i [p℄ p whose type is indeed pf (not false). Notethat even though not i is de�ned to be imp i, it is really the speial ase where theB in imp i is instantiated with false.These de�nitions { inluding the proofs of the lemmas not i ; not e ; true i { aretype-heked by the system, so they an't be invalid. This means that we don'treally need a prover at all; we ould just write proofs by hand (as de�nitions) andhek them in Twelf's type-heker; and in fat suh a method an be quite e�etiveand useful (Appel, 2000).However, we wish to automate: we will write a program to produe proofs semi-automatially or automatially, guided by tatial hints. Sine Twelf's support forinterative I/O is minimal, in the prototype we do \interative" tatial proving byediting proof-sripts.3 A theorem prover using tatis and tatialsOur prover manipulates goals, whih are data strutures of the form h1 ; ::: ; hn ` h,where eah of the hi is a hypothesis, represented as a formula with attahed proof.For h1 ; ::: ; hn we assume that the proof is already onstruted. The onlusion his also a formula with attahed proof; typially we have not yet found the proof, soits \attahed proof" is an uninstantiated logi variable.The Twelf delarations for suh data strutures are as follows. hyp is the type ofa single hypothesis, and hyps is a list of hypotheses:hyp : type :hyps : type :An individual hypothesis is a pair of some formula A and a proof of that formula;we delare the nonassoiative in�x onstrutor by to onstrut suh formula/proof

6 Appel and Feltypairs: by : fA : og pf (A) ! hyp : %in�x none 5 by :argument 1 argument 2 resultThis is a dependently typed onstrutor. Thus, (true by true i) is well typed, but(false by true i) is ill typed, even though false is a formula and true i is a proof {it's the wrong type of proof.In order to write A by P instead of by A P, we delare by as an in�x operator(nonassoiative, binding tightness 5) using the %in�x delaration shown above.To make hypothesis lists we delare two onstrutors for hyps, where our ons isan in�x omma:nil : hyps :; : hyp ! hyps ! hyps : %in�x right 4 ; :Now we an delare the goal type with its in�x onstrutor `3.goal : type :` : hyps ! hyp ! goal : %in�x none 3 ` :& : goal ! goal ! goal : %in�x right 2 & :allp : (pf A ! goal) ! goal :alli : (i ! goal) ! goal :tt : goal :In addition to the basi goal h1 ; ::: ; hn ` h we have ompound goals G1&G2 torepresent the ase where the use of a tati results in several subgoals (remainingproof obligations). The empty goal tt is the identity for & and indiates no remain-ing proof obligations. As we will explain later, we need separate onstrutors allpand alli beause Twelf is not a polymorphi language. This implementation of goalsan be viewed as the Twelf version of a similar implementation in Lambda Prolog(Felty, 1993). The programs whih manipulate them, in partiular the tatials andthe mapta program below, are similar also. They do not make any essential use ofdependent types, and thus do not ontribute to the partial orretness of our ta-tis. It is mainly the type of the by onstrutor introdued above that is importantfor guaranteeing partial orretness of our tatis.Tatis. A tati is a proedure whih takes a goal as input and returns subgoalsthat remain to be proven. We �rst show some simple tatis that implement theappliation of inferene rules and lemmas, and later show some more omplex tatiswhih perform some proof searh. We �rst need the type ta of tati names, andthen we de�ne the names of some tatis:3 Identi�ers in the real Twelf system must be written in ASCII, of ourse, so we use the symbol|- for `.

