
Lightweight Lemmas in �Prolog 1Andrew W. AppelBell Labs and Princeton Universityappel@princeton.eduAmy P. FeltyBell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974, USAfelty@research.bell-labs.comAbstract�Prolog is known to be well-suited for expressing and implementing logics and in-ference systems. We show that lemmas and de�nitions in such logics can be imple-mented with a great economy of expression. We encode a polymorphic higher-orderlogic using the ML-style polymorphism of �Prolog. The terms of the metalanguage(�Prolog) can be used to express the statement of a lemma, and metalanguagetype-checking can directly type-check the lemma. But to allow polymorphic lem-mas requires either more general polymorphism at the meta-level or a less conciseencoding of the object logic. We discuss both the Terzo and Teyjus implementationsof �Prolog as well as related systems such as Elf.1 IntroductionIt has long been the goal of mathematicians to minimize the set of assump-tions and axioms in their systems. Implementers of theorem provers use thisprinciple: they use a logic with as few inference rules as possible, and provelemmas outside the core logic in preference to adding new inference rules.In applications of logic to computer security { such as proof-carrying code[12] and distributed authentication frameworks [1] { the implementation ofthe core logic is inside the trusted code base (TCB), while proofs need notbe in the TCB because they can be checked.Two aspects of the core logic are in the TCB: a set of logical connectivesand inference rules, and a program in some underlying programming lan-guage that implements proof checking { that is, interpreting the inferencerules and matching them against a theorem and its proof.De�nitions and lemmas are essential in constructing proofs of reasonablesize and clarity. A proof system should have machinery for checking lemmas,and applying lemmas and de�nitions, in the checking of proofs. This ma-chinery also is within the TCB. Many theorem-provers support de�nitionsand lemmas and provide a variety of advanced features designed to help withtasks such as organizing de�nitions and lemmas into libraries, keeping trackof dependencies, and providing modularization; in our work we are partic-1In Proceedings of the 1999 International Conference on Logic Programming, November1999.



ularly concerned with separating that part of the machinery necessary forproof checking (i.e., in the TCB) from the programming-environment sup-port that is used in proof development. In this paper we will demonstrate ade�nition/lemma implementation that is about two dozen lines of code.The �Prolog language [8] has several features that allow concise and cleanimplementation of logics, proof checkers, and theorem provers [4]. We use�Prolog, but many of our ideas should also be applicable in logical frame-works such as Elf/Twelf [14, 17]. An important purpose of this paper isto show which language features allow a small TCB and e�cient represen-tation of proofs. We will discuss higher-order abstract syntax, dynamicallyconstructed clauses, dynamically constructed goals, meta-level formulas asterms, and prenex and non-prenex polymorphism.2 A core logicThe clauses we present use the syntax of the Terzo implementation of�Prolog [20]. �Prolog is a higher-order logic programming language whichextends Prolog in essentially two ways. First, it replaces �rst-order termswith the more expressive simply-typed �-terms; �Prolog implementationsgenerally extend simple types to include ML-style prenex polymorphism[3, 9], which we use in our implementation. Second, it permits implicationand universal quanti�cation (over objects of any type) in goal formulas.We introduce types and constants using kind and type declarations, re-spectively. Capital letters in type declarations denote type variables andare used in polymorphic types. In program goals and clauses, �-abstractionis written using backslash \ as an in�x operator. Capitalized tokens notbound by �-abstraction denote free variables. All other unbound tokens de-note constants. Universal quanti�cation is written using the constant pi inconjunction with a �-abstraction (e.g., pi X\ represents universal quanti�-cation over variable X). The symbols comma and => represent conjunctionand implication. The symbol :- denotes the converse of => and is used towrite the top-level implication in clauses. The type o is the type of clausesand goals of �Prolog. We