
Implementing Tactics and Tacticals in aHigher-Order Logic Programming LanguageAmy FeltyAT&T Bell Laboratories600 Mountain Ave.Murray Hill, NJ 07974AbstractWe argue that a logic programming language with a higher-order intuitionistic logicas its foundation can be used both to naturally specify and implement tactic styletheorem provers. The language extends traditional logic programming languages byreplacing �rst-order terms with simply-typed �-terms, replacing �rst-order uni�ca-tion with higher-order uni�cation, and allowing implication and universal quanti�-cation in queries and the bodies of clauses. Inference rules for a variety of inferencesystems can be naturally speci�ed in this language. The higher-order features ofthe language contribute to a concise speci�cation of provisos concerning variableoccurrences in formulas and the discharge of assumptions present in many inferencesystems. Tactics and tacticals, which provide a framework for high-level control oversearch for proofs, can be directly and naturally implemented in the extended lan-guage. This framework serves as a starting point for implementing theorem proversand proof systems that can integrate many diversi�ed operations on formulas andproofs for a variety of logics. We present an extensive set of examples that havebeen implemented in the higher-order logic programming language �Prolog.Key Words. Tactics, tacticals, theorem proving, proof systems, natural deduction,logic programming, higher-order logic, logical frameworks.1 IntroductionThe operations of search and uni�cation, which are essential for the implementation ofmost theorem provers, are directly available in logic programming languages. This factsuggests that such languages should provide good implementation languages for theoremprovers. In addition, the declarative nature of logic programs should aid in providing high-level speci�cations of the tasks involved in theorem proving. For example, propositions inthe logic programming language Prolog [40] are clauses with a top-level implication wherea clause body implies its head. The speci�cation of inference rules expressing provabilityin a particular logic should map directly to this setting: the conclusion of a rule maps to

a head of a clause while the premises are speci�ed by the body. A set of clauses specifyinga set of inference rules then serves as a speci�cation of a theorem prover for the logic inquestion. Operationally, search and uni�cation can be used to determine which inferencerules can be applied and to produce the proper instances of these rules. In addition,the declarative reading of such logic programs should help in both understanding andproving formal properties, such as soundness of an implementation of a particular logicor completeness of a representation of a logic as a logic program.The functional programming language ML was originally developed as the metalan-guage for the implementation of theorem provers and has been used for this purposein such notable theorem proving systems as Edinburgh LCF [17], HOL [18], Nuprl [3],and Isabelle [35]. ML contains many features that are useful for the design of theoremprovers. It has a secure typing scheme, and is higher-order, allowing complex operationsto be composed easily. In addition, it contains pattern matching capabilities which allowexible manipulation of data objects. While ML has been used with much success in im-plementing theorem provers, many of the characteristics of logic programming languagessuggest that such languages are worth investigating as an alternative in which certainbasic operations such as search and uni�cation are available more directly.The basic data structure of traditional logic programming languages such as Prolog is�rst-order terms. Such terms, however, cannot provide a direct representation of quanti�-cation in formulas in �rst-order logic, or in any other logic that contains quanti�ers. Inparticular, they cannot be used to characterize the notions of variables and the scopes ofvariable bindings in such formulas. Of course, quanti�cation can be specially encoded. Forexample, in Prolog, we can represent abstractions in formulas by representing bound vari-ables as either Prolog free variables or constants. The formula 8x9y p(x; y), for instance,could be written as the �rst-order termforall(X,exists(Y,p(X,Y))) or forall(x,exists(y,p(x,y)))(where capital letters represent free variables and lower case letters represent constants).In either representation, occurrences of variables inside the scope of quanti�ers must bedistinguished from those outside it. In the �rst case, substitution and uni�cation that isavailable on free variables in Prolog cannot be used directly to provide substitution for�rst-order formulas. In other words, Prolog's uni�cation cannot provide uni�cation at theobject-level. In either case, the programmer would have to write special procedures thataccomplish these tasks for the encoded representation. Programs that manipulate suchencodings are not generally declarative in nature.In this paper, we argue that a higher-order logic programming language based onhigher-order hereditary Harrop formulas [30] is well-suited to the tasks of specifying andimplementing theorem provers. This language replaces �rst-order terms with simply typed�-terms. These terms can be used to elegantly express the higher-order abstract syntax ofobject-logics. For example, the abstractions built into �-terms can be used to representquanti�cation. It is then possible to directly specify the operations of quanti�er instan-tiation and substitution in terms of application of �-terms. Abstraction in �-terms alsoallows us to represent notions of abstraction found in many proof systems. For exam-ple, eigenvariables in natural deduction proofs provide a notion of variables bound inside2

proofs [39]. In addition, in natural deduction, a proof of an implication A � B can beconsidered a function from proofs of A to proofs of B. Terms representing proofs can beconstructed in which these notions are captured.The extended language also permits queries and the bodies of clauses to contain bothimplication and universal quanti�cation. We shall show how universal quanti�cation canbe used to specify the provisos on inference rules in many proof systems concerning theoccurrences of variables in formulas. Such uses of universal quanti�cation are in factessential for the correct implementation of various kinds of theorem provers for theselogics. In addition, implication is useful for specifying the discharge of assumptions innatural deduction systems.In terms of implementation, depth-�rst search provided by most logic programminglanguages is rarely su�cient for the complex task of theorem proving. We shall show howtactics and tacticals, which provide more exibility in controlling search, can be directlyimplemented in the higher-order logic programming language. For instance, quanti�cationover higher-order objects such as predicates allows an elegant implementation of tacti-cals, which provide basic control mechanisms for proof search. Such procedures take asparameters the various primitive operations of a particular theorem prover and composethem in various ways to form more complex operations and proof search strategies, knownas tactics. Tactics and tacticals provide a framework which can be extended modularlyto integrate many potentially diverse operations on formulas and proofs for a variety oflogics in one uni�ed setting.In Section 2, we present the extended logic programming language. In Section 3,we illustrate how this language can be used to specify inference rules. We specify bothnatural deduction and sequent proof systems for �rst-order logic, and then illustrate thespeci�cation of a higher-order logic with quanti�cation over simply-typed �-terms. Whilethese examples illustrate the speci�cation power of the language, they do not providecomplete implementations of theorem provers because of the limitations of depth-�rstsearch. However, they do provide complete proof checkers. In addition, they providesimple direct encodings of logics which we use to illustrate a general pattern for providingformal proofs of correctness. In Section 4, we prove the correctness of the speci�cationfor natural deduction for �rst-order logic.In the remaining sections, we focus on implementation of theorem provers. In Sec-tion 5, we illustrate how inference rule speci�cations can serve as the basic search op-erations of a tactic style theorem prover. Section 6 provides an implementation of thegeneral theorem proving interpreter which includes the tacticals and basic operations forproviding user interaction in searching for proofs. Building upon the tactics and tacticalsimplemented in Sections 5 and 6, we complete an implementation of a tactic style theoremprover for natural deduction for �rst-order logic in Section 7. Finally, we discuss relatedwork in Section 8. 3

2 A Higher-Order Logic Programming LanguageHigher-order hereditary Harrop (hohh) formulas extend positive Horn clauses in essen-tially two ways. The �rst extension permits richer logical expressions in both queries(goals) and the bodies of program clauses. In particular, this extension provides forimplications and universal quanti�cation, in addition to conjunctions, disjunctions, andexistentially quanti�ed formulas. The second extension to Horn clauses makes this lan-guage higher-order in the sense that it is possible to quantify over predicate and functionsymbols. For a complete realization of this kind of extension, several other features mustbe added. In order to instantiate predicate and function variables with terms, �rst-orderterms are replaced by more expressive simply typed �-terms. The application of �-termsis handled by �-conversion, while the uni�cation of �-terms is handled by higher-orderuni�cation.The types of the language include a set of primitive types containing at least the typesymbol o which denotes the type of logic programming propositions, and is closed underthe formation of functional types, i:e:, if �1 and �2 are types then so is �1 ! �2. Thearrow type constructor associates to the right. If �0 is a primitive type then the type�1 ! � � � ! �n ! �0 has �1; : : : ; �n as argument types and �0 as target type. We say theorder of a primitive type is 0 while the order of a non-primitive type is one greater thanthe maximum order of its argument types. We assume that there are denumerably manyconstants and variables of each type. Simply-typed �-terms are built up in the usualway from these constants and variables using abstraction and application. Applicationassociates to the left.In this language, equality between �-terms is taken to mean ��-convertibility. Weshall assume that the reader is familiar with the usual notions and properties of �, �,and � conversion for the simply typed �-calculus. See Hindley and Seldin [22] for a fullerdiscussion. We just review some basic notions and our notation here. The relation ofconvertibility up to � is written as =, up to � and � as =�, and up to �, �, and � as =��.We say that a �-term is in �-normal form if it contains no beta redexes, that is, subtermsof the form (�x t)s. A �-term is in ��-long form if it is of the form�x1 : : : �xn(ht1 : : : tm) (n;m � 0)where h, called the head of the term, is either a constant or a variable, where the expressionht1 : : : tm is of primitive type, and where the terms t1; : : : ; tm are also in ��-long form.All �-terms ��-convert to a term in ��-long form, unique up to �-conversion. We write[t=x]s to denote the term obtained by replacing all free occurrences of x in s with t,systematically renaming bound variables in order to avoid variable capture.A �-term which is of type o is called a proposition. Logical connectives and quanti�ersare introduced into �-terms by introducing suitable constants as in Church [2]. In partic-ular, the constants ^;_;� are all given type o ! o ! o, and the constants 8 and 9 aregiven type (� ! o) ! o for each type replacing the \type variable" �. (Negation is notused in this programming language.) The expressions 8(�x A) and 9(�x A) are abbrevi-ated to be 8xA and 9xA, respectively. ^;_, and � will be written as in�x constants. Afunction symbol whose target type is o will be considered a predicate. A �-term of type4

o such that the head of its ��-long form is not a logical constant will be called an atomicformula.We now de�ne two new classes of propositions, called goal formulas and de�nite clauses(or just clauses). Let A be a syntactic variable for atomic formulas, G a syntactic variablefor goal formulas, and D a syntactic variable for de�nite clauses. These two classes offormulas are de�ned by the following mutual recursion.G := A j G1 ^G2 j G1 _ G2 j 9xG j D � G j 8xGD := A j G � A j 8xDNote that the top-level form of a de�nite clause is either 8x1 : : :8xnA or 8x1 : : :8xn(G �A) where n � 0. The atomic formula A is called the head of the clause, and in the lattercase, G is called the body. There is one �nal restriction on de�nite clauses: the head ofa de�nite clause must have a constant as its head. The heads of atomic goal formulason the other hand may be either variable or constant. A logic program or just simply aprogram is a �nite set of de�nite clauses.Note that this logic allows for quanti�cation over arbitrary predicates, a feature whichwe will not make use of until Section 6. Quanti�cation over function symbols on theother hand will be used extensively throughout the paper, although it will generally berestricted to variables having types of order 1.Given a set of primitive types B, a signature (over B) is a �nite set � of constantsand variables such that there is at least one constant or variable of every primitive type.If a is a constant or variable of type � , we sometimes write a: � to make the type explicit.Given a signature �, a term of type o is said to be a �-clause if it is a de�nite clausebuilt using only the constants and variables in �, the logical constants, and applicationand abstraction. Similarly, a term of type o is a �-goal if it is a goal formula built fromthe constants and variables in � and the logical constants. A term of any type is said tobe a �-term if it is built using the constants and variables in � and the logical constantsexcept for �.We present a search procedure for hohh whose soundness and completeness followsfrom properties shown by Miller et. al. [30]. In this procedure, it will be important thatinstances of existentially quanti�ed goal formulas and universally quanti�ed clauses arealso goal formulas and clauses, respectively. One way to insure this property is to disallowimplication in substitution terms. Thus, we will only consider �-terms as substitutionterms. See [30] for more details. The theorem below provides a high-level description ofthe search procedure. In this theorem, given a signature � and a set of �-clauses P, theset jPj� is de�ned to be the smallest set of clauses such that P � jPj� and if 8xD 2 jPj�and t is a �-term of the same type as x, then [t=x]D 2 jPj�.Theorem 2.1 A sound and complete (with respect to intuitionistic logic) non-deter-ministic search procedure for hohh can be organized using the following six search prim-itives. In these operations, � is the current signature and P the current program. Theclauses in P are �-clauses and the current goal is a �-goal.5