Corretness of Theorem Provers 7ta : type :initial ta : ta :and r ta : ta :and l ta : rational ! ta :imp r ta : ta :imp l ta : rational ! ta :We de�ne tati as the interpreter relation for the logi program; that is, theexpression tati T G1 G2 is a logi-programming goal that applies the tatinamed T to the proof obligation G1, resulting in remaining proof obligations G2.tati : ta ! goal ! goal ! type :Finally, we de�ne lauses for the tati relation. Generally, there are one or twolauses for eah tati-name. Examples are:t1 : tati initial ta (Hs ` A by P) tt nth item N (A by P) Hs :t2 : tati and r ta (Hs ` (A and B) by (and i P1 P2))(Hs ` A by P1 & Hs ` B by P2) :t3 : tati imp r ta (Hs ` (A imp B) by (imp i P1))(allp [p2 : pf A℄(A by p2 ; Hs ` B by (P1 p2))) :t9 : tati (and l ta N) (Hs ` C by P)((A by (and e1 Q)) ; (B by (and e2 Q)) ; Hs ` C by P) nth item N ((A and B) by Q) Hs :t11 : tati (imp l ta N) (Hs ` C by P)((Hs ` A by P2) & ((B by (imp e P1 P2)) ; Hs ` C by P)) nth item N ((A imp B) by P1) Hs :The lines t1 ; t2 ; ::: an be understood as logi-programming lauses, where isused instead of the Prolog or Lambda Prolog :-. Thus, the rule t1 might be writtenin Lambda Prolog astati initial_ta (Hs |- (A by P)) tt :-nth_item N (A by P) Hs.where the data onstrutors |- and by are in�x (of ourse, in Lambda Prolog thetype-heker an't hek soundness of the tati).The operational interpretation of a Prolog lause H :- G1; G2; G3 or a Twelflause H G1 G2 G2 is, �rst math the head H against the urrent goal.If that mathes, try and satisfy subgoal G1; if that mathes, satisfy subgoal G2,and so on. Twelf, like Prolog, uses baktraking (so that if G2 fails, then a di�erentway of satisfying G1 is tried, and so on).The supporting lauses for nth item N H Hs are straightforward (typed) Prolog,and de�ne the relation that the Nth item of Hs is preisely H :

8 Appel and Feltynth item : rational ! hyp ! hyps ! type :nth item1 : nth item 1 H1 (H1 ; Hs) :nth itemN : nth item N H1 (H2 ; Hs) nth item (N � 1) H1 Hs :Thus, initial ta mathes a goal Hs ` A by P if there exists an N suh that thehypothesis A by P is the Nth item of Hs (in Isabelle this is alled assume ta).We an let Prolog baktraking �nd the right N for initial ta beause the sub-goals are trivial, but for and l ta it would be unwise to rely on this, beauseand l ta has nontrivial subgoals. Therefore the user must supply a number whenusing and l ta, but has the option of supplying a Prolog uni�ation variable, whihauses nth item to do a baktraking searh for an assumption of the form A and B.The tati implementation of most of the right introdution rules of our objetlogi is straightforward. The input goal ontains the onlusion paired with itsproof, and the output goal ontains the hypotheses paired with their proofs. Ifthere is more than one subgoal, they are onneted by &, as in and r ta. Ruleswhih use nested impliation or quanti�ation in Twelf suh as imp i and forall i inFigure 1 must use one of the all goal onstrutors in their tati implementations.For example, the argument to imp i is a funtion from proofs of A to proofs ofB. In the tati version (t3 above), the use of allp introdues a bound variable p2to represent an arbitrary proof of A whih gets paired with A and added to theassumption list Hs of the subgoal.The tatis for the left introdution rules are implemented so that they performforward proof from hypotheses. An argument is given to indiate the position in thehypothesis list of the hypothesis to whih the rule should be applied. The partialproofs are onstruted and added to the hypothesis lists of the subgoals.For eah of the left introdution rules, we provide a seond version of the tatiwhih removes the hypothesis to whih the spei�ed rule is applied when formingthe subgoal. For example, for and-elimination, we have:t10 : tati (and l taR N) (Hs1 ` C by P)((A by (and e1 Q)) ; (B by (and e2 Q)) ; Hs2 ` C by P) nth and rest N ((A and B) by Q) Hs1 Hs2 :where nth and rest is a logi-programming prediate whih �nds the Nth formulain Hs1 and returns the set of hypotheses Hs2 with the Nth one removed. Suhtatis are useful in writing automated proof searh proedures so that they anavoid repeatedly applying the same rule to the same hypothesis.More tatis. Using these general priniples, it's easy to implement a large varietyof tatis. Here we show three more:forall r ta : ta :forall l ta : rational ! ta :resolve2 ta : (pf A1 ! pf A2 ! pf B) ! ta :