usually omit universal quanti�ers at the top levelin de�nite clauses, and assume implicit quanti�cation over all free variables.We will use a running example based on a sequent calculus for a higher-order logic. We call this the object logic to distinguish it from the metalogicimplemented by �Prolog. We implement a proof checker for this logic thatis similar to the one desribed by Felty [4]. We introduce two primitive types:form for object-level formulas and pf for proofs in the object logic. Weintroduce constants for the object-level connectives, such as and and imp oftype form! form! form, and forall of type (A! form)! form. We alsohave eq of type A! A! form to represent equality at any type. We use in�xnotation for the binary connectives. The constant forall takes a functionalargument, and thus object-level binding of variables by quanti�ers is de�nedin terms of meta-level �-abstraction. This use of higher-order data structures



initial proves A :- assume A.(imp_r Q) proves (A imp B) :- (assume A) => (Q proves B).(and_l A B Q) proves C :-assume (A and B), (assume A) => (assume B) => (Q proves C).(forall_r Q) proves (forall A) :- pi y\ ((Q y) proves (A y)).(cut Q1 Q2 A) proves C :-Q1 proves A, (assume A) => (Q2 proves C).(congr X Z H Q P) proves (H X) :-Q proves (eq X Z), P proves (H Z).refl proves (eq X X).Program 1: Some type declarations and inference rules of the object logic.is called higher-order abstract syntax [16]; with it, we don't need to describethe mechanics of substitution explicitly in the object logic [4]. Program 1shows �Prolog clauses for some of the inference rules. The following twodeclarations illustrate the types of proof constructors.type forall_r (A! pf)! pf.type congr A! A! (A! form)! pf! pf! pf.To implement assumptions (that is, formulas to the left of the sequentarrow) we use implication. The goal A => B adds clause A to the �Prologclause database, evaluates B, and then (upon either the success or fail-ure of B) removes A from the clause database. It is a dynamically scopedversion of Prolog's assert and retract. For example, suppose we use(imp_r initial) to prove ((eq x y) imp (eq x y)); then �Prolog willexecute the (instantiated) body of the imp_r clause:(assume (eq x y)) => (initial proves (eq x y))This adds (assume (eq x y)) to the database; then the subgoalinitial proves (eq x y)generates a subgoal (assume (eq x y)) which matches our dynamicallyadded clause.We have used �Prolog's ML-style prenex polymorphism to reduce thenumber of inference rules in the TCB. Instead of a di�erent forall con-structor at each type { and a corresponding pair of inference rules { we havea single polymorphic forall constructor. Our full core logic (not shown inthis paper) uses a base type exp of machine integers, and a type exp! exp offunctions, so if we desire quanti�cation both at expressions and at predicates(let alone functions at several types) we have already saved one constructorand two inference rules.We have also used polymorphism to de�ne a general congruence rule onthe eq operator, from which many other desirable facts (transitivity andsymmetry of equality, congruence at speci�c functions) may be proved aslemmas.Theorem 1 shows the use of our core logic to check a simple proof.It is important to show that our encoding of higher-order logic in �Prologis adequate. To do so, we must show that a formula has a sequent proof if andonly if its representation as a term of type form has a proof term that can



(forall_r I\ forall_r J\ forall_r K\(imp_r (and_l (eq J I) (eq J K)(congr I J (X\ (eq X K))(congr J I (eq I) initial refl) initial))))proves(forall I\ forall J\ forall K\ (eq J I and eq J K) imp eq I K).Theorem 1. 8I 8J 8K (J = I ^ J = K)! I = K.type lemma (A! o)! A! (A! pf)! pf.(lemma Inference Proof Rest) proves C :-pi Name\ (valid_clause (Inference Name),Inference Proof,(Inference Name) => ((Rest Name) proves C)).Program 2: The lemma proof constructor.be checked using the inference rules of Program 1. Proving such a theoremshould be straightforward. In particular, since we have encoded our logicusing prenex polymorphism, we can expand out instantiated copies of all ofthe polymorphic expressions in terms of type pf; the expanded proof termswill then map directly to sequent proof trees. Although we do not discussit, it should be easy to extend such an adequacy proof to account for theextensions to this core logic that we discuss in the rest of the paper.3 LemmasIn