AND: G1 ^ G2 is provable from � and P if and only if both G1 and G2 are provablefrom � and P.OR: G1 _G2 is provable from � and P if and only if G1 or G2 is provable from � and P.INSTANCE: 9xG is provable from � and P if and only if there is some �-term t of thesame type as x such that [t=x]G is provable from � and P.GENERIC: 8xG is provable from � and P if and only if [c=x]G is provable from �[fcgand P for any constant or variable c of the same type as x that does not occur in�.AUGMENT: D � G is provable from � and P if and only if G is provable from � andP [fDg.BACKCHAIN: The atomic formula A is provable from � and P if and only if eitherA 2 jPj� or G � A 2 jPj� and G is provable from � and P.Note that the AUGMENT search operation extends the current program, while the GENERICsearch operation extends the current signature. Also, note that we do not include a sepa-rate operation for conversion since we consider terms to be equivalent up to ��-conversion.This search procedure de�nes a fairly rigid structure for meta-proofs showing that a givengoal formula follows from a given program. Proofs of this structure are called uniformproofs in Miller et. al. [30].An implementation of a deterministic interpreter must make choices which are leftunspeci�ed by the high-level description of the non-deterministic interpreter. We de-scribe here the choices made in the �Prolog language, many of which are similar to thoseroutinely used in Prolog.The order in which conjuncts and disjuncts are attempted and the order for backchain-ing over de�nite clauses is determined exactly as in conventional Prolog: conjuncts anddisjuncts are attempted in the order they are presented. De�nite clauses are backchainedover in the order they are listed in P using a depth-�rst search paradigm to handle failures.In the extended language, clauses can be added dynamically by the AUGMENT operation.We specify that new clauses get added to the top of the list.The non-determinism in the INSTANCE operation is extreme. Generally when anexistential goal is attempted, there is very little information available as to what �-termshould be inserted. Instead, the Prolog implementation technique of instantiating theexistential quanti�er with a logic (free) variable which is later \�lled in" using uni�cationis employed. Thus instead of picking a �-term t, the INSTANCE search operation willintroduce a new logic variable as the substitution term. A similar use of logic variables ismade in implementing BACKCHAIN: instead of choosing a clause from jPj�, a clause fromP is chosen and an instance is made by replacing all outermost universally quanti�edvariables with new logic variables. Such logic variables are not part of the meta-logichohh and thus are distinct from the variables that occur in �. The universal instance ofthis clause is then uni�ed with the current goal. This operation may partially or fullyinstantiate the new logic variables. 6

The addition of logic variables in this setting requires higher-order uni�cation sincethese variables can occur inside �-terms. Also the equality of terms is not a simplesyntactic check but a more complex check of ��-conversion. Higher-order uni�cation isnot in general decidable and most general uni�ers do not necessarily exist when uni�ersdo exist. �Prolog addresses these issues by implementing a depth-�rst version of theuni�cation search procedure described by Huet [24]. It was shown by Miller et. al. [30]that such uni�cation is su�cient for determining substitutions, and by Nadathur andMiller [31, 33], that this uni�cation procedure can be smoothly integrated into the usualbacktracking mechanism of logic programming languages. The higher-order uni�cationproblems we shall encounter in this paper are all rather simple. In fact all such problemsare decidable. The presence of logic variables requires that GENERIC be implementedslightly di�erently than is described above. In particular, if the goal 8xG or the currentprogram P contains logic variables, the new signature item cmust not appear in the termseventually instantiated for those logic variables. Several ways of handling the constraintson uni�cation imposed by the GENERIC operation are discussed by Miller [28]. Withoutthese checks, logic variables would not be a sound implementation technique. Note thatthe new signature item in the GENERIC operation can be either a variable or constant. Indescribing operational behavior of programs we will think of these new signature items asconstants to avoid confusion with logic variables, while in establishing formal results, itwill be convenient to use variables as new signature items.In presenting programs in this paper, we adopt the syntax of the eLP [8] implemen-tation of �Prolog. Variables are represented by tokens with an upper case initial letterand constants are represented by tokens with a lower case initial letter. �-abstraction isrepresented using backslash as an in�x symbol. Terms are most accurately thought ofas being representatives of ��-conversion equivalence classes of terms. For example, theterms X\(f X), Y\(f Y), (F\Y\(F Y) f), and f all represent the same class of terms.The symbols , and ; represent ^ and _ respectively, and , binds tighter than ;.The symbol :- denotes \implied-by" while => denotes the converse \implies." The �rstsymbol is often used to write the top-level connective of de�nite clauses as in Prolog.Implications in goals and the bodies of clauses are always written using =>. Free variablesin a de�nite clause are assumed to be universally quanti�ed, while free variables in a goalare assumed to be existentially quanti�ed. Universal and existential quanti�cation withingoals and de�nite clauses are written using the constants pi and sigma in conjunctionwith a �-abstraction.Primitive types are introduced using kind declarations and signature items are intro-duced using type declarations. For example, the type a and signature member f : a !a! a can be introduced as follows.kind a type.type f a -> a -> a.When type and kind declarations are omitted, they will be inferred by the interpreter.�Prolog permits a degree of polymorphism by allowing type declarations to contain typevariables (written as capital letters). It is also possible to build new \primitive" typesfrom other types, using type constructors. In this paper, we will need to have only onesuch type constructor, list. We also introduce the standard constructors for lists: nil7

represents an empty list of polymorphic type (list A), and :: is the polymorphic consoperator of type A -> (list A) -> (list A). The latter will be written as an in�xsymbol. The programs in this paper will use the following operations on lists.memb X (X::L).memb X (Y::L) :- memb X L.memb_and_rest A (A::Rest) Rest.memb_and_rest A (B::Tail) (B::Rest) :- memb_and_rest A Tail Rest.nth_item 0 A List :- !, memb A List.nth_item 1 A (B::Rest) :- !, A = B.nth_item N A (B::Tail) :- M is (N - 1), nth_item M A Tail.nth_and_rest 0 A List Rest :- !, memb_and_rest A List Rest.nth_and_rest 1 A (B::Rest) Rest :- !, A = B.nth_and_rest N A (B::Tail) (B::Rest) :-M is (N - 1), nth_and_rest M A Tail Rest.The memb predicate implements the standard test for membership in a list. The predi-cate memb and rest is similar to memb but contains an additional argument for the restof the list minus the chosen item. The nth item and nth and rest programs are sim-ilar to memb and memb and rest, respectively, but use an integer argument to specify aparticular member of the list. When the integer argument is 0, they behave like memb ormemb and rest.Several non-logical features of �Prolog will be used in this paper. The cut (!), as usedabove is one such feature. It is used to eliminate backtracking points. It is a goal whichalways succeeds and commits the interpreter to all choices made since the parent goalwas uni�ed with the head of the clause in which the cut occurs (see Sterling and Shapiro[40]). We also make use of write and read predicates. As in Prolog, (write A) printsthe current binding of A to the screen and will always succeed. The read predicate haspolymorphic type (A -> o) -> o. A goal of the form (read G) prompts the user forinput of some term M, and then solves the goal (G M). When this goal fails, (read G) alsofails. The equality predicate (=) veri�es that its two arguments are uni�able. In nth itemand nth and rest, the uni�cation of A and B is placed after the cut rather than replacingB with A in the head of the clause. This implementation is chosen for control reasons. Inparticular, it veri�es that only the second clause can succeed when the integer argumentis 1.3 Specifying Inference RulesIn this section, we illustrate the speci�cation of inference rules in hohh using severalexamples. We begin by considering the speci�cation of natural deduction for �rst-orderintuitionistic logic. We then consider the speci�cation of sequent calculi, classical logic,the simply-typed �-calculus, and higher-order logic. Since we will be specifying logicswithin a logic, to avoid confusion we will refer to hohh as the meta-logic and the logicbeing speci�ed as the object-logic. 8

To represent a �rst-order logic, we introduce two primitive types: form for object-level formulas and i for �rst-order individuals. The new type form serves to distinguishformulas of the object-logic from formulas of the meta-logic (of type o). The connectivesof the meta-logic have a set meaning, for example as given by the non-deterministicinterpreter of the previous section, while the object-level connectives will have only themeaning attributed to them by the programs that use them. Given these new primitivetypes, we introduce constants for the object-level connectives: and, or, and, imp of typeform -> form -> form, neg of type form -> form, and forall and exists of type (i-> form) -> form. We use usual in�x notation for the binary connectives. The constantsforall and exists take a functional argument, and thus object-level binding of variablesby quanti�ers is de�ned in terms of meta-level �-abstraction. This representation offormulas is commonly adopted to express the higher-order abstract syntax of object-logics(e:g:, [35, 29, 21, 4, 37]).We may also introduce non-logical constants into the logic such as a binary func-tion symbol f of type i -> i -> i and unary predicates p and q of type i -> form.Using these de�nitions, the �rst-order formula 8x9y(p(x) � q(f(x; y))), for example, isrepresented by the �-term (forall X\ (exists Y\ ((p X) imp (q (f X Y))))).To specify the inference rules of natural deduction, we introduce the primitive typenprf for proofs, and the in�x constant # of type nprf -> form -> o for the meta-levelrelation between an object-level formula and its proofs. The inference rules for naturaldeduction as in Prawitz [38] are given in Figure 11. Each rule will be expressed asa simple declarative fact about the # relation. Operationally, # can be viewed as thetheorem proving predicate. An operational reading will generally provide a goal-directeddescription of search for proofs in the object-logic.Proof objects can be useful in theorem proving systems for various operations suchas extracting programs, generating explanations, or building analogous proofs of relatedtheorems. There are often many choices in representing and constructing proofs whichdepend on how proofs will be ultimately used. The examples given here serve to illustrateboth how they can be speci�ed and how they are constructed during execution. Of course,a theorem prover need not build explicit proofs at all. In this example, we may replacethe binary predicate # by a unary predicate, say provable, of type form -> o.First, consider the ^-I inference rule in Figure 1 which introduces a conjunction inthe conclusion. The declarative reading of this inference rule is captured by the followingde�nite clause.(and_i P1 P2) # (A and B) :- P1 # A, P2 # B.This clause may be read as: (and i P1 P2) is a proof of (A and B) if P1 is a proof of Aand P2 is a proof of B. The rule can also be viewed as de�ning the constant and i: it is afunction from proofs of the premises to a proof of the conclusion. Operationally, this rulecan be employed when the formula to be proved is a conjunction. Using the BACKCHAINsearch command, the formula and proof of the query must unify with the formula and1Note that substitution terms are given as parameters to the quanti�er inference rules in this presen-tation. Making this information explicit will allow us to establish a more direct correspondence betweendeduction trees and our representation of them. 9

A B ^-IA ^ B A ^ B ^-EA A ^B ^-EBA _-IA _B B _-IA _ B A _B (A)C (B)C _-EC(A)B �-IA � B A A � B �-EB(A)? :-I:A A :A :-E?[y=x]A 8-I(y)8xA 8xA 8-E(t)[t=x]A[t=x]A 9-I(t)9xA 9xA ([y=x]A)B 9-E(y)B? ?-IAThe 8-I rule has the proviso that the variable y cannot appear free in 8xA, orin any assumption on which the deduction of [y=x]A depends.The 9-E rule has the proviso that the variable y cannot appear free in 9xA, inB, or in any assumption on which the deduction of the upper occurrence of Bdepends.Figure 1: Natural Deduction Inference System for First-Order Intuitionistic Logicproof in the head of this clause. If there is a match, the AND search operation is used toverify the two new subgoals in the body of this clause. The uni�cation here is essentially�rst-order.The two inference rules for proving disjunctions, the _-I rules in Figure 1, have a verynatural rendering as the following de�nite clause.(or_i P) # (A or B) :- P # A; P # B.Declaratively, this clause speci�es the meaning of a proof of a disjunction. For (or i P)to be a proof of (A or B), P must be a proof of either A or B. Operationally, this clausewould use an OR search operation to determine which of the subgoals in the body shouldsucceed. Alternatively, we could choose to specify the two rules for _-I with two clauseswhich serve to indicate which instance of the rule is used.(or_i1 P) # (A or B) :- P # A.(or_i2 P) # (A or B) :- P # B. 10

