Dependent Types Ensure Partial Correctness of Theorem Provers

Andrew W. Appel
Princeton University, 35 Olden Street, Princeton, NJ 08544, USA
(e-mail: appel@princeton.edu)

Amy P. Felty,
University of Ottawa, 800 King Edward Ave., Ottawa, Ontario K1N 6N5, Canada
(e-mail: afelty@site.uottawa.ca)

Abstract
Static type systems in programming languages allow many errors to be detected at compile time that wouldn’t be detected until runtime otherwise. Dependent types are more expressive than the type systems in most programming languages, so languages that have them should allow programmers to detect more errors earlier. In this paper, using the Twelf system, we show that dependent types in the logic programming setting can be used to ensure partial correctness of programs which implement theorem provers, and thus avoid runtime errors in proof search and proof construction. We present two examples: a tactic-style interactive theorem prover and a union-find decision procedure.

1 Introduction
Many theorem proving systems implement tactics and tacticals, which provide flexible goal-directed proof search. Tactics reduce goals to subgoals, while tacticals are primitives for combining tactics into larger ones that can perform multiple proof steps. They also allow programming of proof search strategies. Some of the first provers using this style of proof search (e.g. LCF (Gordon et al., 1979) and HOL (Gordon & Melham, 1993)) were written in ML, whose pattern matching, exception handling, and polymorphic type system are useful in writing tactics concisely. Felty (1993) showed that Lambda Prolog’s (Nadathur & Miller, 1988) higher-order unification, backtracking, and polymorphic type system provided a more expressive notation for writing tactics and tacticals. Specifically, higher-order abstract syntax is more useful and expressive than ML pattern matching. backtracking is more concise than exception handling, but Lambda Prolog’s prenex-polymorphic type system is essentially similar to MLs.

In this paper we will discuss the advantages of a dependent type system over ML-style polymorphism for writing theorem provers. Dependent types could be used in a functional language (such as ML) or a logic-programming language (such as Lambda Prolog); we use the logic-programming language Twelf (Pfenning & Schürmann, 1999). This means that the style of prover we illustrate is similar to those presented
by Felty (1993), but the issue of ML-style types vs. dependent types is orthogonal
to the issue of ML-style or Prolog-style control and data structures. A decade of
experience with tactical Felty’s prover has shown that this technique is expressive
and powerful, and could be used as the core of a full interactive theorem prover
similar in strength to many existing provers such as HOL and Isabelle that have
been used in a variety of large-scale applications; we expect that the dependently
typed variant of Felty’s approach would scale just as well.

A problem in the implementation of theorem provers (tactical and other) is that
they may have bugs. That is, the “proof” constructed by the prover may not be
valid. There are at least two ways that industrial-strength theorem provers defend
against invalid proofs:

- Edinburgh LCF (and Isabelle (Paulson, 1994), HOL, etc.) have an unforgeable
 abstract data type theorem. An attempt by a prover to construct an invalid
 proof will be detected at run time when some (privileged) proof-constructor
 function detects mismatched arguments.

- Coq (Barras et al., 1998) (and Elf, Twelf, etc.) require provers to construct
 proof witnesses that can be checked (in principle) by a small and reliable
type-checker that’s independent of any (complex, unreliable) theorem prover.
 Provers in Coq and Twelf have usually been written in ML (Caml and Stan-
dard ML, respectively); although each of these systems contains a depend-
ently typed language (functional and logic-programming, respectively), that
language is meant for describing objects in the object logic, and not as a
language for programming provers.

But in each case, bugs in the tactics (or other proof-search algorithm) will be
detected only when the tactics are executed; either when they attempt to use a proof
constructor with bad arguments, or when a proof witness fails the type-checker.

Static type systems (such as ML’s) have the advantage over dynamic type systems
(such as Lisp’s) that many errors are detected much earlier, without needing to run
the program on an adequate sample of test cases. The languages in which the
above-described theorem provers are implemented – Standard ML, Caml, Lambda
Prolog– all have static checking. But ML-style polymorphism is not strong enough
to catch all programming errors.

We had experience in building a complicated tactical prover prototype (in Lambda
Prolog) for a proof-carrying code application (Appel & Felty, 2000). We had a col-
lection of complicated, ad-hoc tactics (as required by Gödel’s incompleteness theorem,
any sufficiently powerful prover will be complicated and ad-hoc). As we maintained
the prover, from time to time we found that it built invalid proofs; to debug, we
had to do runtime tracing of appropriately stripped-down test cases to isolate the
problem.

As we will show, using a dependently typed programming language can yield a
partial correctness (i.e., soundness) guarantee for a theorem prover: if the implemen-
tation type-checks, then any proof (or subproof) that it builds will be valid. There
is no total correctness (i.e., completeness) guarantee: that is, the prover might still
infinite-loop or be incomplete in some other way—i.e., fail with a run-time exception (in ML) or backtracking failure (Prolog).

The source code for all our examples can be found at www.cs.princeton.edu/~appel/prover/.

2 LF and Twelf

The logical framework LF (Harper et al., 1993) allows the specification of logics, and implementations of LF such as Twelf (Pfenning & Schürmann, 1999) allow checking of proofs in those logics. Another view of LF/Twelf is that it is a higher-order dependently typed logic-programming language: Prolog, with higher-order abstract syntax (as in Lambda Prolog), well-scoped dynamic clauses, and a dependent type system. We will make use of both views of LF/Twelf: we will specify an object logic (e.g., first-order logic or higher-order logic), and we will also do Prolog-like programming of the prover tactics.

The Twelf (Pfenning & Schürmann, 1999) implementation of LF has (partial) type inference, proof search (i.e., Prolog-style backtracking), and constraint domains (e.g., the theory of the rational numbers). Twelf has a distinguished type type, the type of all types (and the type of logic-programming goals). A constructor declaration declares an axiom or inference rule of a logic, or a logic-programming data-constructor, or a logic-programming clause. A definition can be used to make a theorem, a lemma, or a defined function or predicate.

An object logic. We will use Twelf to write theorem provers. We begin by defining operators and axioms of an object logic: here we use first-order logic, which is encoded by the Twelf declarations in Figure 1. Everything we do in this paper also works for higher-order and other logics; but we wish to simplify the presentation.