mathematics the use of lemmas can make a proof more readable by struc-turing the proof, especially when the lemma corresponds to some intuitiveproperty. For automated proof checking (in contrast to automated or tra-ditional theorem proving) this use of lemmas is not essential, because thecomputer doesn't need to understand the proof in order to check it. Butlemmas can also reduce the size of a proof (and therefore the time requiredfor proof checking): when a lemma is used multiple times it acts as a kindof \subroutine." This is particularly important in applications like proof-carrying code where proofs are transmitted over networks to clients whocheck them.The heart of our lemma mechanism is the clause shown in Program 2.The proof constructor lemma takes three arguments: (1) a derived inferencerule Inference (of type A! o) parameterized by a proof constructor (oftype A), (2) a term of type A representing a proof of the lemma built fromcore-logic proof constructors (or using other lemmas), and (3) a proof of themain theorem C that is parameterized by a proof constructor (of type A).For example, we can prove a lemma about the symmetry of equality; theproof uses congruence and reexivity of equality:pi A\ pi B\ pi P\ (P proves (eq B A) =>((congr B A (eq A) P refl) proves (eq A B))).This theorem can be checked as a successful �Prolog query to our proof



(lemma(Symmx\ pi A\ pi B\ pi P\(Symmx A B P) proves (eq A B) :- P proves (eq B A))(A\B\P\(congr B A (eq A) P refl))(symmx\ (forall_r I\ forall_r J\ imp_r (symmx J I initial))))proves (forall I\ forall J\ eq I J imp eq J I).Theorem 2. 8I 8J (I = J ! J = I).checker: for an arbitrary P, add (P proves (eq B A)) to the logic, thencheck the proof of congruence using this fact. The syntax F => G meansexactly the same as G :- F , so we could just as well write this query as:pi A\ pi B\ pi P\ ((congr B A (eq A) P refl) proves (eq A B) :-P proves (eq B A)).Now, suppose we abstract the proof (roughly, congr B A (eq A) P refl)from this query:(Inference = (PCon\ pi A\ pi B\ pi P\(PCon A B P) proves (eq A B) :- P proves (eq B A)),Proof = (A\B\P\ congr B A (eq A) P refl),Query = (Inference Proof),Query)The solution of this query proceeds in four steps: the variable Inferenceis uni�ed with a �-term; Proof is uni�ed with a �-term; Query is uni�edwith the application of Inference to Proof (which is a term �-equivalent tothe query of the previous paragraph), and �nally Query is solved as a goal(checking the proof of the lemma).Once we know that the lemma is valid, we make a new �Prolog atomsymmx to stand for its proof, and we prove some other theorem in a contextwhere the clause (Inference symmx) is in the clause database; rememberthat (Inference symmx) is �-equivalent topi A\ pi B\ pi P\ (symmx A B P proves eq A B :- P proves eq B A).This looks remarkably like an inference rule! With this clause in the database,we can use the new proof constructor symmx just as if it were primitive.To \make a new atom" we simply pi-bind it. This leads to the recipefor lemmas shown in Program 2 above: �rst execute (Inference Proof) asa query, to check the proof of the lemma itself; then pi-bind Name, and runRest (which is parameterized on the lemma proof constructor) applied toName. Theorem 2 illustrates the use of the symmx lemma. The symmx proofconstructor is a bit unwieldy, since it requires A and B as arguments. Wecan imagine writing a primitive inference rule(symm P) proves (eq A B) :- P proves (eq B A).using the principle that the proof checker doesn't need to be told A and B,since they can be found in the formula to be proved.Therefore we add three new proof constructors { elam, extract, andextractGoal { as shown in Program 3. These can be used in the followingstereotyped way to extract components of the formula to be proved. Firstbind variables with elam, then match the target formula with extract. The-