We next consider quanti�er introduction rules whose operational reading will use theINSTANCE and GENERIC search operations and second-order uni�cation. The 9-I inferencerule can be written as the following de�nite clause.(exists_i P) # (exists A) :- sigma T\ (P # (A T)).Here A is a functional variable of type i -> form. The meta-level application (A T)represents the object-level formula that is obtained by substituting T for the top-levelbound variable in A. Declaratively, this clause reads: if there exists a term T such that P isa proof of (A T), then (exists i P) is a proof of (exists A). Operationally, we rely onsecond-order uni�cation to instantiate the logic variable A. The existential instance (A T)is obtained via the interpreter's operation of �-reduction. Note that the implementationof INSTANCE will choose a logic variable with which to instantiate T. By making use of alogic variable here, we do not commit to a speci�c term for the substitution at the timethe clause is invoked in backchaining. It will later be assigned a value through uni�cationif there is such a value which results in a proof.It may be desirable here to keep a record of the substitution terms used by includingthem in proof terms. For example, we may may include T as an argument to exists i,as in the following clause.(exists_i T P) # (exists A) :- P # (A T).Note that the existential quanti�cation over the body of the previous example is replacedhere with a universal quanti�cation over the whole clause (not shown explicitly here since,by convention, we assume universal closure at the top level).The 8-I rule of natural deduction has the additional proviso that the variable y isnot free in 8xA, or in any assumption on which the deduction of the premise [y=x]Adepends. Although our programming language does not contain a check for \not freein" it is still possible to specify this inference rule. This proviso is handled by using auniversal quanti�er at the meta-level as in the following clause.(forall_i Q) # (forall A) :- pi Y\ ((Q Y) # (A Y)).This clause can be interpreted declaratively as follows: if Q is a function that mapsarbitrary terms Y to proofs (Q Y) of the formula (A Y), then (forall i Q) is a proofof (forall A). Operationally, the GENERIC search operation is used to introduce a newconstant of type i to be used as the substitution term. Since this constant will not bepermitted to appear in A the proviso will be satis�ed.The �-I rule illustrates the speci�cation of the discharge of assumptions. This rule canbe naturally speci�ed as the de�nite clause below, which uses both universal quanti�cationand implication at the meta-level.(imp_i Q) # (A imp B) :- pi P\ ((P # A) => ((Q P) # B)).Declaratively, this clause represents the fact that if Q is a \proof function" which mapsan arbitrary proof of A, say P, to a proof of B, namely (Q P), then (imp i Q) is a proofof (A imp B). This clause illustrates a second way in which abstractions are introducedin proof terms. Here, Q is an abstraction over proofs.11

Operationally, the AUGMENT search operation plays a role in implementing the dis-charge of assumptions. To solve the universally quanti�ed subgoal in the above clause,�rst the GENERIC operation is used to choose a new object, say p, to replace P and playthe role of a proof of the formula A. The AUGMENT operation is used to add the assump-tion (p # A) to the current set of program clauses. This clause is then available to usein the search for a proof of B. The proof of B may contain occurrences of p. The functionQ is the result of fully abstracting p out of the proof of B.The elimination rules and ?I can be speci�ed similarly to the introduction rules.Figure 2 contains a complete speci�cation of natural deduction for intuitionistic logic. Inthis speci�cation, proof terms contain just enough information so that given the proofterm and the formula at the root, the corresponding natural deduction can be completelyreconstructed. Many of the proof terms for elimination rules contain formulas. Forexample, B is included as an argument to and e1 to record the conjunct that is droppedwhen applying the rule.(and_i P1 P2) # (A and B) :- P1 # A, P2 # B.(or_i1 P) # (A or B) :- P # A.(or_i2 P) # (A or B) :- P # B.(imp_i Q) # (A imp B) :- pi P\ ((P # A) => ((Q P) # B)).(neg_i Q) # (neg A) :- pi P\ ((P # A) => ((Q P) # false)).(exists_i T P) # (exists A) :- P # (A T).(forall_i Q) # (forall A) :- pi Y\ ((Q Y) # (A Y)).(false_i P) # A :- P # false.(and_e1 B P) # A :- P # (A and B).(and_e2 A P) # B :- P # (A and B).(or_e A B P Q1 Q2) # C :- P # (A or B),pi P1\ ((P1 # A) => ((Q1 P1) # C)),pi P2\ ((P2 # B) => ((Q2 P2) # C)).(imp_e A P1 P2) # B :- P1 # A, P2 # (A imp B).(neg_e A P1 P2) # false :- P1 # A, P2 # (neg A).(exists_e A P1 Q) # B :- P1 # (exists A),pi Y\ (pi P\ ((P # (A Y)) => ((Q Y P) # B))).(forall_e T A P) # (A T) :- P # (forall A).Figure 2: A Complete Speci�cation of Natural Deduction for Intuitionistic LogicTo illustrate the operational behavior of these clauses, we consider the constructionof a proof for the formula pa � 9x8y(py � px). Let P be the set of clauses in Figure 2,and � the signature containing all of the constants that appear in these clauses plus aunary predicate p and a constant a. To represent the state of the interpreter, we writeP; � ?- G where G is the goal to be attempted using program P and signature �. Forthis example, our initial state isP ; � ?- R # ((p a) imp (exists X\(forall Y\((p Y) imp (p X)))))where R is the logic variable to be �lled in with a proof. The following represents the seriesof states and operations of the interpreter used in solving the query. Given program P12

and clause D, we write P;D to denote P [fDg. Similar notation is used for signatures.We write GEN for GENERIC, AUG for AUGMENT, and BC followed by the name of aninference rule to indicate that the clause specifying that rule is used by the BACKCHAINoperation.BC �-I P ; � ?- pi P\((P # (p a)) =>((R1 P) # (exists X\(forall Y\((p Y) imp (p X))))))GEN P ; �; r ?- (r # (p a)) =>((R1 r) # (exists X\(forall Y\((p Y) imp (p X)))))AUG P , r # (p a) ; �; r ?-(R1 r) # (exists X\(forall Y\((p Y) imp (p X))))BC 9-I P , r # (p a) ; �; r ?- R2 # (forall Y\((p Y) imp (p T)))BC 8-I P , r # (p a) ; �; r ?- pi Y\((R3 Y) # ((p Y) imp (p T)))GEN P , r # (p a) ; �; r; c ?- (R3 c) # ((p c) imp (p T))BC �-I, GEN, AUG P , r # (p a),s # (p c) ; �;r,c,s ?- (R4 s) # (p T)Here, r, c, and s are constants introduced by the GENERIC operation, and R1, R2, R3,R4 and T are new logic variables introduced in backchaining. A backchain on an atomicclause completes the derivation. Note that there are two clauses in the program whichunify with the �nal goal. The latter is ruled out by the restriction on the GENERICoperation. The constant c was introduced after the variable T, and thus cannot appear inT. Thus the other atomic clause must be used to complete the proof and T gets assigneda. The complete uni�cation problem generated by unifying the goal with the head of aclause in each of the above uses of BACKCHAIN is the following:R = (imp i R1); (R1 r) = (exists i T R2); R2 = (forall i R3);(R3 c) = (imp i R4); (R4 s) = r; T = a:After assigning a to T, it is easy to solve for R4, R3, and R2: R4 is assigned P\r, R3 isassigned Y\(imp i P\r), and R2 is assigned (forall i Y\(imp i P\r)). Since R1 cannotcontain r, it must be assigned the term Q\(exists i a (forall i Y\(imp i P\Q))).Thus, as a �nal solution for R, we obtain the term(imp i Q\(exists i a (forall i Y\(imp i P\Q)))):In specifying natural deduction, we have considered both declarative aspects as well asoperational behavior of individual clauses. Now, consider the speci�cation in Figure 2 withrespect to deterministic depth-�rst control. If we view this program as a proof checker,that is, where initial queries contain closed proof terms, then there is little problem incontrolling execution. The top-level constant of a proof term completely determines theunique de�nite clause which can be used in backchaining at each step. Not surprisingly, theexecution of this program under depth-�rst control is not su�cient for theorem proving.When proof terms in queries are variables, there will in general be multiple de�nite clausesthat could be applied to any one formula. The clause for and e1, for example, can alwaysbe used in backchaining, since A in the head of the clause can be uni�ed with any formula.The program may enter an in�nite loop repeatedly applying this rule. In some cases, itmay be possible to modify speci�cations so that they act as complete automatic theorem13

provers under depth-�rst control. Such a theorem prover for the classical sequent calculuscan be found in Felty [10]. Beginning in Section 5, we consider the implementation oftactic style theorem provers which provide more exible forms of control. There, we willdiscuss a modi�ed speci�cation of inference rules, such that clauses may be used as tacticsimplementing the basic operations of a theorem prover.Before doing so, we continue using a simpler more direct speci�cation in the remainderof this section and the next. Here, we present a few more speci�cation examples and inthe next section we discuss correctness of speci�cations and present the correctness prooffor natural deduction. We next briey consider specifying a sequent system for �rst-orderintuitionistic logic. To de�ne sequents, we introduce a new primitive type seq and aconstant --> of type (list form) -> form -> seq written as an in�x operator whoseantecedent is a list of formulas and succedent is a single formula. The basic relationbetween a sequent and its proofs will be represented by the in�x constant >- of type sprf-> seq -> o where sprf is the type of sequent proofs.Rules that introduce a connective on the right of a sequent resemble introductionrules in natural deduction. For example, the following rule from Gentzen [16] introducesuniversal quanti�cation on the right.� �! [y=x]A 8-R� �! 8xAThe following clause encodes this rule.(forall_r Q) >- (Gamma --> (forall A)) :- pi Y\ ((Q Y) >- (Gamma --> (A Y))).In this rule, the variable y cannot appear free in the lower sequent. As in natural deduc-tion, universal quanti�cation at the meta-level is used to handle this proviso. Introduc-tions of logical constants into the antecedent of a sequent can be achieved similarly. Themain di�erence here is that the antecedent is a list instead of a single formula. As anexample, the rule introducing implication on the left and its speci�cation are given below.� �! A B;� �! C �-LA � B;� �! C(imp_l P1 P2) >- ((A imp B)::Gamma --> C) :- P1 >- (Gamma --> A),P2 >- ((B::Gamma) --> C).The structural rules of contraction, thinning, and interchange can be speci�ed by simplymanipulating lists of formulas. In addition, we need the clause below specifying initialsequents, that is, a sequent whose antecedent contains one formula which is also itssuccedent.(initial A) >- ((A::nil) --> A).Classical logic can be speci�ed similarly to intuitionistic logic. For the sequent calculus,we must introduce lists on both sides of the sequent arrow, while for natural deduction,we simply replace the clause for the ?I rule with a clause for the corresponding rule forclassical logic [38]. 14