The declaration $i : type$ declares the type i of individuals (over which the quantifiers range), and $o : type$ declares the type of logical formulas (booleans). The constant p is a dependent type constructor: for any formula A, $p(A)$ is a type; we interpret this type to mean, “proofs of the formula $A.”$ That is, if p has type $p(false \ imp \ true)$, then p must be a proof of $false \ imp \ true$.

The $\%use declaration brings in the (built-in) theory of the rational numbers, with constants 0, 1, 2, 3/2, 248/83, and so on, and operators $+, \times, >, \geq$. Though we don’t need the full power of the rationals—we use numbers only to index elements of our hypothesis list—this is Twelf’s preferred number system, so it’s simplest to just use it. We define a datatype constructor $\text{const} : \text{rational} \to i$ to inject rational constants into our logic’s element type.

We define infix operators $\text{imp}, \text{and},$ and or to construct formulas. The proof-constructor $\text{and} _ _ (\text{and-introduction})$ can be read as, “function taking a proof of A and returning (function taking a proof of B and returning a proof of $A \ \text{and} \ B).” Thus if $p1 : p(A)$ and $p2 : p(B)$, then $\text{and} _ _ p1 \ p2 : p(A \ \text{and} \ B)$.

1 Or even a logic-programming clause justified by a proof, though we won’t use that capability in this paper.
\[i : \text{type.} \]
\[o : \text{type.} \]
\[pf : o \to \text{type.} \]

\%use inequality/rationals.
\textit{const} : rational \to i.
\textit{imp} : o \to o \to o. \%infix right 10 \textit{imp}.
\textit{imp} : (pf A \to pf B) \to pf (A \textit{imp} B).
\textit{imp} : pf (A \textit{imp} B) \to pf A \to pf B.
\textit{and} : o \to o \to o. \%infix right 12 \textit{and}.
\textit{and} : pf A \to pf B \to pf (A \textit{and} B).
\textit{and} : pf (A \textit{and} B) \to pf A.
\textit{and} : pf (A \textit{and} B) \to pf B.
\textit{or} : o \to o \to o. \%infix right 11 \textit{or}.
\textit{or} : pf A \to pf (A \textit{or} B).
\textit{or} : pf B \to pf (A \textit{or} B).
\textit{or} : pf (A \textit{or} B) \to (pf A \to pf C) \to (pf B \to pf C) \to pf C.
\textit{forall} : (i \to o) \to o.
\textit{forall} : \{x : i\} pf (A x) \to pf (forall A).
\textit{forall} : pf (forall A) \to \{x : i\} pf (A x).
\textit{exists} : (i \to o) \to o.
\textit{exists} : \{x : i\} pf (A x) \to pf (exists A).
\textit{exists} : pf (exists A) \to \{x : i\} pf (A x) \to pf B \to pf B.
\textit{false} : o.
\textit{false} : pf false \to pf A.

Fig. 1. First-order logic.

The proof-constructor \textit{imp} (implication-introduction) can be read as, “function taking (function from \textit{proof of A to \textit{proof of B}}) and returning \textit{proof of (A \textit{imp} B)}.” Twelf’s function notation uses square brackets for lambda, thus \((\lambda p \cdot \textit{and} \cdot p \cdot p)\) is a function with formal parameter \(p\) and result \((\textit{and} \cdot p \cdot p)\). Alternately, we can read \textit{imp} \(\cdot p : pf A\) \textit{Q}(p) to mean, assuming \(A\) is true (with \textit{proof} \(p\)), then the expression \textit{Q}(p) is a \textit{proof} of \(B\); thus \(A \textit{imp} B\).

In the following lemma, represented as a Twelf definition, we apply \textit{imp} to this function to get the \textit{proof} in the body of the definition.

\[\text{lemma1} : pf (A \textit{imp} (A \textit{and} A)) = \textit{imp} \cdot (\langle p : pf A \rangle \textit{and} \cdot p p). \]

As in most presentations of lambda-calculus, the lambda (square brackets) has a syntax scope that extends as far as possible to the right; Twelf can reconstruct

\[\text{lemma2} : (A : o) pf (A \textit{imp} (A \textit{and} A)) = (A : o) \textit{imp} \cdot (\langle p : pf A \rangle \textit{and} \cdot p p). \]

where the curly braces construct dependent types: the type of \textit{lemma2} is, in effect, “function from formula \textit{call it A} to \textit{proofs of A \textit{imp} (A \textit{and} A)}.”

\[\text{lemma3} : (A : o) \textit{imp} \cdot (\langle p : pf A \rangle \textit{and} \cdot p p). \]

Unbound capitalized variables are implicitly universally quantified, so Twelf would internally reconstruct this definition to

\[(A : o) pf (A \textit{imp} (A \textit{and} A)) = (A : o) \textit{imp} \cdot (\langle p : pf A \rangle \textit{and} \cdot p p). \]

where the curly braces construct dependent types: the type of \textit{lemma3} is, in effect, “function from formula \textit{call it A} to \textit{proofs of A \textit{imp} (A \textit{and} A)}.”
the type of the function argument; and our and binds tighter than \textit{imp}; so we could also write

\[
\text{lemma1} : \text{pf} (A \text{ imp } A \text{ and } A) = \text{ imp}_A [p] \text{ and } \text{ imp}_A [p] .
\]

Using this style of definition and proof, we introduce some useful definitions and lemmas:

\[
\begin{align*}
\text{not} & : o \rightarrow o = [A] A \text{ imp } \text{ false} . \\
\text{not}_j & : (\text{pf } A \rightarrow \text{ pf false}) \rightarrow \text{pf} (\text{not } A) = \text{imp}_j . \\
\text{not}_e & : \text{pf} (\text{not } A) \rightarrow \text{pf } A \rightarrow \text{pf } \text{false} = \text{imp}_e . \\
\text{true} & : o = \text{not } \text{false} . \\
\text{true}_j & : \text{pf} (\text{true}) = \text{not}_j [p] p .
\end{align*}
\]

Notational definitions in Twelf are like type abbreviations in ML: the type-checker can freely expand them when type-checking. Furthermore, the type-checker’s unifier uses rules of beta-eta equivalence. Thus, the proof of the true-introduction rule \text{true}_j must have type \text{pf} (\text{true}) which is equivalent (by definition) to \text{pf} (\text{not } \text{false}); the right-hand-side of \text{true}_j is \text{not}_j [p] \text{ p } whose type is indeed \text{pf} (\text{not } \text{false}). Note that even though \text{not}_j is defined to be \text{imp}_j, it is really the special case where the B in \text{imp}_j is instantiated with \text{false}.