Corretness of Theorem Provers 9t7 : tati forall r ta (� ` (forall A) by (forall i P))(alli [t : i℄(� ` (A t) by (P t))) :t17 : tati (forall l ta N) (� ` C by P)(((A X) by (forall e Q X)) ; � ` C by P) nth item N ((forall A) by Q) � :t25 : tati (resolve2 ta (Thm : pf A1 ! pf A2 ! pf B))(� ` B by (Thm P1 P2))(� ` A1 by P1 & � ` A2 by P2) :To prove a universally quanti�ed formula 8x:A(x), forall r ta introdues an alligoal; then lause m4 (shown below) will dynamially reate an atom of type i, sothat the subgoal, in e�et, is to prove A with the new atom substituted for x. Thesubstitution is handled entirely by the Twelf metalogi (the same would be true inLambda Prolog).To make use of a universally quanti�ed hypothesis, forall l ta uses the argumentN to selet the Nth hypothesis from the assumptions, whih must be of the formforall A (equivalently, forall [x℄ A(x)). A logi variableX is introdued to instantiatethe bound variable in A. It an later be uni�ed with a term that is needed toomplete the proof. Then A X is uni�ed with the hypothesis in the goal formula;although this is higher-order uni�ation (whih is undeidable in general), extensiveexperiene with the use of similar tatis in Lambda Prologhas found them to work�ne in pratie. We an also write a version of this tati that allows the user toprovide the instantiation term X at the time the tati is applied. We do this byadding X to the �rst argument as follows:forall l tax : rational ! i ! ta :t17x : tati (forall l tax N X) (� ` C by P)(((A X) by (forall e Q X)) ; � ` C by P) nth item N ((forall A) by Q) � :We have also shown an example of a resolution tati. Given some theorem Tof the form, pf (A1) ! pf (A2) ! pf (B), the tati resolve2 taT mathes agoal B and produes subgoals A1 and A2. A minor disadvantage of doing this in awell typed way is that we need a di�erent tati for 2-premise theorems than for3-premise theorems, and so on. Note that the user need not type in a proof termfor the Thm argument diretly. Instead, the name of a previously de�ned Twelfdelaration whih expresses a lemma an be given, as long as it has the right type.By Twelf de�nition expansion, this name is equivalent to the term it abbreviates.Tatials. Tatials implement basi ontrol mehanisms whih allow simple tatisto be ombined into more omplex ones, and an be used as a programming languageto implement searh proedures. Most tatials assume the input goal is a basigoal (onstruted using ` in our prover). In the logi programming setting, we �rstimplement a mapta tatial whih applies tatis to ompound goals, reduing

10 Appel and Feltythem to basi goals before passing them on to other tatials and tatis.mapta : ta ! goal ! goal ! type :m1 : mapta T tt tt :m2 : mapta T (InG1 & InG2) (OutG1 & OutG2) mapta T InG1 OutG1 mapta T InG2 OutG2 :m3 : mapta T (allp InG) (allp OutG) fpg mapta T (InG p) (OutG p) :m4 : mapta T (alli InG) (alli OutG) ftg mapta T (InG t) (OutG t) :m5 : mapta T (Hs ` A by P) OutG tati T (Hs ` A by P) OutG :This tatial redues the goal to subgoals in a manner onsistent with the meaningof the top-level goal onstrutor. In the lauses for the all onstrutors, the quan-ti�ation within goals is transferred to quanti�ation in Twelf. For example, allpquanti�es over proofs in the objet logi; in the m3 lause, p is introdued as anarbitrary proof to replae the bound variable in InG. After ompletion of the Twelfsubgoal, OutG is also an abstration over p.Sine mapta has the same type as tati, we ould have dispensed with maptaand writtenm1; ::: ; m4 as lauses for tati; but this would allow the user less ontrolof how and when the tatis are applied.Some ommon tatials found in most tati-style theorem provers are imple-mented in Twelf with the following lauses.idta : ta :then : ta ! ta ! ta : %in�x left 2 then :orelse : ta ! ta ! ta : %in�x left 2 orelse :repeat : ta ! ta :try : ta ! ta :omplete : ta ! ta :tatial1 : tati idta G G :tatial2 : tati (T1 then T2) InG OutG tati T1 InG MidG mapta T2 MidG OutG :tatial3 : tati (T1 orelse T2) InG OutG tati T1 InG OutG :tatial4 : tati (T1 orelse T2) InG OutG tati T2 InG OutG :tatial5 : tati (repeat T) InG OutG tati ((T then (repeat T)) orelse idta) InG OutG :tatial6 : tati (try T) InG OutG tati (T orelse idta) InG OutG :tatial7 : tati (omplete T) InG tt tati T InG OutG goalredue OutG tt :The idta tatial returns the goal unhanged and is used mainly in programmingsearh strategies for ending a series of multiple proof steps. The then tatial per-forms the omposition of tatis. The orelse tatial is also useful in programmingsearh strategies and allows hoie of tatis. The repeat tatial repeatedly applies