We next consider the speci�cation of a higher-order logic. For simplicity, we considera logic containing only the � and 8 connectives. This logic will allow quanti�cation oversimply-typed �-terms of arbitrary types. Since �-terms are available at the meta-level, a�rst approach to specifying formulas might be to use these terms directly. We would thenhave to declare polymorphic quanti�ers, i:e:, to introduce constants forall and existsof type (S -> form) -> form, where the type variable S indicates that the argument toexists or forall can be an abstraction over an object of any meta-level type. There areseveral reasons to avoid the use of type variables here. For instance, S can be instantiatedwith types we may not intend to quantify over at the object-level, such as the type o offormulas of the metalanguage. Also, such a use of polymorphism can cause undesirableoperational behavior during uni�cation. On simple uni�cation problems, for example,there may be in�nite branching in the search for instances of both types and terms. (SeeFelty [10] for a fuller discussion of these problems.) Instead, we introduce a new typetm to represent object-level terms, and a second type ty to represent object-level types.To construct function types, we use the in�x arrow --> of type ty -> ty -> ty. If ourobject-language has a function symbol f of type (i ! i) ! i, we introduce meta-levelconstants f of type tm, i of type ty, and write (i --> i) --> i to represent the object-level type of f. To represent �-terms, we introduce the constants app of type tm ->tm -> tm and abs of type (tm -> tm) -> tm to represent application and abstraction,respectively.We must now express the relation between a term and its type at the meta-level. Weintroduce the in�x predicate #t for this relation. The clauses below specify typing rules.f #t ((i --> i) --> i).(abs M) #t (R --> S) :- pi X\ ((X #t R) => ((M X) #t S)).(app M N) #t S :- M #t (R --> S), N #t R.imp #t (form --> form --> form).(forall S) #t ((S --> form) --> form).q #t ((i --> i) --> i -> form).The �rst formula expresses the relation between f and its type. The next two formulasencode the usual rules for abstraction and application. In this example, formulas mustalso be terms of type tm at the meta-level, and must be type-checked in order to insurethat they have object-level type form. The remaining three rules specify typing rules forformulas. In order to allow quanti�cation at every type, the constant forall takes a typeas an argument. Thus (forall S) represents the universal quanti�er over objects of typeS. Type assignment clauses must also be included for all predicates. Here, q is a predicatespecifying a relation between a function and an element of type i.In this example, we consider equality up to ��-conversion. This relation also mustbe speci�ed explicitly. To do so, we introduce the binary predicate conv on terms, andprovide the following clauses.conv (app (abs M) N) (M N).conv (abs X\(app M X)) M.conv (app M N) (app P Q) :- conv M P, conv N Q.conv (abs M) (abs N) :- pi X\ (conv (M X) (N X)).conv M M. 15

conv M N :- conv N M.conv M N :- conv M P, conv P N.The �rst two clauses specify the � and � axioms, while the next two clauses specifyconvertibility inside an application and within the scope of an abstraction. Finally, theremaining clauses express reexivity, symmetry, and transitivity for ��-convertibility.To specify a natural deduction proof system for higher-order logic, we introduce thepredicate #p of type nprf -> tm -> o to represent the basic relation between a formulaand its proofs. The introduction and elimination rules of natural deduction are givenbelow. In these clauses, we assume that the term on the right side of #p in the head ofeach clause has type form. As a result, very few type-checking subgoals will be needed inthe bodies of these clauses.(convert A B P) #p A :- B #t form, P #p B, conv A B.(imp_i Q) #p (app (app imp A) B) :- pi P\ ((P #p A) => ((Q P) #p B)).(imp_e A P1 P2) #p B :- P1 #p A, A #t form, P2 #p (app (app imp A) B).(forall_i S Q) #p (app (forall S) A) :-pi Y\ ((Y #t S) => ((Q Y) #p (app A Y))).(forall_e S T A P) #p (app A T) :- T #t S, P #p (app (forall S) A).The �rst clause speci�es the inference rule that states that if a formula is provable, any��-equivalent formula is also provable. The next two clauses illustrate that propositionalrules are speci�ed similarly to those for �rst-order logic, except that formulas must nowbe written using the encoding of �-terms. The clause for �-E also requires an additionaltype-checking subgoal to insure A has type form. The clause for 8-I is also is similarto the �rst-order version except that here meta-level implication is necessary to add anassumption about the type of the new signature item introduced for Y. Note that in thecase when A is an abstraction (has the form (abs B)), the object-level application (appA Y) is used to represent substitution of the new signature item introduced for Y for thebound variable in the abstraction, but no substitution occurs at the time that the ruleis applied. However if an application of the inference rule for ��-convertibility is thenapplied, the �-reduction rule of the conv program can be used to perform the necessarysubstitution. Finally, in the 8-E rule of higher-order logic, the quanti�ed object can be ofany type and a subgoal must be added to verify correct typing of the substitution term.4 Correctness of Speci�cationsIn specifying various logics, we represented terms, formulas, inference rules, and proofs atthe object-level as terms and formulas of the metalanguage. In the speci�cations, therewas always a clear correspondence between objects in the two languages. We now illustratehow to formalize this connection by proving the correctness of the speci�cation of naturaldeduction in Figure 2. The correspondence between �-abstraction and the discharge ofassumptions and variables in natural deduction proofs is a well-known consequence ofthe Curry-Howard isomorphism [23]. The results presented here provide a formalizationof this correspondence for our representation of proofs and the speci�cation of inferencerules as hohh formulas. 16

Although terms of the metalanguage are equivalent up to ��-convertibility, we willoften need a representative from a ��-equivalence class of terms. In this section, we willalways choose the ��-long form.At the object-level, we assume a �xed set of constants, function symbols, propositions,and predicate symbols. We assume the existence of a bijective mapping � from theseobjects to constants of the metalanguage. � maps each object-level constant to a constantof type i, each proposition to a constant of type form, and each function symbol orpredicate of arity n to a constant with target type i or form, respectively, and n argumenttypes i. Using the functions and predicates given in the example execution in the previoussection, for example, we can de�ne � to be the mapping: �(a) = a : i and �(p) = p :i -> form. We write dom(�) to denote the domain of �. We also assume a countablyin�nite set of �rst-order variables, and a �xed mapping � from these variables to themeta-variables of type i. Using these functions, we can de�ne an encoding on terms andformulas in the obvious way which we give explicitly below. We write hhAii to denote theencoding of term or formula A.hhxii := �(x) for variable xhhp(t1; : : : ; tn)ii := (�(p) hht1ii : : : hhtnii)for function or predicate symbol p 2 dom(�) of arity n � 0hhA ^ Bii := (hhAii and hhBii)hhA _ Bii := (hhAii or hhBii)hhA � Bii := (hhAii imp hhBii)hh:Aii := (neg hhAii)hh8x Aii := (forall X\ hhAii) where �(x) = Xhh9x Aii := (exists X\ hhAii) where �(x) = Xhh ? ii := falseNote that any �rst-order term or formula is mapped to a term in the metalanguage in��-long form. We will adopt the convention that � assigns an object-level variable writtenas a lower case letter to the corresponding meta-variable written as an upper case letter,e:g:, �(x) = X. The above encoding has the following property: Given �rst-order termsor formulas M and N , and variable x, hh[N=x]Mii = [hhNii=X]hhMii:Our encoding for �rst-order terms and formulas is essentially the same as the encodingof �rst-order terms and formulas in LF given by Harper et. al. [21]. There, the encodingof terms and formulas is de�ned within the sublanguage of LF that corresponds to thesimply-typed �-calculus. The proofs given there for Adequacy of Syntax, I and II, can beapplied here in a straightforward manner by replacing the notion of LF canonical formsthere with ��-long forms here. These proofs use a function which is shown to be theinverse of the encoding, which we call a decoding here. Let T0 be the set containing theconstants in fand; or; imp; forall; exists; falseg, the constants in the codomain of �,and the variables in the codomain of �. Let T be the set of simply-typed �-terms builtup from abstraction, application, and the constants and variables in T0. The decodingis de�ned in the obvious way from terms in ��-long form of type i and form in T to�rst-order terms and formulas. We denote the decoding of term M as jjMjj.Before proving the correctness of the natural deduction speci�cation, we make some17

notions about deductions precise. Several rules of natural deduction may discharge as-sumptions. For example, in the �-I rule, (A) indicates that occurrences of A at the leavesare discharged by the application of this rule. A formula occurrence B in a tree is said todepend on an assumption A if A occurs as a leaf and is not discharged by a rule applicationabove B. A deduction of B from a set of formulas � is a tree with root B constructedusing the inference rules in Figure 1 in which all assumptions on which B depends occurin �. Such a tree is a proof of B if � is empty. We often write a set of assumptions � asa list of formulas in which it is understood that a formula may occur more than once.Given a deduction � of B from assumptions A1; : : : ; An, we say that a variable x hasa free occurrence in deduction � if x occurs free in A1; : : : ; An; B, any node in �, or in thesubstitution terms introduced in applications of 9-I and 8-E. In the results that follow, wewill assume that all variables introduced by an application of 8-I or 9-E are distinct, donot have free occurrences in A1; : : : ; An; B, and only have free occurrences in the subtreesof � in which they are introduced, i:e:, in the subtree rooted at the premise of 8-I orin the subtree rooted at the right premise of 9-E. Such variables can always be renamedto meet this criteria [39]. We de�ne �(�) to be the signature containing �(x) for everyvariable x that has a free occurrence in � except for those occurring as parameters to 8-Ior 9-E.Let T 00 be the set containing T0 plus all the constants used to build natural deductionproof terms. We denote the signature obtained by removing the in�nite set of variablesfrom T 00 as �ND. Let T 0 be the set of simply-typed �-terms built up from abstraction,application, and the constants and variables in T 00 . Finally, let PND be the set of clausesin Figure 2.It is easy to see that a variable x is free in a formula B if and only if �(x) isfree in hhBii. For deduction � of B from A1; : : : ; An, it follows from this fact thathhAii; hhA1ii; : : : ; hhAnii; hhBii are all �ND [�(�)-terms. Similarly, a meta-variable X is freein term B 2 T if and only if ��1(X) is free in jjBjj.Theorem 4.1 (Correctness)1. Let � be a natural deduction proof of B. Let � be �ND [�(�). Then there existsa �-term R of type nprf such that (R # hhBii) is provable from �;PND.2. Let B be a term of type form in T and let R be a term of type nprf in T 0. Let �be the signature containing �ND and possibly a �nite number of variables of typei including at least all those that occur free in B and R. If (R # B) is provable from�;PND, then jjBjj has a natural deduction proof.Proof: (1) follows from the slightly more general statement: Let � be a deduction of Bfrom A1; : : : ; An where n � 0. Let P1; : : : ; Pn be n distinct variables of type nprf. Let �and P be the following signature and set of clauses.� := �ND [�(�) [fP1; : : : ; PngP := PND [f(P1 # hhA1ii); : : : ; (Pn # hhAnii)g18

Then there exists a �-term R of type nprf such that (R # hhBii) is provable from �;P.The proof is by induction on the height of �. We show a few cases. First, if � is a onenode tree then it must be Ai for some i, 1 � i � n. We know (Pi # hhAiii) is provable byBACKCHAIN on an atomic clause, and thus we can take R to be Pi.If the last step in the deduction is an application of 9-I(t), then B has the form 9xB 0,and the premise has the form [t=x]B0. All the variables free in hhtii are in �(�) and thushhtii and hh[t=x]B0ii are �-terms. By the induction hypothesis, there exists a �-term S oftype nprf, such that (S # hh[t=x]B0ii) is provable from �;P. Note thathh[t=x]B0ii = [hhtii=X]hhB0ii =� (X\hhB0ii hhtii):By BACKCHAIN on the clause for 9-I, (exists i hhtii S) # (exists X\hhB 0ii) is provablefrom �;P.If the last step in the deduction is an application of 8-I(y), then B has the form 8xB0,and the premise has the form [y=x]B0. Since y is a parameter to this application of 8-I,Y is not in �. Let �0 be the deduction rooted at the premise of this application, i:e:, of[y=x]B0 from A1; : : : ; An. Note that �(�0) is �(�) [fY : ig. Let �0 := � [fY : ig. Bythe induction hypothesis, there exists a �0-term S such that (S # hh[y=x]B0ii) is provablefrom �0;P. We have hh[y=x]B0ii = [Y=X]hhB0ii =� (X\hhB0ii Y):Let Q be the �-term with bound variable Y and body S. The above goal can be rewrit-ten as ((Q Y) # (X\hhB0ii Y)). Note that Y does not occur free in Q or in X\hhB0ii. Bythe GENERIC operation, pi Y\((Q Y) # (X\hhB0ii Y)) is provable from �;P. Thus, byBACKCHAIN on the clause for 8-I, (forall i Q) # (forall X\hhB0ii) is provable from�;P.If the last step in the deduction is an application of �-I, then B has the form B1 � B2,and we know that B2 is provable from A1; : : : ; An; B1. Let P be a variable of type nprfthat does not occur in �. Let �0 := � [fP : nprfg and let P 0 := P [fP # hhB1iig. Bythe induction hypothesis, there exists a �0-term S such that (S # hhB2ii) is provable from�0;P 0. By the AUGMENT operation, (P # hhB1ii) => (S # hhB2ii) is provable from �0;P.Let Q be the �-term with bound variable P and body S. The above goal can be rewrittenas (P # hhB1ii) => ((Q P) # hhB2ii). Note that P does not occur free in Q, hhB1ii, orhhB2ii. By the GENERIC operation, pi P\((P # hhB1ii) => ((Q P) # hhB2ii)) is provablefrom �;P. Thus, by BACKCHAIN on the clause for �-I, (imp i Q) # (hhB1ii imp hhB2ii)is provable from �;P.The reverse direction (2) follows from the following more general statement: LetB; A1; : : : ; An be terms of type form in T and let R be a term of type nprf in T 0. LetP1; : : : ; Pn be n distinct variables of type nprf. Let � be the signature containing �ND,the variables P1; : : : ; Pn, and possibly a �nite number of variables of type i includ-ing at least all those that occur free in B; A1; : : : ; An; R. Let P be the set of clausesPND [f(P1 # A1); : : : ; (Pn # An)g. If (R # B) is provable from �;P, then there is adeduction of jjBjj from assumptions fjjA1jj; : : : ; jjAnjjg.19