type elam (A! pf)! pf.type extract form! pf! pf.type extractGoal o! pf! pf.(elam Q) proves B :- (Q A) proves B.(extract B P) proves B :- P proves B.(extractGoal G P) proves B :- valid_clause G, G, P proves B.Program 3: Proof constructors for implicit arguments of lemmas.(lemma(Symm\ pi A\ pi B\ pi P\(Symm P) proves (eq A B) :- P proves (eq B A))(P\ elam A\ elam B\ extract (eq A B) (congr B A (eq A) P refl))(symm\ (forall_r I\ forall_r J\ imp_r (symm initial))))proves (forall I\ forall J\ eq I J imp eq J I).Theorem 3. 8I 8J (I = J ! J = I).orem 3 is a modi�cation of Theorem 2 that makes use of these constructors.The extractGoal asks the checker to run �Prolog code to help constructthe proof. Of course, if we want proof checking to be �nite we must re-strict what kinds of �Prolog code can be run, and this is accomplished byvalid_clause (see below). The proof of lemma def_l in Section 4 is anexample of extractGoal.Of course, we can use one lemma in the proof of another.Since the type of (Inference Proof) is o, the lemma Inference mightconceivably contain any �Prolog clause at all, including those that do in-put/output. Such �Prolog code cannot lead to unsoundness { if the resultingproof checks, it is still valid. But there are some contexts where we wish torestrict the kind of program that can be run inside a proof. For example, ina proof-carrying-code system, the code consumer might not want the proofto execute �Prolog code that accesses private local resources.To limit the kind and amount of execution possible in the executable partof a lemma, we introduce the valid_clause predicate of type o! o (Pro-gram 4). A clause is valid if contains pi, comma, :-, =>, proves, assume,and nothing else. Of course, a proves clause contains subexpressions oftype pf and form, and an assume clause has a subexpression of type form,so all the connectives in proofs and formulas are also permitted. Absentvalid_clause (pi C) :- pi X\ valid_clause (C X).valid_clause (A,B) :- valid_clause A, valid_clause B.valid_clause (A :- B) :- valid_clause A, valid_clause B.valid_clause (A => B) :- valid_clause A, valid_clause B.valid_clause (P proves A).valid_clause (assume A).Program 4: Valid clauses.



from this list are �Prolog input/output (such as print) and the semicolon(backtracking search).In principle, we do not need lemmas at all. Instead of the symmetrylemma, we can prove (forall A\ forall B\ (eq B A imp eq A B)) andthen cut it into the proof of a theorem using the ordinary cut of sequentcalculus. To make use of the fact requires two forall_l's and an imp_l.This approach adds undesirable complexity to proofs.4 De�nitionsDe�nitions are another important mechanism for structuring proofs to in-crease clarity and reduce size. If some property (of a base-type object, orof a higher-order object such as a predicate) can be expressed as a logicalformula, then we can make an abbreviation to stand for that formula.For example, we can express the fact that f is an associative function bythe formula 8X 8Y 8Z f X (f Y Z) = f (f X Y )Z. Putting this formula in�Prolog notation and abstracting over f , we get the predicate:F\ forall X\ forall Y\ forall Z\ eq (F X (F Y Z)) (F (F X Y) Z)A de�nition is just an association of some name with this predicate:eq associative(F\ forall X\ forall Y\ forall Z\ eq (F X (F Y Z)) (F (F X Y) Z))To use de�nitions in proofs we introduce three new proof rules: (1) defineto bind a �-term to a name, (2) def r to replace a formula on the right ofa sequent arrow with the de�nition that stands for it (or viewed in terms ofbackward sequent proof, to replace a de�ned name with the term it standsfor), and (3) def l to expand a de�nition on the left of a sequent arrowduring backward proof. All three of these proof constructors are just lemmasprovable in our system using congruence of equality, as Program 5 shows.To check a proof (define Formula (Name\ (RestProof Name))) thesystem interprets the pi D within the define lemma to create a new atom Dto stand for the Name. It then adds (assume(eq D Formula)) to the clausedatabase. Finally it substitutes D for Name within RestProof and checks theresulting proof. If there are occurrences of (def_r D) or (def_l D) within(RestProof D) then they will match the newly added clause.To check that (def_r associative (A\ A f) P) is a proof of the for-mula (associative f) the prover checks that (A\ A f)(associative)matches (associative f) and that (assume (eq associative Body)) isin the assumptions for some formula, predicate, or function Body. Then itapplies (A\ A f) to Body, obtaining the subgoal (Body f), of which P isrequired to be a proof.To check that (def_l associative (A\ A f) P) proves some formulaD, the checker �rst reduces (A\ A f)(associative) to associative f, andchecks that (assume (associative f)) is among the assumptions in the�Prolog database. Then it veri�es that (assume (eq associative Body))is in the assumption database for some Body. Finally the checker introduces