Corretness of Theorem Provers 11a tati until it an no longer be applied and is de�ned in terms of the others. Thetry tatial prevents failure of the given argument tati by using idta when tatiT fails. Finally the omplete tatial tries to ompletely solve the given goal. Ituses goalredue (not shown) to simplify ompound goal expressions by removingourrenes of tt from them. For example, applying multiple tatis ould result ingoal strutures suh as (allp ([x℄tt & tt)) whose only subgoals are tt and so shouldredue to tt. 4 A more intriate tatiAn important property of a tatial prover is that it is extensible, so that its usersan write their own tatis. It is in the heking of user-de�ned tatis that thedependent type system is partiularly useful. To illustrate, we will show a speializedtati of the kind that some user might write.Suppose we have a sum-of-produts assertion,C = (A11 ^A21 ^ A31 ^ >) _(A12 ^A22 ^ >) _(A13 ^A23 ^ A33 ^ A43 ^ >) _?and we want to prove C implies D, where we know Ai1 ` D, Ai2 ` D, Ai3 ` D, fora partiular i. To handle this we an write a tati sumprod(i).This kind of situation omes up, for example, in proving properties of a programthat fethes from an ML-style sum-of-produts datatype. Suppose some value xbelongs to an ML datatype that has three onstrutors (disjunts), whih takevalues that are all reords (of 3 elements, 2 elements, and 4 elements, respetively).We would like to feth and use the 2nd reord �eld even before doing the ase-analysis that tells us whih disjunt applies. To do this \hoist" operation, we needto prove that the seond �eld exists (in eah disjunt) and has the right properties.The sumprod tati will be useful in suh proofs. But learly it's a very speializedsituation { therefore this tati will be user-de�ned, not provided by default.We start with two preliminary lemmas. The speialized subtatis of sumprodwill apply these speialized lemmas:or imp : pf (A imp C) ! pf (B imp C) ! pf ((A or B) imp C) =[p1 : pf (A imp C)℄ [p2 : pf (B imp C)℄imp i [p3 : pf (A or B)℄or e p3 ([p4 : pf A℄ imp e p1 p4) ([p5 : pf B℄ imp e p2 p5) :and imp: pf (B imp D) ! pf (A and B imp D) =[p1 : pf (B imp D)℄ imp i [p2 : pf (A and B)℄ imp e p1 (and e2 p2) :We start with an auxiliary tati prodn(j) that onverts the goal Hs ` (A1^A2^:::^An ^ >)! D to the goal Aj ; Hs ` D.

12 Appel and Feltyprodn: rational ! ta :t136 : tati (prodn 1) (Hs ` A and As imp D by (imp i [p℄ P (and e1 p)))(allp [p℄ (A by p ; Hs ` D by P p)) :t137 : tati (prodn N) (Hs ` A and As imp D by and imp P) G tati (prodn (N � 1)) (Hs ` As imp D by P) G :Finally, the tati sumprod(i) transforms the goal Hs ` (WiVj Aij) ! D to thegoal (Ai1 ; Hs ` D)& :::&(Ain ; Hs ` D):sumprod: rational ! ta :t134 : tati (sumprod N) (Hs ` false imp D by (imp i false e)) tt :t135 : tati (sumprod N)(Hs ` (A or As) imp D by (or imp P1 P2)) (G1 & G2) tati (prodn N) (Hs ` A imp D by P1) G1 tati (sumprod N) (Hs ` As imp D by P2) G2 :To see how the dependent type system ensures that we got this right, let's examinethe typeheking of rule t135. As reonstruted by Twelf's typeheker, we have,t135 :{N:rational} {Hs:hyps} {As:o} {D:o} {P2:pf (As imp D)} {G2:goal} {A:o}{P1:pf (A imp D)} {G1:goal}tati (sumprod N) (Hs |- As imp D by P2) G2-> tati (prodn N) (Hs |- A imp D by P1) G1-> tati (sumprod N) (Hs |- A or As imp D by or_imp P1 P2) (G1 & G2).Here we have expliit metalevel quanti�ation (using urly braes) of all the im-pliitly quanti�ed logial variables N ; Hs ; As ; D ; et. The type of P1 was inferredfrom the expression A imp D by P1: it must be pf (A imp D). Therefore the useof P1 in the expression or imp P1 P2 typeheks.But suppose we had mistakenly written the rule t135 withA or As imp D by and imp P2 :Then this rule wouldn't type-hek, and Twelf would report the error,Type mismathExpeted: pf (`A or `As imp `D)Found: pf (X1 and `As imp `D)When writing tatis suh as this (but quite a bit messier) in Lambda Prolog, wefound that mismathes between tatis and the lemmas that they apply were oneof the two ommon soures of errors in the prover; suh errors do not impede us inTwelf. The other kind of error { inompleteness via in�nite loops or baktrakingfailure { ontinues to be bothersome, of ourse: dependent types do not save usthere.