The proof is by induction on the structure of R, and is similar to the proof of (1). Itrelies on the existence of proofs of the form described by Theorem 2.1. We start with aprovable goal, and based on the structure of the goal, determine the last step that had tobe taken by the interpreter described in that theorem. For an atomic goal, the constantat the head of the proof term determines which clause must be used in backchaining.Note that these proofs illustrate more than just correctness of the speci�cation inFigure 2. They in fact illustrate a step-by-step correspondence between proofs in theobject-language and proofs in the metalanguage. It is clear that each application of a ruleat the object-level corresponds to a BACKCHAIN on a particular clause at the meta-level.Proof terms can be considered as a means to record more precisely the correspondencebetween object- and meta-proofs. When proof terms contain enough information, it ispossible to state and prove correctness results by de�ning an encoding and decoding be-tween proof terms and object-level proof trees, and proceed by establishing the bijectivityof these functions. To do so for the natural deduction speci�cation above would requirea more precise formulation of deductions at the object-level and their correspondence toproof terms2. This is the approach taken by Harper et. al. [21] in the proof of Adequacyfor Proofs for the LF speci�cation of natural deduction. There, instead of natural deduc-tion as de�ned by Prawitz [38], a notion of natural deduction that corresponds a bit moredirectly to the proof term representation is used. This approach is also taken by Gardner[15] where a bijection, called a natural encoding, is established between object-level proofsand their encoding as terms in the LF+ type theory.5 Inference Rules as Basic TacticsIn the remainder of this paper, we focus on a more general setting for proof search andconstruction: the implementation of tactic style theorem provers. Generally tactics andtacticals have been implemented in the functional programming language ML. We shallillustrate that their logic programming implementation is quite natural and extends theusual meaning of tacticals by permitting them to have access to logic variables and allsix search operations. A comparison between the ML and �Prolog implementations iscontained in Section 8. In our setting, primitive tactics implement the basic inferencerules of a particular proof system. A compact but powerful set of tacticals provides thebasic control over search. They implement an interpreter on top of �Prolog which mustitself function well under depth-�rst search. They provide a mechanism for composingtactics in a principled manner, and can be viewed as a programming language for writingproof search strategies. Such proof strategies which are built up from primitive tacticsand tacticals will be called compound tactics.As an example, in this and the next two sections, we will implement a theorem proverfor natural deduction for �rst-order logic. We begin in this section by modifying thespeci�cation of the natural deduction inference rules as discussed in Section 3, so that2For example, a formulation of natural deduction that uses discharge functions is given in [38]. Suchfunctions can be shown to correspond to abstractions from proofs to proofs in our de�nition of proofterms. 20

the clauses may now serve as the primitive search steps of the tactic theorem prover.We call the speci�cation given here the tactic speci�cation of inference rules as opposedto the direct speci�cations given there. In Section 6 we implement the theorem provinginterpreter which includes an implementation of the basic tacticals, as well as capabilitiesfor interactive theorem proving. This implementation of tacticals is generic in the sensethat it is used without modi�cation for any object-logic we may implement. Then, inSection 7 we complete the natural deduction theorem prover and give an example of itsuse.First, we introduce a new primitive type goal for goal structures that will be manip-ulated by the new interpreter. These goals are distinct from logic programming goals oftype o, which have a speci�c meaning given to them by the depth-�rst interpreter. Goalsof type goal will only be given meaning by the new programs we write to manipulatethem. We want to have each of the search operations of the metalanguage available to ourinterpreters, so we introduce one goal constructor corresponding to each and give themtypes as below.type tt goal.type ff goal.type && goal -> goal -> goal.type vv goal -> goal -> goal.type all (A -> goal) -> goal.type some (A -> goal) -> goal.type ==>> A -> goal -> goal.Here, tt corresponds to the trivially satis�ed goal, ff corresponds to failure, && corre-sponds to the AND search operation, vv to OR, all to GENERIC, some to INSTANCE,and ==>> to AUGMENT. Note that each of the goal constructors except ==>> has a typesimilar to the corresponding logical connective of the metalanguage, where the type ois replaced by goal everywhere. The reason for the type of ==>> will become apparentlater. Note that the goal quanti�ers all and some have polymorphic type. In general, foreach theorem prover, quanti�cation in goals will be limited to a small number of primitivetypes.Primitive tactics specifying inference rules will be named facts where the name is apredicate of type goal -> goal -> o. The �rst argument is the input goal specifyingthe conclusion, and the second is the output goal specifying the premises. Basic goals willencode the relation between a formula and its proof, a sequent and its proof, a term andits type, etc., as they did in Section 3. We will call these goals atomic goals as opposed tocompound goals built from the constructors above. (Note that atomic goals of type goalrepresenting object-level relations are distinct from atomic goal formulas of the meta-logicof type o de�ned in Section 2.)Any direct speci�cation of inference rules can be converted to a set of tactics by afew minor syntactic changes. As an example, consider the speci�cation of the ^-I rule ofnatural deduction in Figure 2. The following clause is the corresponding tactic.and_i_tac ((and_i P1 P2) # (A and B)) ((P1 # A) && (P2 # B)).First, we provide a name for the tactic, in this case and i tac. Second, predicates used inthe direct speci�cation of inference rules become goal constructors for atomic goals. For21

the tactic speci�cation of natural deduction, we again use the in�x constant # to encodethe relation between a formula and its proof, but in this case its target type is goal. Third,search connectives used in the direct speci�cation must be replaced by the correspondinggoal constructors de�ned above. In this tactic, the output goal is a conjunctive compoundgoal containing two atomic goals. The declarative reading of this clause is the same as inthe direct speci�cation. The operational reading, however, is similar but indirect since itdepends on the fact that the goal structures &&, vv, etc., will be implemented in terms oftheir corresponding search connectives.In Section 3 we showed that it was quite natural to specify the discharge of assumptionsusing universal quanti�cation and implication at the meta-level. In interactive theoremproving, it may be desirable to have more direct control over the manipulation of as-sumptions. We can gain more explicit control of assumptions by storing them in a listand making the manipulation of these lists explicit in the de�nite clauses specifying theinference rules. To do so here, we will use lists of pairs of formulas associated with theirproofs. We must make several modi�cations to incorporate such lists. We will again usethe constant # for the relation between a formula and its proof, but now it will have targettype judg, a new primitive type representing the basic judgment for natural deduction.We then use the sequent arrow --> to form \judgment sequents," of type (list judg)-> judg -> goal. A list of assumptions associated with their proofs appears on the leftof the arrow, and the formula to be proved and its proof appear on the right. We will callsuch lists of pairs contexts.To specify introduction rules that do not involve the discharge of assumptions, wesimply add a list and sequent arrow to form a judgment sequent in the input and outputgoals of each tactic. For example, the tactic for ^-I becomes the following clause.and_i_tac (Gamma --> (and_i P1 P2) # (A and B))((Gamma --> P1 # A) && (Gamma --> P2 # B)).For readability, we assume that the in�x operator # binds tighter than -->. The dischargeof assumptions as in the �-I rule is speci�ed as below where the new assumption getsadded to the context rather than the program.imp_i_tac (Gamma --> (imp_i Q) # (A imp B))(all P\ (((P # A)::Gamma) --> (Q P) # B)).The elimination rules can be speci�ed similarly. For example, we may have the followingtwo tactics for the ^-E rules.and_e1_tac (Gamma --> (and_e1 B P) # A) (Gamma --> P # (A and B)).and_e2_tac (Gamma --> (and_e2 A P) # B) (Gamma --> P # (A and B)).Alternatively, we can specify elimination rules so that they are applied in a forwarddirection from the assumptions, another useful capability in interactive theorem proving.For example, we specify the ^-E rule as the following tactic.and_e_tac N (Gamma --> PC # C)((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> PC # C) :-nth_item N (P # (A and B)) Gamma. 22

The integer argument provides the capability to choose a speci�c formula within the listto which the rule will be applied. The nth item program was given in Section 2. Thisclause operates by �nding a conjunction paired with its proof in position N in the context,applying both versions of the ^-E rule to it, and then expanding the context with theresulting new hypotheses, one for each conjunct. The attempt to �nd a proof PC of formulaC then continues in the new context.By similarly specifying the remaining natural deduction inference rules, we obtainthe set of tactics in Figure 3. For the elimination rules, we include speci�cations thatapply these rules in a forward direction since these are the tactics that will be used in theexample execution in Section 7. We must also provide a tactic, close tac, to completeproofs.The speci�cations of proof systems in Section 3, on several occasions, made use of dis-junctive, existential, and implicational goals in the bodies of clauses, which operationallycorrespond to the use of the OR, INSTANCE, and AUGMENT search operations, respec-tively. Note, on the other hand, that the disjunctive, existential, and implicational goalconstructors are not used in Figure 3. In fact, although these three connectives are usefulfor speci�cation, in general they are not essential. Speci�cations can always be modi�edto remove them.The manner in which the rules are speci�ed in Figure 3 is essentially the same as aspeci�cation given for natural deduction in Felty [12] which has the property that onlydeductions in \sharpened normal form" as de�ned by Prawitz [39] get built. We can statecorrectness theorems similar to those in Section 4 for this set of tactics. Such theoremshave proofs similar to those in that section, except that they illustrate the correspondencebetween proof terms constructed by the program and deductions in normal form. Clearly,such a correctness theorem will play a large role in establishing the correctness of a tactictheorem prover. Full correctness will also depend on the correctness of the implementationof the interpreter described in the next section. Correctness of tactic theorem provers willbe discussed further in Section 8.For more exibility, it may be desirable to include additional tactics for user-guidedproof search. For example, it may be useful to remove an assumption when it is no longerneeded. It is straightforward to do so when assumptions are stored as a list inside atomicgoal structures. For example, we may want to include the following tactic for the ^-Erule in addition to the one in Figure 3.and_e_rm N (Gamma --> PC # C)((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma1) --> PC # C) :-nth_and_rest N (P # (A and B)) Gamma Gamma1.Such tactics can be useful in writing partially automated search strategies where we mayonly want to consider using each assumption once.As another example, note that the tactic for 9-I inserts a logic variable for the substitu-tion term. In interactive proof, the user may want the exibility to specify the substitutioninstance directly at the time the rule is invoked. This can be achieved with the followingtactic.exists_i_sbst (Gamma --> (exists_i T P) # (exists A)) (Gamma --> P # (A T)) :-23