These definitions — including the proofs of the lemmas \text{not}_j, \text{not}_e, \text{true}_j — are type-checked by the system, so they can’t be invalid. This means that we don’t really need a prover at all; we could just write proofs by hand (as definitions) and check them in Twelf’s type-checker; and in fact such a method can be quite effective and useful (Appel, 2000).

However, we wish to automate; we will write a program to produce proofs semi-automatically or automatically, guided by tactical hints. Since Twelf’s support for interactive I/O is minimal, in the prototype we do “interactive” tactical proving by editing proof-scripts.

3 A theorem prover using tactics and tacticals

Our prover manipulates \textit{goals}, which are data structures of the form \textit{h}_1, \ldots, \textit{h}_n \vdash \textit{h}, where each of the \textit{h}_i is a hypothesis, represented as a formula with attached proof. For \textit{h}_1, \ldots, \textit{h}_n we assume that the proof is already constructed. The conclusion \textit{h} is also a formula with attached proof; typically we have not yet found the proof, so its “attached proof” is an uninstantiated logic variable.

The Twelf declarations for such data structures are as follows. \textit{hyp} is the type of a single hypothesis, and \textit{hyps} is a list of hypotheses:

\[
\begin{align*}
\text{hyp} & : \text{type}. \\
\text{hyps} & : \text{type}.
\end{align*}
\]

An individual hypothesis is a pair of some formula \textit{A} and a proof of that formula; we declare the nonassociative infix constructor \textit{by} to construct such formula-proof
pairs:
\[
\begin{align*}
\text{by} &: \{ A : o \} \quad \text{pf}(A) \rightarrow \text{hyp}. \\
\text{nil} &: \text{hyps}.
\end{align*}
\]
\%infix none 5 by.

This is a dependently typed constructor. Thus, \((\text{true by true}_i)\) is well typed, but
\((\text{false by true}_i)\) is ill typed, even though \text{false} is a formula and \text{true}_i is a proof –
it’s the wrong type of proof.

In order to write \(A \text{ by } P\) instead of \(by A P\), we declare \text{by} as an infix operator
(nonassociative, binding tightness 5) using the \%infix declaration shown above.

To make hypothesis lists we declare two constructors for \text{hyps}, where our \text{cons} is
an infix comma:
\[
\begin{align*}
nil &: \text{hyps}.
, &: \text{hyp} \rightarrow \text{hyp} \rightarrow \text{hyps}.
\end{align*}
\]
\%infix right 4 , .

Now we can declare the \text{goal} type with its infix constructor \(\vdash\).^

\[
\begin{align*}
\text{goal} &: \text{type}.
\vdash &: \text{hyps} \rightarrow \text{hyp} \rightarrow \text{goal}. \\
\land &: \text{goal} \rightarrow \text{goal} \rightarrow \text{goal}. \\
\text{allp} &: (\text{pf } A \rightarrow \text{goal}) \rightarrow \text{goal}.
\text{alli} &: (i \rightarrow \text{goal}) \rightarrow \text{goal}.
\text{tt} &: \text{goal}.
\end{align*}
\]

In addition to the basic \(\text{goal} \vdash h_1 \ldots h_n \vdash h\) we have compound goals \(G_1 \land G_2\) to
represent the case where the use of a tactic results in several subgoals (remaining
proof obligations). The empty \(\text{goal} tt\) is the identity for \(\land\) and indicates no remaining
proof obligations. As we will explain later, we need separate constructors \(\text{allp}\)
and \(\text{alli}\) because Twelf is not a polymorphic language. This implementation of goals
can be viewed as the Twelf version of a similar implementation in Lambda Prolog
(Felty, 1993). The programs which manipulate them, in particular the tacticals and
the map tac program below, are similar also. They do not make any essential use of
dependent types, and thus do not contribute to the partial correctness of our tactics.
It is mainly the type of the \text{by} constructor introduced above that is important
for guaranteeing partial correctness of our tactics.

\text{Tactics}. A tactic is a procedure which takes a goal as input and returns subgoals
that remain to be proven. We first show some simple tactics that implement the
application of inference rules and lemmas, and later show some more complex tactics
which perform some proof search. We first need the type \text{tac of tactic names}, and
then we define the names of some tactics:

\footnote{Identifiers in the real Twelf system must be written in ASCII, of course, so we use the symbol \(\vdash\) for \(\vdash\).}
tac : type.
initial_tac : tac.
and_r_tac : tac.
and_l_tac : rational \rightarrow tac.
imp_r_tac : tac.
imp_l_tac : rational \rightarrow tac.

We define tactic as the interpreter relation for the logic program; that is, the expression tactic T G₁ G₂ is a logic-programming goal that applies the tactic named T to the proof obligation G₁, resulting in remaining proof obligations G₂.

tactic : tac \rightarrow goal \rightarrow goal \rightarrow type.

Finally, we define clauses for the tactic relation. Generally, there are one or two clauses for each tactic-name. Examples are:

t1 : tactic initial_tac (Hs \vdash A by P) tt \leftarrow
nth_item N (A by P) Hs.

t2 : tactic and_r_tac (Hs \vdash (A and B) by (and_r P1 P2))
(Hs \vdash A by P1 \& Hs \vdash B by P2).

t3 : tactic imp_r_tac (Hs \vdash (A imp B) by (imp_r P1))
(all\ p [p2 : pf A](A by p2 , Hs \vdash B by (P1 p2))).

t9 : tactic (and_l_tac N) (Hs \vdash C by P)
((A by (and_e1 Q)) , (B by (and_e2 Q)) , Hs \vdash C by P) \leftarrow
nth_item N ((A and B) by Q) Hs.

t11 : tactic (imp_l_tac N) (Hs \vdash C by P)
((Hs \vdash A by P2) \& ((B by (imp_e P1 P2)) , Hs \vdash C by P)) \leftarrow
nth_item N ((A imp B) by P1) Hs.