(lemma (Define\ pi F\ pi P\ pi B\((Define F P) proves B :-pi D\ (assume (eq d F) => (P D) proves B)))(F\P\ (cut refl (P F) (eq F F)))define\(lemma (Def_r\ pi Name\ pi B\ pi F\ pi P\((Def_r Name B P) proves (B Name) :-assume (eq Name F), P proves (B F)))(Name\B\P\ elam F\ (extract (B Name)(extractGoal (assume (eq Name F))(congr Name F B initial P))))def_r\(lemma (Def_l\ pi Name\ pi B\ pi D\ pi F\ pi Q\((Def_l Name B Q) proves D :- assume (B Name),assume (eq Name F), (assume (B F) => Q proves D)))(Name\B\Q\ elam F\ (extractGoal (assume (eq Name F))(cut (congr F Name B (symm initial) initial) Q (B F))))def_l\ ... Program 5: Machinery for de�nitions.(assume (Body f)) into the assumptions and veri�es that, under that as-sumption, Q proves D.5 Dynamically constructed clauses and goalsOur technique allows lemmas and de�nitions to be contained within theproof. We do not need to install new \global" lemmas and de�nitions intothe proof checker. The dynamic scoping also means that the lemmas of oneproof cannot interfere with the lemmas of another, even if they have thesame names. This machinery uses several interesting features of �Prolog:Metalevel formulas as terms. As we have seen, the symm lemma(Symm\ pi A\ pi B\ pi P\ (Symm P) proves eq A B :- P proves eq B A)occurs inside the proofs as an argument to the lemma constructor and so isjust a data structure (parameterized by Symm); it does not \execute" any-thing, in spite of the fact that it contains the �Prolog connectives :- andpi. This gives us the freedom to write lemmas using the same syntax as weuse for writing primitive inference rules.Dynamically constructed goals. When the clause from Program 2 forthe lemma proof constructor checks the validity of a lemma by executingthe goal (Inference Proof), we are executing a goal that is built from arun-time-constructed data structure. Inference will be instantiated withterms such as the one above representing the symm lemma. It is only whensuch a term is applied to its proof and thus appears in \goal position" thatit becomes the current subgoal on the execution stack.



(lemma Inference Proof Rest) proves C :-pi Name\ (valid_clause (Inference Name),Inference Proof,cl (Inference Name) => ((Rest Name) proves C)).P proves A :- cl Cl, backchain (P proves A) Cl.backchain G G.backchain G (pi D) :- backchain G (D X).backchain G (A,B) :- backchain G A; backchain G B.backchain G (H <<== G1) :- backchain G H, G1.backchain G (G1 ==>> H) :- backchain G H, G1.(D ==>> G) :- (cl D) => G.(G <<== D) :- (cl D) => G.Program 6: An interpreter for dynamic clauses.Dynamically constructed clauses. When, having successfully checkedthe proof of a lemma, the lemma clause executes(Inference Name) => ((Rest Name) proves C))it is adding a dynamically constructed clause to the �Prolog database.The Teyjus system does not allow => or :- to appear in arguments ofpredicates. It also does not allow variables to appear at the head of theleft of an implication. These restrictions come from the theory underlying�Prolog [7]; without this restriction, a runtime check is needed to insure thatevery dynamically created goal is an acceptable one. We now show that it ispossible to relax the requirements on dynamically constructed clauses andgoals to accommodate Teyjus's restrictions.We can avoid putting :- inside arguments of predicates by writing thelemma as(Symm\ pi A\ pi B\ pi P\(Symm P) proves (eq A B) <<== P proves (eq B A))where <<== is a new in�x operator of type o! o But this, in turn, meansthat the clause for checking lemmas cannot add (Inference Name) as a newclause, since <<== has no operational meaning. Instead, Program 6 containsa modifed lemma clause that adds the clause (cl (Inference Name)) wherecl is a new atomic predicate of type o! o. The rest of Program 6 imple-ments an interpreter to handle clauses of the form (cl A) and goals of theform (A <== B) and (A ==>> B). The use of cl is the only modi�cationto the lemma clause. The new clause for the proves predicate is used forchecking nodes in a proof representing lemma applications and illustrates theuse of the new atomic clauses. The (cl Cl) subgoal looks up the lemmasthat have been added one at a time and tries them out via the backchainpredicate. This predicate processes the clauses in a manner similar to the�Prolog language itself. The remaining two clauses are needed in both check-ing lemmas and in checking the rest of the proof for interpreting the newimplication operators when they occur at the top level of a goal.