close_tac N (Gamma --> P # A) tt :- nth_item N (P # A) Gamma.and_i_tac (Gamma --> (and_i P1 P2) # (A and B))((Gamma --> P1 # A) && (Gamma --> P2 # B)).or_i1_tac (Gamma --> (or_i1 P) # (A or B)) (Gamma --> P # A).or_i2_tac (Gamma --> (or_i2 P) # (A or B)) (Gamma --> P # B).imp_i_tac (Gamma --> (imp_i Q) # (A imp B))(all P\ (((P # A)::Gamma) --> (Q P) # B)).neg_i_tac (Gamma --> (neg_i Q) # (neg A))(all P\ (((P # A)::Gamma) --> (Q P) # false)).forall_i_tac (Gamma --> (forall_i Q) # (forall A))(all Y\ (Gamma --> (Q Y) # (A Y))).exists_i_tac (Gamma --> (exists_i T P) # (exists A)) (Gamma --> P # (A T)).false_i_tac (Gamma --> (false_i P) # A) (Gamma --> P # false).and_e_tac N (Gamma --> PC # C)((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> PC # C) :-nth_item N (P # (A and B)) Gamma.imp_e_tac N (Gamma --> PC # C)((Gamma --> P1 # A) &&((((imp_e A P1 P2) # B)::Gamma) --> PC # C)) :-nth_item N (P2 # (A imp B)) Gamma.neg_e_tac N (Gamma --> PC # C)((Gamma --> P1 # A) &&((((neg_e A P1 P2) # false)::Gamma) --> PC # C)) :-nth_item N (P2 # (neg A)) Gamma.forall_e_tac N (Gamma --> PC # C)((((forall_e T A P) # (A T))::Gamma) --> PC # C) :-nth_item N (P # (forall A)) Gamma.or_e_tac N (Gamma --> (or_e A B P Q1 Q2) # C)((all P1\ (((P1 # A)::Gamma) --> (Q1 P1) # C)) &&(all P2\ (((P2 # B)::Gamma) --> (Q2 P2) # C))) :-nth_item N (P # (A or B)) Gamma.exists_e_tac N (Gamma --> (exists_e A P1 Q) # B)(all Y\ (all P\ (((P # (A Y))::Gamma) --> (Q Y P) # B))) :-nth_item N (P1 # (exists A)) Gamma.Figure 3: Tactics for Natural Deduction24

write "Enter substitution term:", read X\ (T = X).A user may enter a partially or fully instantiated term for T.As a �nal example, in interactive theorem proving, the introduction and use of lemmasis quite useful, if not essential. Consider the following modus ponens tactic for naturaldeduction.modus_ponens (Gamma --> P # A)((Gamma --> Q # B) && (((Q # B)::Gamma) --> P # A)) :-write "Enter lemma: ", read X\ (B = X).It allows the user to add a hypothesis as a lemma, prove it, and then use it in provingthe original theorem.6 Implementing a Tactic InterpreterThe core of the tactic interpreter is implemented by a small set of tacticals which de�nesome basic control mechanisms. These tacticals generally take one or more tactics asarguments and compose them in various ways. We �rst present this basic set of tacticals,then implement some tactics and tacticals that are useful for interactive proof search, and�nally, discuss the implementation of tactics which de�ne general proof search strategies.For clarity in displaying types in this and the next section, we will write tactic toabbreviate the type (goal -> goal -> o)3. First, the maptac tactical in Figure 4 appliestactics to compound goals. It takes a tactic as an argument and applies it to the input goalin a manner consistent with the meaning of the goal structure. In the clause implementing==>>, the polymorphic predicate memo allows the introduction of new clauses containinginformation of arbitrary type into the program. The last clause is used once the goal isreduced to an atomic form. It simply applies the tactic directly.Six common tacticals are implemented by the clauses in Figure 5. The then tacticalperforms the composition of tactics. Tac1 is applied to the input goal, and then Tac2 isapplied to the resulting goal. In this tactical and all others, we assume that the inputgoal is atomic. The maptac program is used in the second subgoal since the applicationof Tac1 may result in an output goal (MidGoal) with compound structure. This tacticalplays a fundamental role in combining the results of step-by-step proof construction. Thesubstitutions resulting from applying these separate tactics get combined correctly sinceMidGoal provides the necessary sharing of logic variables between the two calls to tactics.The orelse tactical simply uses the OR search operation so that Tac1 is attempted, and ifit fails (in the sense that the logic programming interpreter cannot satisfy the �rst of thetwo logic programming subgoals), then Tac2 is tried. The third tactical, idtac, returns theinput goal unchanged. This tactical is useful in constructing compound tactic expressionssuch as the one found in the repeat tactical. The repeat tactical is recursively de�nedusing the three tacticals, then, orelse, and idtac. It repeatedly applies a tactic until itcan no longer be applied. The try tactical prevents failure of the given argument tactic3�Prolog, however, does not allow such type abbreviations.25

type maptac tactic -> tactic.type memo A -> o.maptac Tac tt tt.maptac Tac (InGoal1 && InGoal2) (OutGoal1 && OutGoal2) :-maptac Tac InGoal1 OutGoal1, maptac Tac InGoal2 OutGoal2.maptac Tac (all InGoal) (all OutGoal) :-pi T\ (maptac Tac (InGoal T) (OutGoal T)).maptac Tac (InGoal1 vv InGoal2) OutGoal :-maptac Tac InGoal1 OutGoal; maptac Tac InGoal2 OutGoal.maptac Tac (some InGoal) OutGoal :-sigma T\ (maptac Tac (InGoal T) OutGoal).maptac Tac (D ==>> InGoal) (D ==>> OutGoal) :-(memo D) => (maptac Tac InGoal OutGoal).maptac Tac InGoal OutGoal :- Tac InGoal OutGoal.Figure 4: Interpreting Compound Goal Structurestype then tactic -> tactic -> tactic.type orelse tactic -> tactic -> tactic.type idtac tactic.type repeat tactic -> tactic.type try tactic -> tactic.type complete tactic -> tactic.then Tac1 Tac2 InGoal OutGoal :- Tac1 InGoal MidGoal,maptac Tac2 MidGoal OutGoal.orelse Tac1 Tac2 InGoal OutGoal :- Tac1 InGoal OutGoal; Tac2 InGoal OutGoal.idtac Goal Goal.repeat Tac InGoal OutGoal :-orelse (then Tac (repeat Tac)) idtac InGoal OutGoal.try Tac InGoal OutGoal :- orelse Tac idtac InGoal OutGoal.complete Tac InGoal tt :- Tac InGoal OutGoal, goalreduce OutGoal tt.Figure 5: Some Common Tacticals26

by using idtac when Tac fails. It might be used, for example, in the second argumentof an application of the then tactical. It prevents failure when the �rst argument tacticsucceeds and the second does not. Finally the complete tactical tries to completely solvethe given goal. It will fail if there is a non-trivial goal remaining after Tac is applied.It requires an auxiliary procedure goalreduce to simplify compound goal expressions byremoving occurrences of tt from them. The complete tactical succeeds only if the outputgoal is simpli�ed to tt.The tactics and tacticals in Figure 6 provide an implementation of a simple interac-tive component. The �rst tactical provides an alternative implementation of the orelsetactical. In the previous version, if Tac1 succeeds, a backtracking point will be set up sothat if there is a subsequent failure, control may return to this clause to �nd other ways toapply Tac1, or if there are none, to attempt Tac2. The orelse! tactical eliminates thisbacktracking point by introducing a cut. If Tac1 succeeds once, no other attempts willbe made to apply Tac1 or Tac2. This new version relies on a non-logical feature of themetalanguage to obtain the desired operational behavior. There are a few other occasionswhere the use of cut is crucial in de�ning operational behavior in clauses in this sectionsince more �ne-tuned control is important for good user interaction.The orelse! tactical is used by the query tactic, which is the primitive operation ofthe interactive component. The task of this tactic can be divided into three steps. The�rst step is to output some information about the state of the interpreter. The secondstep is to get input from the user about what action to take, and the third step is toperform the action speci�ed by the input. The �rst two steps are handled by the �rstsubgoal of the query tactic. The predicate IO is a parameter to this tactic since theactual procedure for input and output will depend on the particular object-language forwhich we are building a theorem prover. The basic io and read tac clauses providesimple operations that can be used in building a specialized input/output procedure. Forexample, in a natural deduction theorem prover, if ndoutput is the name of a procedureto print out the state of a natural deduction theorem prover, the IO argument to querymay be (basic io ndoutput readtac).There are then three options in applying the tactic Tac input by the user, given by thethree disjuncts in the query tactic. In the �rst disjunct, notice the use of cut (!) and fail.One requirement of a good interactive system is to provide the user with some capabilityto backup the search to previous points. In this implementation, the user will be allowedto incrementally backup the search one step at a time, by invoking the backup tactic. Herebackup is implemented by causing the logic programming interpreter to fail to a previouspoint. The use of cut here insures that the other two disjuncts will not be attempted.Implementing backup using failure has both advantages and disadvantages. The mainadvantage is that all information about the previous state is handled automatically by thelogic programming interpreter. We need not introduce extra data structures or implementadditional control mechanisms to keep track of this information. The main disadvantageof this approach is that extreme care must be taken to strategically place cuts in all ofthe clauses that make up the interactive component so that invoking the backup tactictakes the interpreter to the desired backtracking point, the one corresponding to the lastinvocation of the query tactic. 27

type orelse! tactic -> tactic -> tactic.type query (goal -> tactic -> o) -> tactic.type basic_io (goal -> o) -> (tactic -> o) -> goal -> tactic -> o.type readtac tactic -> o.type backup tactic.type report_fail tactic.type quit tactic.type inter_repeat tactic -> tactic.type inter (goal -> tactic -> o) -> tactic.type with_tacs modul -> tactic -> tactic.orelse! Tac1 Tac2 InGoal OutGoal :- Tac1 InGoal OutGoal,!; Tac2 InGoal OutGoal.query IO InGoal OutGoal :-IO InGoal Tac,((Tac = backup), !, fail;orelse! Tac report_fail InGoal OutGoal;query IO InGoal OutGoal).basic_io PrintPred ReadPred Goal Tac :- PrintPred Goal, ReadPred Tac.readtac Tac :- writesans "Enter tactic: ", read X\ (Tac = X).report_fail Goal Goal :- writesans "Tactic failed.", nl.quit InGoal ff.inter_repeat Tac InGoal OutGoal :-Tac InGoal MidGoal,((MidGoal = ff), !, (OutGoal = InGoal);maptac (inter_repeat Tac) MidGoal OutGoal).inter IO InGoal OutGoal :- inter_repeat (query IO) InGoal OutGoal.with_tacs M Tac InGoal OutGoal :- M ==> (Tac InGoal OutGoal).Figure 6: Interactive Component for Tactic Interpreter28