The lines t1, t2, ... can be understood as logic-programming clauses, where \leftarrow is used instead of the Prolog or Lambda Prolog :- Thus, the rule t1 might be written in Lambda Prolog as

tactic initial_tac (Hs \vdash (A by P)) tt :-
nth_item N (A by P) Hs.

where the data constructors |- and by are infix (of course, in Lambda Prolog the type-checker can’t check soundness of the tactic).

The operational interpretation of a Prolog clause H :- G₁; G₂; G₃ or a Twelf clause H \leftarrow G₁ \leftarrow G₂ \leftarrow G₃ is, first match the head H against the current goal. If that matches, try and satisfy subgoal G₁; if that matches, satisfy subgoal G₂, and so on. Twelf, like Prolog, uses backtracking (so that if G₂ fails, then a different way of satisfying G₁ is tried, and so on).

The supporting clauses for nth_item N H Hs are straightforward (typed) Prolog, and define the relation that the Nth item of Hs is precisely H.
\text{nth_item} : \text{rational} \rightarrow \text{hyp} \rightarrow \text{hyps} \rightarrow \text{type}.
\text{nth_item}1 : \text{nth_item} 1 \text{ H}1 \ (\text{H}1 \ , \ \text{Hs}) .
\text{nth_item}N : \text{nth_item} \ N \ (\text{H}1 \ , \ \text{Hs}) \leftarrow \text{nth_item} \ (N - 1) \ \text{H}1 \ \text{Hs} .

Thus, \text{initial_tac} matches a goal \text{Hs} \vdash A \ \text{by P} if there exists an \text{N} such that the hypothesis \text{A by P} is the \text{N}th item of \text{Hs} (in Isabelle this is called \text{assume_tac}).

We can let Prolog backtracking find the right \text{N} for \text{initial_tac} because the subgoals are trivial, but for \text{and_tac} it would be unwise to rely on this, because \text{and_tac} has nontrivial subgoals. Therefore the user must supply a number when using \text{and_tac}, but has the option of supplying a Prolog unification variable, which causes \text{nth_item} to do a backtracking search for an assumption of the form \text{A and B}.

The tactic implementation of most of the right introduction rules of our object logic is straightforward. The input goal contains the conclusion paired with its proof, and the output goal contains the hypotheses paired with their proofs. If there is more than one subgoal, they are connected by \&., as in \text{and_tac}. Rules which use nested implication or quantification in Twelf such as \text{imp_t} and \text{forall_t} in Figure 1 must use one of the \text{all} goal constructors in their tactic implementations. For example, the argument to \text{imp_t} is a function from proofs of \text{A} to proofs of \text{B}. In the tactic version (t3 above), the use of \text{allp} introduces a bound variable \text{p2} to represent an arbitrary proof of \text{A} which gets paired with \text{A} and added to the assumption list \text{Hs} of the subgoal.

The tactics for the left introduction rules are implemented so that they perform forward proof from hypotheses. An argument is given to indicate the position in the hypothesis list of the hypothesis to which the rule should be applied. The partial proofs are constructed and added to the hypothesis lists of the subgoals.

For each of the left introduction rules, we provide a second version of the tactic which removes the hypothesis to which the specified rule is applied when forming the subgoal. For example, for and-elimination, we have:

\text{t10} : \begin{align*}
\text{tac} \ &| \ \text{and_tacR} \ N \ | \ (\text{Hs}1 \vdash C \ \text{by P}) \\
&
((\text{A by (and_tacQ}1 \)) \ , \ (\text{B by (and_tacQ}2 \)) \ , \ \text{Hs}2 \vdash C \ \text{by P}) \leftarrow \\
&\text{nth_and_rest} \ N \ ((\text{A and B} \ \text{by Q}) \ \text{Hs}1 \ \text{Hs}2 .
\end{align*}

where \text{nth_and_rest} is a logic-programming predicate which finds the \text{N}th formula in \text{Hs}1 and returns the set of hypotheses \text{Hs}2 with the \text{N}th one removed. Such tactics are useful in writing automated proof search procedures so that they can avoid repeatedly applying the same rule to the same hypothesis.

More tactics. Using these general principles, it’s easy to implement a large variety of tactics. Here we show three more:

\text{forall_t} : \text{tac} .
\text{forall_t} : \text{rational} \rightarrow \text{tac} .
\text{resolve_t} : \text{(pf A}1 \rightarrow \text{pf A}2 \rightarrow \text{pf B}) \rightarrow \text{tac} .
t7 : tactic forall_r_tac (Γ ⊢ (forall A) by (forall_i P))
 (alli [t : i](Γ ⊢ (A t) by (P t))).

t17 : tactic (forall_l_tac N) (Γ ⊢ C by P)
 (((A X) by (forall_e Q X)) ; Γ ⊢ C by P) ←
 nth_item N ((forall A) by Q) Γ.

t25 : tactic (resolve2_tac (Thm : pf A1 → pf A2 → pf B))
 (Γ ⊢ B by (Thm P1 P2))
 (Γ ⊢ A1 by P1 & Γ ⊢ A2 by P2).

To prove a universally quantified formula ∀x : A(x), forall_l_tac introduces an alli
goal; then clause m4 (shown below) will dynamically create an atom of type i, so
that the subgoal, in effect, is to prove A with the new atom substituted for x. The
substitution is handled entirely by the Twelf metalogic (the same would be true in
Lambda Prolog).