(lemma (Symm\ pi A\ pi B\ pi P\(Symm P) proves (eq A B) :- P proves (eq B A))(P\ elam A\ elam B\(extract (eq A B) (congr B A (eq A) P refl)))(symm\ (forall_r f\ forall_r g\ forall_r x\(imp_r (imp_r (and_r (symm initial) (symm initial)))))))proves (forall f\ forall g\ forall x\(eq f g) imp (eq (f x) x) imp ((eq g f) and (eq x (f x)))).Theorem 6. 8f; g; x:f = g ! f(x) = x! (g = f ^ x = f(x)).Handling new constants for :- and => is easy enough operationally. How-ever, it is an inconvenience for the user, who must use di�erent syntax inlemmas than in inference rules.6 Meta-level typesIn the encoding we have presented, ML-style prenex polymorphism is used inthe forall_r and congr rules of Program 1 and in implementing lemmas asshown in Program 2. We now discuss the limitations of prenex polymorphismfor implementing lemmas which are themselves polymorphic; and we discussways to overcome these limitations both at the meta-level and at the objectlevel. The symm lemma is naturally polymorphic: it should express the ideathat a = 3 ! 3 = a (at type int) just as well as f = �x:3 ! (�x:3) = f(at type int! int). But Theorem 6, which uses symm at two di�erent types,fails to type-check in our implementation. When the �Prolog type-checker�rst encounters symm as a �-bound variable, it creates an uninstantiated typemetavariable to hold its type. The �rst use of symm uni�es this metavariabletype variable with the type T of x, and then the use of symm at type T! Tfails to match. Prohibiting �-bound variables from being polymorphic is theessence of prenex polymorphism. On the other hand, the proof of Theorem3 type-checks because symm is used at only one type.We can generalize the prenex polymorphism of the metalanguage by re-moving the restriction that all type variables are bound at the outermostlevel and allow such binding to occur anywhere in a type, to obtain thesecond-order �-calculus. We start by making the bindings clear in our cur-rent version by annotating terms with fully explicit bindings and quanti�ca-tion. The result will not be �Prolog code, as type quanti�cation and typebinding are not supported in that language. So we will use the standard�Prolog pi and \ to quantify and abstract term variables; but we'll use �and � to quantify and abstract type variables, and use italics for typearguments and other nonstandard constructs.type congr �T. T ! T ! (T ! form)! pf! pf! pf.type forall_r �T. (T ! pf)! pf.�T. pi X: T \ pi Z: T \ pi H: T ! form\ pi Q: pf\ pi P: pf\(congr T X Z H Q P) proves (H X) :-Q proves (eq T X Z), P proves (H Z).