If a backup is not requested by the user, the second disjunct attempts to apply therequested tactic. It either applies the tactic successfully, or reports failure when thetactic fails. The orelse! tactical is used inside query since if the tactic succeeds, wedo not want the interpreter to be able to later report failure. The third disjunct is bestunderstood in the context of an interactive loop which repeatedly calls the query tactic.A simple loop might be de�ned simply as the following tactic.inter IO InGoal OutGoal :- repeat (query IO) InGoal OutGoal.At a particular invocation of query, if a backup is requested by the user, control willreturn to the previous invocation of query. At this point, we do not want to fail further,but instead return the search to the state it was in upon entering this invocation of query.In order to achieve this behavior, the third disjunct of query makes a recursive call toitself.Since the repeat tactical loops until the tactic fails, and since the query tactic onlyfails when the backup tactic is invoked, the above implementation of inter will terminatein one of two ways. It will fail if backed up all the way to the beginning, or will succeedwhen the input goal is completely solved by the user. In the latter case, the �rst clause ofmaptac terminates each branch of the search as the input goals are reduced to tt. A goodinteractive interpreter must also provide the user with the capability to stop the searchwithout losing the work done so far, or to stop particular branches of search in favor ofpursuing others. For this task we de�ne the quit tactic, and the inter repeat loopingtactical given in Figure 6. This tactical terminates search when the quit tactic is invokedand returns the current input goal as the output goal. The inter tactic in Figure 6 usesinter repeat and thus provides a top-level interactive loop that allows both backing upand stopping search branches.For a particular theorem prover, as the set of existing theorems and specialized tacticsgrows, it may be desirable to organize them into modules containing sets of related tacticsand theorems. We can provide the user with the exibility to access modules as they areneeded at di�erent points during proof construction. The with tacs tactical in Figure 6allows the user to dynamically extend the current theorem proving environment. Thetype of the �rst argument M is modul, the meta-level primitive type for �Prolog modulenames. The ==> symbol is the meta-level connective that instructs the interpreter to loadthe module M into memory and add all of the clauses in M to the current program. Thetactic Tac is applied in the new environment. Tac may be, for example, a new call to atop-level interactive loop. If execution continues after successful completion or failure ofthis tactic, the clauses of M will no longer be available unless explicitly added again. Sucha tactical may also be used to extend the de�nition of existing tactics. In particular, Mmay contain clauses with the same name as a tactic in the current environment. In thenew environment, the new clauses get attempted before the existing ones when this tacticis invoked.Using the data structures for goals that we have de�ned and the maptac program fortraversing goal structures, several general search strategies can be implemented as tactics.For example, the program below implements depth-�rst search.type app_lis_tac list tactic -> tactic.29

type dfs list tactic -> tactic.app_lis_tac (Tac::Rest) InGoal OutGoal :- Tac InGoal OutGoal.app_lis_tac (Tac::Rest) InGoal OutGoal :- app_lis_tac Rest InGoal OutGoal.dfs Tacs InGoal OutGoal :- app_lis_tac Tacs InGoal MidGoal,maptac (dfs Tacs) MidGoal OutGoal.Such a strategy may be useful in domains where depth-�rst search may be su�cient forproving various simple subproofs.Using this strategy, if all subgoals are reduced to tt, the top-level call to dfs terminateswith success. OutGoal will then be a compound goal structure containing only tt asits atomic subgoals. Otherwise depth-�rst search fails. Since the dfs tactic will eithercompletely solve the input goal or loop inde�nitely, the output goal will contain no usefulinformation. Alternatively, we could modify this tactic so that it applies as many tacticsfrom Tacs as possible until no more can be done, and then returns the un�nished subgoalsto be solved by the user in some other manner. This can be achieved by simply addingthe following clause to the end of the de�nition of app lis tac.app_lis_tac Tacs Goal Goal.It is straightforward to implement several other general search strategies within thisframework. For example breadth-�rst search, a complete search strategy, can be imple-mented. For an implementation of depth-�rst iterative deepening as de�ned by Korf [25],a variant of depth-�rst search that is also a complete search strategy, see Felty [10].7 A Tactic Theorem Prover for Natural DeductionWe have presented a general tactic interpreter with an interactive component as well asa set of primitive tactics for proof search in natural deduction. We can continue to buildon this structure adding new tactics and strategies for natural deduction. We illustratehere with a few simple examples. Depending on the logic or theory being implemented,a user will want to provide more sophisticated automation tactics specialized to thatlogic. For example, term rewriting tactics can be useful in logics that have a notion ofequality between terms. For more on how both general and speci�c rewriting tactics canbe implemented in this setting, see Felty [13].The following tactics implement an interactive loop and a simple tactic that repeatedlyapplies some of the introduction rules, respectively.type inter_nd form -> nprf -> goal -> o.type intros_tac tactic.inter_nd A P OutGoal :-inter (basic_io ndoutput readtac) (nil --> P # A) OutGoal.intros_tac (Gamma --> J) OutGoal :-repeat (orelse! and_i_tac (orelse! imp_i_tac(orelse! neg_i_tac forall_i_tac))) (Gamma --> J) OutGoal.30

We assume here that ndoutput is a procedure to print out the current list of assumptionsand formula to be proved in a natural deduction goal. To execute this interactive loop,the user provides a formula A, and after an interactive session, P will be instantiated tothe proof or partial proof and OutGoal will contain the subgoals that remain to be proved.In the same setting, we can build a complete proof checking tactic in one of many ways.For instance, we could use dfs with a list containing tactics for all of the inference rulesof natural deduction. If we use the speci�cation of tactics that is a direct modi�cationof the clauses in Figure 2 so that elimination as well as introduction rules are appliedin a backward direction, we obtain a tactic with the same operational behavior as theclauses in the �gure. Such a tactic would not be useful for theorem proving in general, butillustrates how the tactic setting provides a uniform framework for both theorem provingand proof checking.The following is a simple example session with the tactic theorem prover for naturaldeduction where the formula q(a) _ q(b) � 9xq(x) is proved. Notice that a bad attemptto prove this formula is backed out of before the right solution is found.?- inter_nd (((q a) or (q b)) imp (exists X\(q X))) Proof OutGoal.Assumptions:Conclusion:((q a) or (q b)) imp (exists X\(q X))Enter tactic: ?- imp_i_tac.Assumptions:1 (q a) or (q b)Conclusion:exists X\(q X)Enter tactic: ?- exists_i_tac.Assumptions:1 (q a) or (q b)Conclusion:q TEnter tactic: ?- or_e_tac 1.Assumptions:1 q a2 (q a) or (q b)Conclusion:q TEnter tactic: ?- close_tac 0.Assumptions: 31

1 q b2 (q a) or (q b)Conclusion:q aEnter tactic: ?- backup.Assumptions:1 q a2 (q a) or (q b)Conclusion:q TEnter tactic: ?- backup.Assumptions:1 (q a) or (q b)Conclusion:q TEnter tactic: ?- backup.Assumptions:1 (q a) or (q b)Conclusion:exists X\(q X)Enter tactic: ?- then (or_e_tac 1) (then exists_i_tac (close_tac 0)).Proof = (imp_i P\(or_e (q a) (q b) P (P1\(exists_i a P1)) (P2\(exists_i b P2)))OutGoal = (all P\((all P1\tt) && (all P2\tt))).The application of the exists i tac tactic introduces a logic variable T for the substitu-tion term. Then, when (close tac 0) is applied, T is instantiated to a, the proof branchis completed, and this uni�er is carried over to the second branch of the proof. Since thisbranch cannot be completed, the user backs the proof up to the point where it can becorrected. The �nal compound expression that completes the proof �rst applies or e taccausing the search to branch, and then applies exists i tac followed by (close tac 0)to each of the branches. Thus a new logic variable is introduced in each branch separately.The �rst is instantiated to a and the second to b, allowing the proof to be completed. ThusProof is instantiated to a complete proof, and OutGoal is a compound goal expressionwhose atomic subgoals are all instances of tt.32

8 Related WorkThe programming language ML is the metalanguage used in all of the other tactic theoremprovers mentioned earlier. There are several di�erences in the implementations of bothtactics and tacticals in these two languages. First, in ML, tactics are functions thattake a goal as input and return a list of subgoals, and in some cases (such as LCF) alsoreturn a validation. In contrast, tactics in �Prolog are relational, which is natural whenthe relation being modeled is \is a proof of." Although, as we noted earlier, the directspeci�cation of natural deduction in Figure 2 can only be used for proof checking, tacticscan be used for both theorem proving and proof checking. The functional aspects of MLdo not permit input and output distinctions to be blurred in this manner.As stated in Gordon et. al. [17], tacticals encourage the programming of valid tactics.In fact, as long as the tacticals are implemented correctly, all compound tactics built fromvalid tactics will also be valid. This fact holds for both the ML and logic programmingsettings.In LCF, the basic inference rules for a particular logic are implemented as functionstaking instances of the premises of the rule to an instance of the conclusion. The inputarguments are required to be theorems (type thm), and thus the result is also a theorem.When writing tactics for backward proof search, these functions are the building blocksused by the programmer to construct validations. The use of validations in tactics inthis way provides an extra level of security. The programmer has complete freedom towrite tactics without being concerned with their validity. After successful completion ofbackward search for the proof of a particular formula, the resulting validation must beexecuted. If invalid tactics were used, the validation will fail, and the formula will notbe added as a theorem. Of course the functions implementing the primitive rules in theforward direction must be sound. As long as this is the case, only formulas that are trulytheorems will be recorded as such.The ML notion of validations is replaced in our system by (potentially much larger andmore complex) proof objects. If we also give the programmer complete freedom to writetactics that construct such objects, we must insure that the terms constructed duringproof search correspond to actual proofs. To do so, we can simply use the core set oftactics implementing the basic inference rules for the purpose of proof checking. We neednot implement additional code for this task. We can even require that such a check isperformed before accepting a formula as a theorem. In contrast to ML, such security mustbe provided at the program level rather than by the type system. While in ML, it is thefunctions implementing the primitive rules in the forward direction that must be sound,here it is the basic set of tactics that must be implemented correctly. The declarativenature of tactics in the logic programming setting makes it straightforward to prove theirvalidity formally as was illustrated by Theorem 4.1.The implementation of the then tactical in �Prolog is quite di�erent from its MLcounterpart. The �Prolog implementation of then reveals its very simple nature: thenis very similar to the natural join of two relations. In ML, the then tactical applies the�rst tactic to the input goal and then maps the application of the second tactic over33

the list of intermediate subgoals. The full list of subgoals must be built as well as thecompound validation function from the results. These tasks can be quite complicated,requiring some auxiliary list processing functions. In �Prolog, the composition of tacticsis handled correctly by the sharing of logic variables between the two calls to tactics. Theanalogue of a list of subgoals is a nested && structure. These are processed by the clauseof maptac which handles &&. The maptac procedure is richer than the usual notion of amapping function in that, in addition to nested && structures, it handles all of the othergoal structures. The all goal structure, for example, provides a principled way in whichto descend through abstractions in formulas and proofs as illustrated by its uses in theprimitive tactics for natural deduction in Section 5.In the �Prolog implementation of then that we presented in Section 6, if the �rsttactic succeeds and the second fails, the logic programming interpreter will backtrack andtry to �nd a new way to successfully apply the �rst tactic, exhausting all possibilitiesbefore completely failing. For example, if there are several possible instantiations of thesubstitution term used to instantiate the existential quanti�er in exists i tac in Figure 3,they will all be attempted before failure occurs. As another example, if the �rst tacticis orelse applied to two arguments, all possible ways in which either of these argumentscan succeed will be examined before failure occurs. It is also possible to implement thenso that if the second tactic fails after a successful call to the �rst tactic, the full tactic stillfails. To do so requires the use of cut (!) after the �rst subgoal to restrict its backtrackingbehavior.Another di�erence in the ML and logic programming approaches is in the manipulationof quanti�ed formulas. In ML, �rst-order syntax is used and thus manipulating quanti�edformulas requires that the binding be separated from its body. In logic programming,we use higher-order syntax. We identify a term as a universal quanti�cation if it canbe uni�ed with the term (forall A). However, since terms in �Prolog represent ��-equivalence classes of �-terms, the programmer does not have access to bound variablenames. Although such a restriction may appear to limit access to the structure of �-terms,we have seen that sophisticated analysis of �-terms is still possible to perform using higher-order uni�cation and the universal quanti�er pi. In addition, there are certain advantagesto such a restriction. For example, in the case of applying substitutions, all the renamingof bound variables is handled by the metalanguage, freeing the programmer from suchconcerns. The programmer may �nd it desirable to have more control over the namesof variables in the printed form of a �-term. Current implementations do not allow this,although, whenever possible, names are generated based on the names given by the usereither in the original input or in program clauses, using a numbering scheme to avoidname clashes.In the �Prolog setting, we make use of logic variables for lazy determination of sub-stitution instances. The example in Section 7 illustrated how such variables can be usedso that substitution instances do not have to be given at the point where the substitutiontakes place.The Isabelle theorem prover [35] contains a speci�cation language based on a frag-ment of higher-order logic with implication and universal quanti�cation that is essentiallya subset of higher-order hereditary Harrop formulas. This language is used to specify34