To make use of a universally quantified hypothesis, forall_l_tac uses the argument
N to select the Nth hypothesis from the assumptions, which must be of the form
forall A (equivalently, forall [x] A(x)). A logic variable X is introduced to instantiate
the bound variable in A. It can later be unified with a term that is needed to complete
the proof. Then A X is unified with the hypothesis in the goal formula;
although this is higher-order unification (which is undecidable in general), extensive
experience with the use of similar tactics in Lambda Prolog has found them to work
fine in practice. We can also write a version of this tactic that allows the user to
provide the instantiation term X at the time the tactic is applied. We do this by
adding X to the first argument as follows:

forall_l_tacx : rational → i → tac.

t17x : tactic (forall_l_tacx N X) (Γ ⊢ C by P)
 (((A X) by (forall_e Q X)) ; Γ ⊢ C by P) ←
 nth_item N ((forall A) by Q) Γ.

We have also shown an example of a resolution tactic. Given some theorem T
of the form, pf(A1) → pf(A2) → pf(B), the tactic resolve2_tacT matches a
goal B and produces subgoals A1 and A2. A minor disadvantage of doing this in a
well typed way is that we need a different tactic for 2-premise theorems than for
3-premise theorems, and so on. Note that the user need not type in a proof term
for the Thm argument directly. Instead, the name of a previously defined Twelf
declaration which expresses a lemma can be given, as long as it has the right type.
By Twelf definition expansion, this name is equivalent to the term it abbreviates.

Tacticals. Tacticals implement basic control mechanisms which allow simple tactics
to be combined into more complex ones, and can be used as a programming language
to implement search procedures. Most tacticals assume the input goal is a basic
goal (constructed using ⊢ in our prover). In the logic programming setting, we first
implement a map_tac tactical which applies tactics to compound goals, reducing
them to basic goals before passing them on to other tacticals and tactics.

\[\text{mapTac} : \quad \text{tac} \rightarrow \text{goal} \rightarrow \text{goal} \rightarrow \text{type}. \]

\[m1 : \quad \text{mapTac} \ T \ tt \ tt. \]

\[m2 : \quad \text{mapTac} \ T \ (\text{InG}_1 \ & \ \text{InG}_2) \ (\text{OutG}_1 \ & \ \text{OutG}_2) \leftarrow \]
\[\quad \text{mapTac} \ T \ \text{InG}_1 \ \text{OutG}_1 \leftarrow \ \text{mapTac} \ T \ \text{InG}_2 \ \text{OutG}_2. \]

\[m3 : \quad \text{mapTac} \ T \ (\text{allp} \ \text{InG}) \ (\text{allp} \ \text{OutG}) \leftarrow \]
\[\quad \{p\} \ \text{mapTac} \ T \ (\text{InG} \ p) \ (\text{OutG} \ p). \]

\[m4 : \quad \text{mapTac} \ T \ (\text{alli} \ \text{InG}) \ (\text{alli} \ \text{OutG}) \leftarrow \]
\[\quad \{t\} \ \text{mapTac} \ T \ (\text{InG} \ t) \ (\text{OutG} \ t). \]

\[m5 : \quad \text{mapTac} \ T \ (\text{Hs} \vdash \ A \ \text{by} \ P) \ \text{OutG} \leftarrow \]
\[\quad \text{tactic} \ T \ (\text{Hs} \vdash \ A \ \text{by} \ P) \ \text{OutG}. \]

This tactical reduces the goal to subgoals in a manner consistent with the meaning of the top-level goal constructor. In the clauses for the \textit{all} constructors, the quantification within goals is transferred to quantification in Twelf. For example, \textit{allp} quantifies over proofs in the object logic; in the \textit{m3} clause, \textit{p} is introduced as an arbitrary proof to replace the bound variable in \textit{InG}. After completion of the Twelf subgoal, \textit{OutG} is also an abstraction over \textit{p}.

Since \text{mapTac} has the same type as \text{tactic}, we could have dispensed with \text{mapTac} and written \textit{m1};...;\textit{m4} as clauses for \text{tactic}; but this would allow the user less control of how and when the tactics are applied.

Some common tacticals found in most tactic-style theorem provers are implemented in Twelf with the following clauses.

\[idtac : \quad \text{tac}. \]

\[then : \quad \text{tac} \rightarrow \text{tac} \rightarrow \text{tac}. \quad \%\text{infix left 2 then}. \]

\[orelse : \quad \text{tac} \rightarrow \text{tac} \rightarrow \text{tac}. \quad \%\text{infix left 2 orelse}. \]

\[repeat : \quad \text{tac} \rightarrow \text{tac}. \]

\[try : \quad \text{tac} \rightarrow \text{tac}. \]

\[complete : \quad \text{tac} \rightarrow \text{tac}. \]

\[\text{tactical1} : \quad \text{tactic} \ \text{idtac} \ \text{G} \ \text{G}. \]

\[\text{tactical2} : \quad \text{tactic} \ (\text{T1 then} \ \text{T2}) \ \text{InG} \ \text{OutG} \leftarrow \]
\[\quad \text{tactic} \ \text{T1} \ \text{InG} \ \text{MidG} \leftarrow \ \text{mapTac} \ \text{T2} \ \text{MidG} \ \text{OutG}. \]

\[\text{tactical3} : \quad \text{tactic} \ (\text{T1 orelse} \ \text{T2}) \ \text{InG} \ \text{OutG} \leftarrow \ \text{tactic} \ \text{T1} \ \text{InG} \ \text{OutG}. \]

\[\text{tactical4} : \quad \text{tactic} \ (\text{T1 orelse} \ \text{T2}) \ \text{InG} \ \text{OutG} \leftarrow \ \text{tactic} \ \text{T2} \ \text{InG} \ \text{OutG}. \]

\[\text{tactical5} : \quad \text{tactic} \ (\text{repeat} \ \text{T}) \ \text{InG} \ \text{OutG} \leftarrow \]
\[\quad \text{tactic} \ ((\text{T then} \ (\text{repeat} \ \text{T}))) \ \text{orelse idtac} \ \text{InG} \ \text{OutG}. \]

\[\text{tactical6} : \quad \text{tactic} \ (\text{try} \ \text{T}) \ \text{InG} \ \text{OutG} \leftarrow \ \text{tactic} \ (\text{T orelse idtac}) \ \text{InG} \ \text{OutG}. \]

\[\text{tactical7} : \quad \text{tactic} \ (\text{complete} \ \text{T}) \ \text{InG} \ \text{tt} \leftarrow \]
\[\quad \text{tactic} \ \text{T} \ \text{InG} \ \text{OutG} \leftarrow \ \text{goalreduce} \ \text{OutG} \ \text{tt}. \]