Corretness of Theorem Provers 135 Union-FindNot only tatial provers, but also other deision proedures an be dependentlytyped to ensure partial orretness. For example, in deision proedures for equality,the standard eÆient union-�nd algorithm with path ompression (Aho et al., 1974)is often used to represent equivalene lasses.For eah equivalene lass, the algorithm maintains a anonial representative.As new equalities are learned (from some other soure), the algorithm is instruted(by a union a b ommand) to merge the two equivalene lasses to whih a andb belong. To query the data struture, the �nd a B ommand seeks the anonialrepresentative of the lass to whih a belongs, and uni�es it with B. In the ontextof our theorem prover, �nd must also produe a proof that a = b.We have implemented a union-�nd prover in Twelf. Assuming that the logi-programming engine eÆiently indexes atomi dynami lauses4, it should run inO(N �(N)), where �(N) is the inverse Akermann funtion.In our example, we add an equality primitive == to the logi, along with someaxioms. Union-�nd will maintain and query anonial representatives of equivalenelasses: ==: i ! i ! o : %in�x none 20 == :re : pf (A == A) :symm : pf (A == B) ! pf (B == A) :trans : pf (A == B) ! pf (B == C) ! pf (A == C) :Some of the important onstrutors and prediates used in this example aredelared as follows.`: hyps ! pf A ! goal : %in�x none 3 ` :union : pf (X == Y) ! hyps :�nd : fxgfygpf (x == y) ! hyps :anonial : i ! type :Assume we have a funtion f and some primitive equality fats:f : rational ! i :u35 : pf (f 3 == f 5) :u79 : pf (f 7 == f 9) :u75 : pf (f 7 == f 5) :�nd2 : pf (A == B) ! pf (C == B) ! pf (A == C) =[pAB℄[pCB℄ trans pAB (symm pCB) :A typial query that our union-�nd an answer is,union u35 ; union u79 ; union u75 ; �nd (f 9) X P9 ; �nd (f 3) X P3 ; nil` f 9 == f 3 by �nd2 P9 P3 :4 Dynami lauses will be explained in this setion. Twelf does not index dynami lauses, so areal test of our program's eÆieny has not yet been performed.

14 Appel and FeltyIn this prover, the \hypotheses" to the left of the turnstile ` are treated as om-mands to the union-�nd engine. Assoiated with eah ommand is a proof: union P(where P is a proof of A == B) is a ommand to union the sets to whih A and Bbelong. �nd X Y P is a ommand to �nd the anonial representative of X , unifyit with Y , and onstrut a proof that X == Y ; this proof is then uni�ed withP. Thus, by the time nil is reahed, the proof to the right of the turnstile in ourexample, �nd2 P2 P3, must be a proof of f 9 == f 3.How ould suh a query fail? In our example, the only possible point is wherethe ommand �nd (f 3) X P3 is exeuted: here, X has already been instantiatedto the anonial representative of f 9, so if that is not the same as the anonialrepresentative of f 3, the �nd ommand will fail and baktrak. In this example,suh failure does not our.Our program introdues dynami lauses of the form anonX Z Pxz to indiatethat Z is the anonial representative of X , with proof Pxz:anon : fx : igfy : ig pf (x == y) ! type :That is, these lauses of the Prolog program will be reated at runtime by theexeution of other lauses. Standard Prolog has assert and retrat to add anddelete lauses to/from the fat database; both LambdaProlog and Twelf have adynamially soped version of this feature, in whih dynamially added lauses areautomatially removed when the goals ontaining them omplete suessfully, orwhen baktraking ours. A Twelf lause suh as : expr1 fd : expr2g expr3 :would operate as follows: if the top-level goal mathes expr1, then the subgoalbeomes fd : expr2g expr3; to satisfy this subgoal, �rst the lause d : expr2 isadded to the fat database, then the subgoal expr3 is tried. One expr3 sueedsor fails, the dynami lause d : expr2 is removed.Our program has 16 lauses and 13 onstrutor delarations. Instead of showingthe whole program, we will show just one lause to illustrate the use of dependenttypes. The following lause \exeutes" a ommand �nd X Y P in the ase that Xmaps in exatly two steps to Y ; in this ase, path-ompression is performed:�nd ta2 : �nd X Y P ; Hs ` H anon X Z Pxz anon Z Y Pzy anonial Y ! fd : anon X Y (trans Pxz Pzy)g Hs ` H :The �rst line mathes the �nd ommand; lines 2 and 3 math the ase that Xlinks to Y in two steps, with proofs Pxz and Pzy respetively; line 4 heks that Yis its own anonial representative. Then there is a Prolog \ut" (!), to prevent otherinterpretations of the �nd ommand from mathing5. Then a new atomi lause is5 We are using a version of Twelf with \ut"; the standard distribution does not have this oper-ation.