inference rules for various object-logics. In fact, if we drop proofs from the speci�cationof natural deduction in Figure 2, the resulting speci�cation is similar to the one givenin [35]. In addition, all the object-logics we have speci�ed here could be very similarlyspeci�ed in Isabelle.The proof theory of the meta-logic of Isabelle is given in terms of natural deduction.In [35], a proof of correctness of the speci�cation of natural deduction as an object-logic isgiven, illustrating the correspondence between object-level proofs and meta-level naturaldeduction proofs. The existence of proofs in the meta-logic in the form described byTheorem 2.1 (uniform proofs) corresponds in [35] to the existence of expanded normalform proofs in natural deduction [39].In this paper, we have used the same metalanguage for speci�cation of inference rulesand for implementation of search. In Isabelle, ML is used to implement tacticals andspecify tactics. As a result, there is a more signi�cant di�erence operationally in the twoapproaches. It seems very likely that Isabelle could be rather directly implemented inside�Prolog. Although such an implementation might achieve the same functionality as iscurrently available in Isabelle, it is not likely to be nearly as e�cient. This is due partlyto the fact that a �Prolog implementation implements a general purpose programminglanguage. The development of more e�cient implementations of �Prolog is currentlyunderway [1, 32, 9]. Another approach is to modify �Prolog's depth-�rst interpreter touse a di�erent control strategy. For example, tacticals and interactive tactics could beimplemented at the level of the metalanguage. This approach to control is more like thatfound in Isabelle.Universal quanti�cation and implication are used in the same manner here and in Is-abelle to specify eigenvariable conditions and the discharge of assumptions. Operationally,although both systems are similar in their use of goal directed proof search, it is worthnoting that the mechanisms to handle these two constructs di�er. In �Prolog, eigenvari-ables are handled by the introduction of new constants by the GENERIC operation. Whenbackchaining on the clause for the 8-I rule of natural deduction, for example, the univer-sal quanti�er is \stripped o�" the goal and a new constant is introduced to replace thebound variable and allow us to descend through the �-abstraction in the formula. Thisconstant may appear in instances of clauses used in subsequent backchaining steps. Nei-ther backchaining nor the GENERIC operation are present in Isabelle. There, a techniquecalled lifting [35] is used. When applying the 8-I rule, the object-level universal quanti�-cation is replaced by a meta-level quanti�er exactly as in �Prolog, but this quanti�er isnot stripped o�. Instead, the form of clauses used in further proof steps is modi�ed totake into account the universal quanti�er in the goal. For example, to apply the following_-I rule:provable (A or B) :- provable A.Isabelle would �rst modify this formula to obtain the following formula.provable ((A X) or (B X)) :- pi X\ (provable (A X)).(Recall that there is implicit universal quanti�cation at the top level over the variables A,B, and the free occurrences of X.) Using this formula, a goal of the form pi X\(provable35

((A X) or (B X))) would be replaced by the subgoal pi X\(provable (A X)). A sim-ilar lifting operation is used to handle implication in goals. Although the mechanism isdi�erent, the behavior is quite similar to the use of AUGMENT in �Prolog.Both the theorem provers developed here and the Isabelle system adopt an intuition-istic logic with quanti�cation over the simply typed �-terms as a metalanguage for spec-ifying inference rules. Various forms of typed lambda calculi with dependent types havealso been proposed as speci�cation languages for representing a wide variety of logics.Examples include the AUTOMATH languages [5], type theories developed by Martin-L�of[26], the Logical Framework (LF) [21], LF+ [15], and the Calculus of Constructions [4]. In[11], we show that LF signatures can be encoded directly and naturally as formulas in thesubset of hohh that does not allow predicate quanti�cation. This encoding demonstratesa close correspondence between the two approaches. In addition, an encoded signaturecan serve as a set of tactics providing a direct implementation of a simple tactic theoremprover for the object-logic.Pfenning [36] adopts LF as the logical foundation of the higher-order logic program-ming language Elf. A non-deterministic interpreter can be described for Elf in much thesame way as for hohh by providing a small set of search operations which, in this case,give an operational interpretation to types. To implement this language, a more complexuni�cation procedure is required to handle dependent types [7]. Proof checkers and the-orem provers similar to those presented here can also be implemented in this language.In such implementations, the Elf interpreter will construct LF terms corresponding toobject-level proofs, and thus explicit proof terms need not be included in the programs.If proof terms other than those of the form constructed by the interpreter are desired, asis often the case, programs to transform proofs must be written. In many cases, partialcorrectness of such proof transformers (as well as many other programs) can be guaran-teed by Elf. The operational behavior of proof checking and theorem proving programsunder the two kinds of interpreters is also di�erent. In Elf, the type checker for dependenttypes can handle some of the work that must be performed by logic programming searchin the corresponding �Prolog programs.Although the programs in this paper make extensive use of many of the higher-orderfeatures of the metalanguage, such features are used in a fairly limited way. For example,quanti�cation over both functions and predicates has been restricted to types of order atmost 2. Operationally, the uni�cation problems that arise in executing these programsare all fairly simple. In fact, with minor modi�cation, most of the programs presentedhere fall within the L� sublanguage of hohh described by Miller [27]. The most signi�-cant modi�cation required is to eliminate uses of application of terms at the meta-levelto perform object-level substitution such as those found in the speci�cation of the 9-Iand 8-E rules of natural deduction. Instead, an explicit implementation of substitutionas described in [27] must be used. In this language, quanti�cation over predicates is notallowed and quanti�cation over function variables is greatly restricted. As a result, uni-�cation for this language is very simple; it is decidable and most general uni�ers alwaysexist. An e�cient implementation of L� should contribute signi�cantly to the e�ciencyof our programs.In this paper we have shown how various features and techniques of higher-order36

logic programming are useful for the speci�c task of manipulating formulas and proofs.�Prolog and related metalanguages have also been successfully applied to several othermeta-programming tasks. Other applications that have been explored include programmanipulation [20], natural language processing [34], and generalization [6, 19].AcknowledgementsThe author would like to thank Robert Constable, Elsa Gunter, John Hannan, Dale Miller,and Frank Pfenning for valuable discussions and comments, as well as the anonymousreviewers for many very helpful suggestions. This research was supported in part bygrants ARO-DAA29-84-9-0027, ONR N00014-88-K-0633, NSF CCR-87-05596, DARPAN00014-85-K-0018, and ESPRIT Basic Research Action 3245.References[1] Pascal Brisset and Olivier Ridoux. The architecture of an implementation of �Prolog:Prolog/mali. In Dale Miller, editor, Proceedings of the Workshop on the �PrologProgramming Language, August 1992. University of Pennsylvania, Technical ReportMS-CIS-92-86.[2] Alonzo Church. A formulation of the simple theory of types. Journal of SymbolicLogic, 5:56{68, 1940.[3] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof Devel-opment System. Prentice-Hall, 1986.[4] Thierry Coquand and G�erard Huet. The calculus of constructions. Information andComputation, 76(2/3):95{120, February/March 1988.[5] N.G. deBruijn. A survey of the project AUTOMATH. In To H. B. Curry: Essaysin Combinatory Logic, Lambda Calculus, and Formalism, pages 579{606. AcademicPress, 1980.[6] Scott Dietzen and Frank Pfenning. Higher-order and modal logic as a framework forexplanation-based generalization. In Alberto Maria Segre, editor, Sixth InternationalWorkshop on Machine Learning, pages 447{449. Morgan Kaufmann, 1989.[7] Conal Elliott. Higher-order uni�cation with dependent types. In Rewriting Tech-niques and Applications, pages 121{136. Springer-Verlag Lecture Notes in ComputerScience, April 1989.[8] Conal Elliott and Frank Pfenning. eLP, a Common Lisp Implementation of �Prolog.Feb 1990. 37

[9] Conal Elliott and Frank Pfenning. A semi-functional implementation of a higher-order logic programming language. In Peter Lee, editor, Topics in Advanced LanguageImplementation, pages 289{325. MIT Press, 1991.[10] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order LogicProgramming Language. PhD thesis, University of Pennsylvania, Technical ReportMS-CIS-89-53, August 1989.[11] Amy Felty. Encoding dependent types in an intuitionistic logic. In G�erard Huet andGordon Plotkin, editors, Logical Frameworks, pages 215{251. Cambridge UniversityPress, 1991.[12] Amy Felty. A logic program for transforming sequent proofs to natural deductionproofs. In Peter Schroeder-Heister, editor, Proceedings of the First InternationalWorkshop on Extensions of Logic Programming, pages 157{178. Springer-Verlag Lec-ture Notes in Arti�cial Intelligence, 1991.[13] Amy Felty. A logic programming approach to implementing higher-order term rewrit-ing. In Lars-Henrik Eriksson, Lars Halln�as, and Peter Schroeder-Heister, editors, Pro-ceedings of the Second International Workshop on Extensions of Logic Programming,pages 135{161. Springer-Verlag Lecture Notes in Arti�cial Intelligence, 1992.[14] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic pro-gramming language. In Ninth International Conference on Automated Deduction,pages 61{80. Springer-Verlag Lecture Notes in Computer Science, May 1988.[15] Philippa Gardner. Representing Logics in Type Theory. PhD thesis, University ofEdinburgh, Technical Report CST-93-92, July 1992.[16] Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo, editor,The Collected Papers of Gerhard Gentzen, pages 68{131. North-Holland PublishingCo., Amsterdam, 1969.[17] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. EdinburghLCF: A Mechanised Logic of Computation, volume 78 of Lecture Notes in ComputerScience. Springer-Verlag, 1979.[18] Mike Gordon. HOL: A machine oriented formulation of higher-order logic. TechnicalReport 68, University of Cambridge, July 1985.[19] Masami Hagiya. Programming by example and proving by example using higher-order uni�cation. In Tenth International Conference on Automated Deduction, pages588{602. Springer-Verlag Lecture Notes in Arti�cial Intelligence, July 1990.[20] John Hannan and Dale Miller. A meta language for functional programs. InH. Abramson and M. Rogers, editors, Meta Programming in Logic Programming,chapter 24, pages 453{476. MIT Press, 1989.38

[21] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics.Journal of the ACM, 40(1):143{184, January 1993.[22] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic andLambda Calculus. Cambridge University Press, 1986.[23] William A. Howard. The formulae-as-type notion of construction, 1969. In To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, pages479{490. Academic Press, 1980.[24] G�erard Huet. A uni�cation algorithm for typed �-calculus. Theoretical ComputerScience, 1:27{57, 1975.[25] Richard E. Korf. Depth-�rst iterative-deepening: An optimal admissible tree search.Arti�cial Intelligence, 27:97{109, 1985.[26] Per Martin-L�of. Intuitionistic Type Theory. Studies in Proof Theory Lecture Notes.BIBLIOPOLIS, Napoli, 1984.[27] Dale Miller. A logic programming language with lambda-abstraction, function vari-ables, and simple uni�cation. Journal of Logic and Computation, 1(4):497{536, 1991.[28] Dale Miller. Uni�cation under a mixed pre�x. Journal of Symbolic Computation,14:321{358, 1992.[29] Dale Miller and Gopalan Nadathur. A logic programming approach to manipulatingformulas and programs. In IEEE Symposium on Logic Programming, pages 379{388,September 1987.[30] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofsas a foundation for logic programming. Annals of Pure and Applied Logic, 51:125{157,1991.[31] Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic Programming. PhDthesis, University of Pennsylvania, Technical Report MS-CIS-87-48, June 1987.[32] Gopalan Nadathur and Bharat Jayaraman. Towards a WAM model for �Prolog. InEwing Lusk and Ross Overbeek, editors, Proceedings of the North American Confer-ence on Logic Programming, pages 1180{1198, October 1989.[33] Gopalan Nadathur and Dale Miller. Higher-order horn clauses. Journal of the ACM,37(4):777{814, October 1990.[34] Remo Pareschi and Dale Miller. Extending de�nite clause grammars with scopingconstructs. In D. H. D. Warren and P. Szeredi, editors, International Conference inLogic Programming, pages 373{389. MIT Press, June 1990.[35] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal ofAutomated Reasoning, 5(3):363{397, 1989.39

[36] Frank Pfenning. Logic programming in the LF logical framework. In G�erard Huet andGordon Plotkin, editors, Logical Frameworks, pages 149{181. Cambridge UniversityPress, 1991.[37] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceedings of theACM-SIGPLAN Conference on Programming Language Design and Implementation,pages 199{208, 1988.[38] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.[39] Dag Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Proceedingsof the Second Scandinavian Logic Symposium, volume 63 of Studies in Logic and theFoundations of Mathematics, pages 235{307. North-Holland, 1971.[40] Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Programming Tech-niques. MIT Press, Cambridge MA, 1986.

40