The \textit{idtac} tactical returns the goal unchanged and is used mainly in programming search strategies for ending a series of multiple proof steps. The \textit{then} tactical performs the composition of tactics. The \textit{orelse} tactical is also useful in programming search strategies and allows choice of tactics. The \textit{repeat} tactical repeatedly applies
a tactic until it can no longer be applied and is defined in terms of the others. The
try tactical prevents failure of the given argument tactic by using idtac when tactic
T fails. Finally the complete tactical tries to completely solve the given goal. It
uses goalreduce (not shown) to simplify compound goal expressions by removing
occurrences of tt from them. For example, applying multiple tactics could result in
goal structures such as (allp (\[x\]tt & tt)) whose only subgoals are tt and so should
reduce to tt.

4 A more intricate tactic

An important property of a tacticual prover is that it is extensible, so that its users
can write their own tactics. It is in the checking of user-defined tactics that the
dependent type system is particularly useful. To illustrate, we will show a specialized
tactic of the kind that some user might write.

Suppose we have a sum-of-products assertion,

\[C = (A_{11} \land A_{21} \land A_{31} \land \top) \lor (A_{12} \land A_{22} \land \top) \lor (A_{13} \land A_{23} \land A_{33} \land A_{43} \land \top) \lor \bot \]

and we want to prove \(C \) implies \(D \), where we know \(A_{i1} \vdash D \), \(A_{i2} \vdash D \), \(A_{i3} \vdash D \), for
a particular \(i \). To handle this we can write a tactic \texttt{sumprod}(i).

This kind of technique comes up, for example, in proving properties of a program
that fetches from an ML-style sum-of-products datatype. Suppose some value \(x \)
belongs to an ML datatype that has three constructors (disjuncts), which take
values that are all records (of 3 elements, 2 elements, and 4 elements, respectively).
We would like to fetch and use the 2nd record field even before doing the case-
analysis that tells us which disjunct applies. To do this “hoist” operation, we need
to prove that the second field exists (in each disjunct) and has the right properties.
The \texttt{sumprod} tactic will be useful in such proofs. But clearly it’s a very specialized
situation – therefore this tactic will be user-defined, not provided by default.

We start with two preliminary lemmas. The specialized subactics of \texttt{sumprod}
will apply these specialized lemmas:

\[
\begin{align*}
\text{or_imp} & : \quad \text{pf} (A \imp C) \to \text{pf} (B \imp C) \to \text{pf} ((A \or B) \imp C) = \\
& \quad \left[p1 : \text{pf} (A \imp C) \right] \left[p2 : \text{pf} (B \imp C) \right] \\
& \quad \text{imp_or} [p3 : \text{pf} (A \or B)] \\
\text{or_\&} & : \quad p3 (\left[p4 : \text{pf} A \right] \text{imp_\&} p1 p4) (\left[p5 : \text{pf} B \right] \text{imp_\&} p2 p5).
\end{align*}
\]

\[
\begin{align*}
\text{and_imp} & : \quad \text{pf} (B \imp D) \to \text{pf} (A \and B \imp D) = \\
& \quad \left[p1 : \text{pf} (B \imp D) \right] \text{imp_and} [p2 : \text{pf} (A \and B)] \text{imp_\&} p1 (\text{and_\&} p2).
\end{align*}
\]

We start with an auxiliary tactic \texttt{prodIn}(j) that converts the goal \(Hs \vdash (A_1 \land A_2 \land \dots \land A_n \land \top) \to D \) to the goal \(A_j, Hs \vdash D \).
prod\text{.} \quad \text{rational} \rightarrow \text{tac}.

t_{136} \quad : \quad \text{tactic} \ (\text{prod} \ 1) \ (Hs \vdash A \land As \ \text{imp} \ D \ \text{by} \ \text{imp}_i \ [p] \ P \ (\text{and}_e \ 1 \ p))
\quad (\text{allp} \ [p] \ (A \ \text{by} \ p \ , \ Hs \vdash D \ \text{by} \ P \ p)).

t_{137} \quad : \quad \text{tactic} \ (\text{prod} \ N) \ (Hs \vdash A \land As \ \text{imp} \ D \ \text{by} \ \text{and_imp} \ P) \ G \leftarrow
\quad \text{tactic} \ (\text{prod} \ (N - 1)) \ (Hs \vdash As \ \text{imp} \ D \ \text{by} \ P) \ G.

Finally, the tactic \text{sumprod}(i) \ transforms the goal \ Hs \vdash (\forall_i \wedge_j A_j) \rightarrow D \ to the goal \ (A_1, Hs \vdash D) \& \ldots \&(A_n, Hs \vdash D):

\text{sumprod} : \quad \text{rational} \rightarrow \text{tac}.

t_{134} \quad : \quad \text{tactic} \ (\text{sumprod} \ N) \ (Hs \vdash \text{false \ imp} \ D \ \text{by} \ \text{imp}_i \ \text{false}_e) \ tt.

t_{135} \quad : \quad \text{tactic} \ (\text{sumprod} \ N)
\quad (Hs \vdash (A \lor As) \ \text{imp} \ D \ \text{by} \ \text{or_imp} \ P1 \ P2) \ (G1 \ & \ G2) \leftarrow
\quad \text{tactic} \ (\text{prod} \ N) \ (Hs \vdash As \ \text{imp} \ D \ \text{by} \ P1) \ G1 \leftarrow
\quad \text{tactic} \ (\text{sumprod} \ N) \ (Hs \vdash As \ \text{imp} \ D \ \text{by} \ P2) \ G2.