Corretness of Theorem Provers 15added to the global database, stating that Y is the anonial representative of Xwith proof trans Pxz Pzy ; �nally, the remaining ommand-list Hs is exeuted. Theold lause anon X Z Pxz is still there, but by areful use of uts, the algorithmwill never have oasion to use it.When �nd ta2 adds a new lause to the global database, the dependent type ofthe anon onstrutor ensures that it must be with a valid proof. When a proof Pis returned after a set of ommands Hs ` Aby P, the dependent type of ` ensuresthat it proves the theorem that is laimed. The orretness of �nd ta2 and similarlauses is guaranteed statially. 6 Related WorkUsing dependent types in proofs was not possible in the orresponding LambdaProlog version of our tati-style theorem prover. Lambda Prolog, however, haspolymorphi types, whih Twelf does not, and these types provide some advan-tages in a Lambda Prolog implementation of tatis and tatials. For example, inLambda Prolog, only one version of the goal onstrutor for universal quanti�ationis needed: all : (A ! goal) ! goal :where A is a type variable that an be instantiated with any type. Thus, the im-plementation of the goal onstrutors and tatials does not have to hange whenwe hange objet logis. In ontrast, in Twelf, one all onstrutor is needed foreah type that needs to be quanti�ed. Twelf also does not allow quanti�ation overprediates. In Lambda Prolog, tatis an be implemented as prediates taking twogoals as arguments, whih means that tatials would have prediate arguments.To illustrate, if this were possible in Twelf, there would no longer be a need for thetati onstrutor and the type goal ! goal ! type would beome the de�nitionof the type ta. Some of the ode would look like:ta = goal ! goal ! type :t1 : initial ta (Hs ` A by P) tt nth item N (A by P) Hs :tatial2 : then T1 T2 InG OutG T1 InG MidG T2 MidG OutG :Pollak (1995) disusses the use of dependent types in LCF-style provers to avoidthe need for validations. As a �rst step, a modi�ation of the unforgeable abstratdata type theorem is presented. The new data type makes the struture of thetheorem expliit in the ML type, resulting in a more informative type. Then, amore expressive metalanguage with dependent types is proposed. When taking thisstep, the notion of tati is modi�ed; a tati in this setting beomes the statementof a derived or admissible rule along with its proof in the LEGO system (Pollak,1994). Applying the tati means applying the new rule as a lemma. Programmingdeision proedures for proving subgoals is also mentioned, but example programsare not given.

16 Appel and FeltyMBride (2001) presents an implementation of �rst-order uni�ation using a de-pendently typed funtional language derived from the LEGO system. The languageis a strongly normalizing type theory, so he is able to establish termination. Bove(1999) also programs uni�ation in a dependently typed funtional language. Sheuses Martin-L�of's type theory as a programming language and works within the theALF system (Altenkirh et al., 1994). She also establishes termination. In addition,she provides a methodology for extrating a Haskell program from the type theoryversion. It would be interesting to ompare these programs to a dependently typedlogi-programming implementation of the same algorithm.7 ConlusionWe have shown how dependent types an guarantee partial orretness of tatisin a tati-style theorem prover written in Twelf. We have also shown that otherproof strategies suh as deision proedures an bene�t similarly from the use ofdependent types. In both of these examples, the fat that objet-level proofs wereonstruted and returned as a result of proof searh was a ruial element of theprogram. By using dependent types to represent suh proofs, it is not possible towrite tatis or other proof proedures that onstrut proofs that will not hekwhen submitted to a proof heker.Both Coq and Twelf ontain dependently typed languages intended for desribingobjet-logi terms. The designers of these systems didn't really intend that large-sale programs written in these \little" languages would be exeuted within Coq orTwelf. We have demonstrated that there's a signi�ant software-engineering advan-tage to using the little language in Twelf instead of programming in ML, whih isthe surrounding implementation's language. The same demonstration ould prob-ably have been done using Coq's objet language, a dependently typed funtionallanguage (as ontrasted with Twelf's dependently typed Prolog-like language).Although the tatial prover disussed in this paper is just a prototype, we areon�dent that these tehniques will sale to full-size provers and deision proe-dures. We have used similar tehniques in other dependently typed proof-manipulationprograms in Twelf, and the dependent types assist, not impede, program develop-ment. ReferenesAho, Alfred V., Hoproft, John E., & Ullman, Je�rey D. (1974). The design and analysisof omputer algorithms. Reading, MA: Addison-Wesley.Altenkirh, T., Gaspes, V., Nordstr�om, B., & von Sydow, B. (1994). A user's guide toALF. Teh. rept. Chalmers University of Tehnology, Sweden.Appel, Andrew W. 2000 (Feb.). Hints on proving theorems in Twelf.www.s.prineton.edu/~appel/twelf-tutorial.Appel, Andrew W., & Felty, Amy P. (2000). A semanti model of types and mahineinstrutions for proof-arrying ode. Pages 243{253 of: Popl '00: The 27th am sigplan-sigat symposium on priniples of programming languages. New York: ACM Press.

Corretness of Theorem Provers 17Barras, Bruno, Boutin, Samuel, Cornes, Cristina, Courant, Judia�el, Cosoy, Yann, Dela-haye, David, de Rauglaudre, Daniel, Filliâtre, Jean-Christophe, Gim�enez, Eduardo, Her-belin, Hugo, Huet, G�erard, , Laulh�ere, Henri, Mu~noz, C�esar, Murthy, Chetan, Parent-Vigouroux, Catherine, Loiseleur, Patrik, Paulin-Mohring, Christine, Sa��bi, Amokrane,& Werner, Benjamin. (1998). The Coq Proof Assistant referene manual. Teh. rept.INRIA.Bove, Ana. (1999). Programming in Martin-L�of type theory: Uni�ation, a non-trivialexample. Lientiate Thesis, Chalmers University of Tehnology and G�oteborg University.Felty, Amy. (1993). Implementing tatis and tatials in a higher-order logi programminglanguage. Journal of automated reasoning, 11(1), 43{81.Gordon, M. J., Milner, A. J., & Wadsworth, C. P. (1979). Edinburgh LCF: A mehanisedlogi of omputation. Leture Notes in Computer Siene, vol. 78. New York: Springer-Verlag.Gordon, M. J. C., & Melham, T. F. (1993). Introdution to HOL|a theorem provingenvironment for higher order logi. Cambridge University Press.Harper, Robert, Honsell, Furio, & Plotkin, Gordon. (1993). A framework for de�ninglogis. Journal of the am, 40(1), 143{184.MBride, Conor. (2001). First-order uni�ation by strutural reursion. Journal of fun-tional programming. To appear.Nadathur, Gopalan, & Miller, Dale. (1988). An overview of �Prolog. Bowen, K., &Kowalski, R. (eds), Fifth international onferene and symposium on logi programming.MIT Press.Paulson, Lawrene C. (1994). Isabelle: A generi theorem prover. Leture Notes in Com-puter Siene, vol. 828. Springer-Verlag.Pfenning, Frank, & Sh�urmann, Carsten. (1999). System desription: Twelf | a meta-logial framework for dedutive systems. The 16th international onferene on auto-mated dedution. Berlin: Springer-Verlag.Pollak, Robert. (1994). The theory of LEGO: A proof heker for the extended alulusof onstrutions. Ph.D. thesis, University of Edinburgh.Pollak, Robert. (1995). On extensibility of proof hekers. Pages 140{161 of: Dybjer,P., Nordstrom, B., & Smith, J. (eds), Types for proofs and programs: Internationalworkshop types'94, b�astad, june 1994, seleted papers. LNCS 996, vol. 996. SpringerVerlag Leture Notes in Computer Siene.