To see how the dependent type system ensures that we got this right, let’s examine the type checking of rule \text{t135}. As reconstructed by Twelf’s type checker, we have,

t_{135} :
\{\text{Nirational}\} \ \{\text{Hs:hyps}\} \ \{\text{As:o}\} \ \{D:o\} \ \{P2:pf \ (As \ \text{imp} \ D)\} \ \{G2:goal\} \ \{A:o\}
\quad \{P1:pf \ (A \ \text{imp} \ D)\} \ \{G1:goal\}
\quad \text{tactic} \ (\text{sumprod} \ N) \ (Hs \vdash As \ \text{imp} \ D \ \text{by} \ P2) \ G2
\quad \rightarrow \text{tactic} \ (\text{prod} \ N) \ (Hs \vdash As \ \text{imp} \ D \ \text{by} \ P1) \ G1
\quad \rightarrow \text{tactic} \ (\text{sumprod} \ N) \ (Hs \vdash As \ \text{imp} \ D \ \text{by} \ \text{or_imp} \ P1 \ P2) \ (G1 \ & \ G2).

Here we have explicit metalevel quantification (using curly braces) of all the implicitly quantified logical variables \ N, Hs, As, D , etc. The type of P1 was inferred from the expression A \ \text{imp} \ D \ \text{by} \ P1: it must be pf(A \ \text{imp} \ D). Therefore the use of P1 in the expression \text{or_imp} \ P1 \ P2 type checks.

But suppose we had mistakenly written the rule \text{t135} with

\[A \lor As \ \text{imp} \ D \ \text{by} \ \text{and_imp} \ P2. \]

Then this rule wouldn’t type check, and Twelf would report the error,

\text{Type mismatch}

Expected: \quad pf \ (‘A \ \text{or} \ ‘As \ \text{imp} \ ‘D)

Found: \quad pf \ (X1 \ \text{and} \ ‘As \ \text{imp} \ ‘D)

When writing tactics such as this (but quite a bit messier) in Lambda Prolog, we found that mismatches between tactics and the lemmas that they apply were one of the two common sources of errors in the prover; such errors do not impede us in Twelf. The other kind of error — incompleteness via infinite loops or backtracking failure — continues to be bothersome, of course; dependent types do not save us there.
5 Union-Find

Not only tactical provers, but also other decision procedures can be dependently typed to ensure partial correctness. For example, in decision procedures for equality, the standard efficient union-find algorithm with path compression (Aho et al., 1974) is often used to represent equivalence classes.

For each equivalence class, the algorithm maintains a canonical representative. As new equalities are learned (from some other source), the algorithm is instructed (by a \texttt{union a b} command) to merge the two equivalence classes to which \texttt{a} and \texttt{b} belong. To query the data structure, the \texttt{find a B} command seeks the canonical representative of the class to which \texttt{a} belongs, and unifies it with \texttt{B}. In the context of our theorem prover, \texttt{find} must also produce a proof that \texttt{a = b}.

We have implemented a union-find prover in Twelf. Assuming that the logic-programming engine efficiently indexes atomic dynamic clauses\(^4\), it should run in \(O(N \alpha(N))\), where \(\alpha(N)\) is the inverse Ackermann function.

In our example, we add an equality primitive \texttt{==} to the logic, along with some axioms. Union-find will maintain and query canonical representatives of equivalence classes:

\[
== : i \rightarrow i \rightarrow o. \ %\text{infix none } 20 \ %==.
\]
\[
\text{refl} : \ pf(A == A).
\]
\[
\text{symm} : \ pf(A == B) \rightarrow pf(B == A).
\]
\[
\text{trans} : \ pf(A == B) \rightarrow pf(B == C) \rightarrow pf(A == C).
\]

Some of the important constructors and predicates used in this example are declared as follows.

\[
\vdash \ hyps \rightarrow pf \rightarrow goal. \ %\text{infix none } 3 \ %\vdash.
\]
\[
\text{union} : \ pf(X == Y) \rightarrow hyps.
\]
\[
\text{find} : \ \{x\}{y}pf(x == y) \rightarrow hyps.
\]
\[
\text{canonical} : \ i \rightarrow type.
\]

Assume we have a function \texttt{f} and some primitive equality facts:

\[
f : \text{rational} \rightarrow i.
\]
\[
u35 : \ pf(f 3 == f 5).
\]
\[
u79 : \ pf(f 7 == f 9).
\]
\[
u75 : \ pf(f 7 == f 5).
\]
\[
\text{find2} : \ pf(A == B) \rightarrow pf(C == B) \rightarrow pf(A == C) = [pAB][pCB] \ %\text{trans } pAB \ %\text{symm } pCB).
\]

A typical query that our union-find can answer is,

\[
\text{union u35, union u79, union u75, find (f 9) X P9, find (f 3) X P3, } nil \ %\vdash \ f 9 == f 3 \ %\text{by find2 P9 P3}.
\]

\(^4\) Dynamic clauses will be explained in this section. Twelf does not index dynamic clauses, so a real test of our program’s efficiency has not yet been performed.
In this prover, the “hypotheses” to the left of the turnstile \vdash are treated as commands to the union-find engine. Associated with each command is a proof \textit{union} P (where P is a proof of $A \iff B$) is a command to union the sets to which A and B belong. \textit{find} $X\ Y\ P$ is a command to find the canonical representative of X, unify it with Y, and construct a proof that $X \iff Y$; this proof is then unified with P. Thus, by the time \textit{nil} is reached, the proof to the right of the turnstile in our example, \textit{find} 2 $P2\ P3$, must be a proof of $f9 \iff f3$.

How could such a query fail? In our example, the only possible point is where the command \textit{find} $(f3)\ X\ P3$ is executed: here, X has already been instantiated to the canonical representative of $f9$, so if that is not the same as the canonical representative of $f3$, the \textit{find} command will fail and backtrack. In this example, such failure does not occur.

Our program introduces dynamic clauses of the form \textit{canon} $X\ Z\ Pxz$ to indicate that Z is the canonical representative of X, with proof Pxz:

\[
\text{canon} : \{x : i\}\{y : i\} \; p^f (x \iff y) \rightarrow \text{type}.
\]

That is, these clauses of the Prolog program will be created at runtime by the execution of other clauses. Standard Prolog has \texttt{assert} and \texttt{retract} to add and delete clauses to/from the fact database; both LambdaProlog and Twelf have a dynamically scoped version of this feature, in which dynamically added clauses are automatically removed when the goals containing them complete successfully, or when backtracking occurs. A Twelf clause such as

\[
c : \text{expr1} \leftarrow \{d : \text{expr2}\} \text{expr3}.
\]

would operate as follows: if the top-level goal matches \text{expr1}, then the subgoal becomes \{d : \text{expr2}\} \text{expr3}; to satisfy this subgoal, first the clause \texttt{d : expr2} is added to the fact database, then the subgoal \text{expr3} is tried. Once \text{expr3} succeeds or fails, the dynamic clause \texttt{d : expr2} is removed.

Our program has 16 clauses and 13 constructor declarations. Instead of showing the whole program, we will show just one clause to illustrate the use of dependent types. The following clause “executes” a command \textit{find} $X\ Y\ P$ in the case that X maps in exactly two steps to Y; in this case, path-compression is performed:

\[
\text{find_tac2} : \text{find} \; X\ Y\ P, \ Hs \vdash H \leftarrow \\
\text{canon} \; X\ Z\ Pxz \leftarrow \\
\text{canon} \; Z\ Y\ Pzy \leftarrow \\
\text{canonical} \; Y \leftarrow ! \leftarrow \\
\{d : \text{canon} \; X\ Y\ (\text{trans} \; Pxz\ Pzy)\} \; Hs \vdash H.
\]

The first line matches the \textit{find} command; lines 2 and 3 match the case that X links to Y in two steps, with proofs Pxz and Pzy respectively; line 4 checks that Y is its own canonical representative. Then there is a Prolog “cut” (!), to prevent other interpretations of the \textit{find} command from matching\footnote{We are using a version of Twelf with “cut”; the standard distribution does not have this operation.}. Then a new atomic clause is
added to the global database, stating that Y is the canonical representative of X
with proof $\text{trans } Pxz \ Pz y$; finally, the remaining command-list Hs is executed. The
old clause $\text{canon } X \ Y \ Pxz$ is still there, but by careful use of cuts, the algorithm
will never have occasion to use it.

When find_tac2 adds a new clause to the global database, the dependent type of
the canon constructor ensures that it must be with a valid proof. When a proof P
is returned after a set of commands $Hs \vdash A \ by P$, the dependent type of \vdash ensures
that it proves the theorem that is claimed. The correctness of find_tac2 and similar
clauses is guaranteed statically.

6 Related Work

Using dependent types in proofs was not possible in the corresponding Lambda
Prolog version of our tactic-style theorem prover. Lambda Prolog, however, has
polymorphic types, which Twelf does not, and these types provide some advantages in a Lambda Prolog implementation of tactics and tacticals. For example, in
Lambda Prolog, only one version of the goal constructor for universal quantification
is needed:

$$all : (A \rightarrow \text{goal}) \rightarrow \text{goal}.$$

where A is a type variable that can be instantiated with any type. Thus, the im-
plementation of the goal constructors and tacticals does not have to change when
we change object logics. In contrast, in Twelf, one all constructor is needed for
each type that needs to be quantified. Twelf also does not allow quantification over
predicates. In Lambda Prolog, tactics can be implemented as predicates taking two
goals as arguments, which means that tacticals would have predicate arguments.

To illustrate, if this were possible in Twelf, there would no longer be a need for the
tactic constructor and the type goal \rightarrow goal \rightarrow type would become the definition
of the type tac. Some of the code would look like:

$$
tac = \text{goal } \rightarrow \text{goal } \rightarrow \text{type}.
t1 : \quad \text{initial_tac } (Hs \vdash A \ by P) \ \text{tt } \leftarrow \nnth_item N (A \ by P) Hs.
$$

tactical2 : then $T1 \ T2 \ \text{InG} \ \text{OutG} \ \leftarrow \nT1 \ \text{InG} \ \text{MidG} \ \leftarrow \ T2 \ \text{MidG} \ \text{OutG}.$

Pollack (1995) discusses the use of dependent types in LCF-style provers to avoid
the need for validations. As a first step, a modification of the unforgable abstract
data type theorem is presented. The new data type makes the structure of the
theorem explicit in the ML type, resulting in a more informative type. Then, a
more expressive metalanguage with dependent types is proposed. When taking this
step, the notion of tactic is modified; a tactic in this setting becomes the statement
of a derived or admissible rule along with its proof in the LEGO system (Pollack,
1994). Applying the tactic means applying the new rule as a lemma. Programming
decision procedures for proving subgoals is also mentioned, but example programs
are not given.
McBride (2001) presents an implementation of first-order unification using a dependently typed functional language derived from the LEGO system. The language is a strongly normalizing type theory, so he is able to establish termination. Bove (1999) also programs unification in a dependently typed functional language. She uses Martin-Löf's type theory as a programming language and works within the the ALF system (Altenkirch et al., 1994). She also establishes termination. In addition, she provides a methodology for extracting a Haskell program from the type theory version. It would be interesting to compare these programs to a dependently typed logic-programming implementation of the same algorithm.

7 Conclusion

We have shown how dependent types can guarantee partial correctness of tactics in a tactic-style theorem prover written in Twelf. We have also shown that other proof strategies such as decision procedures can benefit similarly from the use of dependent types. In both of these examples, the fact that object-level proofs were constructed and returned as a result of proof search was a crucial element of the program. By using dependent types to represent such proofs, it is not possible to write tactics or other proof procedures that construct proofs that will not check when submitted to a proof checker.

Both Coq and Twelf contain dependently typed languages intended for describing object-logic terms. The designers of these systems didn’t really intend that large-scale programs written in these “little” languages would be executed within Coq or Twelf. We have demonstrated that there’s a significant software-engineering advantage to using the little language in Twelf instead of programming in ML, which is the surrounding implementation’s language. The same demonstration could probably have been done using Coq’s object language, a dependently typed functional language (as contrasted with Twelf’s dependently typed Prolog-like language).

Although the tactical prover discussed in this paper is just a prototype, we are confident that these techniques will scale to full-size provers and decision procedures. We have used similar techniques in other dependently typed proof-manipulation programs in Twelf, and the dependent types assist, not impede, program development.

References