type lemma �T. (T ! o)! T ! (T ! pf)! pf.(lemma T Inference Proof Rest) proves C :-pi Name:T\ (valid_clause (Inference Name),Inference Proof,(Inference Name) => ((Rest Name) proves C)).(lemma T(Symm: �T. pf! pf \  here!�T. pi A:T\ pi B:T\ pi P:pf\(Symm T P) proves (eq T A B) :- P proves (eq T B A))(�T. P:pf\ elam A:T\ elam B:T\(extract (eq T A B) (congr T B A (eq T A) P refl)))(symm\ (forall_r I:int\ forall_r J:int\(imp_r (symm int initial)))))proves (forall I\ forall J\ (eq int I J) imp (eq int J I)).Figure 7: Explicitly typed version of Theorem 3.�T. pi A: T ! form\ pi Q: T ! pf\(forall_r T Q) proves (forall T A) :- pi Y:T \ (Q Y proves A Y).Every type quanti�er is at the outermost level of its clause; the ML-styleprenex polymorphism of �Prolog can typecheck this program. However, werun into trouble when we try to write a polymorphic lemma. The lemmaitself is prenex polymorphic, but the lemma de�ner is not.Figure 7 is pseudo-�Prolog in which type quanti�ers and type bindingsare shown explicitly. The line marked here contains a �-term, �Symm.body, inwhich the type of Symm is �T.pf! pf. Requiring a function argument to bepolymorphic is an example of non-prenex polymorphism, which is permittedin second-order �-calculus but not in an ML-style type system.Polymorphic de�nitions (using define) run into the same problems andalso require non-prenex polymorphism. Thus prenex polymorphism is su�-cient for polymorphic inference rules; non-prenex polymorphism is necessaryto directly extend the encoding of our logic to allow polymorphic lemmas, al-though one can scrape by with monomorphic lemmas by always duplicatingeach lemma at several di�erent types within the same proof.There are also several ways to encode our polymorphic logic and allow forpolymorphic lemmas without changing the metalanguage. One possibility isto encode object-level types as meta-level terms. The following encoding ofthe congr rule illustrates this approach.kind tp type.kind tm type.type arrow tp! tp! tp.type form tp.type eq tp! tm! tm! tm.type congr tp! pf! pf! (A! tm)! A! A! pf.congr T Q P H X Z proves H X :-typecheck X T, typecheck Z T, Q proves (eq T X Z), P proves H Z.



This encoding also requires the addition of explicit app and abs constructors,primitive rules for �- and �-reduction, and typechecking clauses for termsof types exp and form, but not pf. To illustrate, the new constructors andcorresponding type checking clauses are given below.type app tp ! tm ! tm ! tm.type lam (tm ! tm) ! tm.typecheck (app T1 F X) T2 :-typecheck F (arrow T1 T2), typecheck X T1.typecheck (lam F) (arrow T1 T2) :-pi X\ (typecheck X T1 => typecheck (F X) T2).This encoding loses some economy of expression because of the extra con-structors needed for the encoding, and requires a limited amount of type-checking, though not as much as would be required in an untyped framework.For instance, in addition to typechecking subgoals such as the ones in thecongr rule, it must also be veri�ed that all the terms in a particular se-quent to be proved have type form. In this encoding, polymorphism at themeta-level is no longer used to encode formulas, although it is still used forthe lemma constructor. Lemma polymorphism can also be removed by usingan application constructor at the level of proofs, though this would requireadding typechecking for proofs also.Another alternative is to use an encoding similar to one by Harper etal. [5] (for a non-polymorphic higher-order logic) in a metalanguage suchas Elf/Twelf [14, 17]. The extra expressiveness of dependent types allowsobject-level types to be expressed more directly as meta-level types, elimi-nating the need for any typechecking clauses. This encoding still requires ex-plicit constructors for app and abs as well as primitive rules for ��-reduction.The following Twelf clauses, corresponding to �Prolog clauses above, illus-trate the use of dependent types for this kind of encoding.tp : type.tm : tp! type.form : tp.pf : tm form! type.arrow : tp! tp! tp.eq : {T:tp}tm T! tm T! tm form.congr : {T:tp}{X:tm T}{Z:tm T}{H:tm T! tm form}pf (eq T X Z)! pf (H Z)! pf (H X).Elf [14] and Twelf [17] are both implementations of LF [5], the Edinburghlogical framework. Elf 1.5 has full (nonprenex) statically checked polymor-phism with explicit type quanti�cation and explicit type binding, which wehave used to implement polymorphic lemmas approximately as shown in Fig-ure 7. But polymorphism in Elf 1.5 is undocumented and discouraged [15],so we recommend the above encoding instead. Twelf is the successor to Elf.Like Elf, it has higher-order data structures with a static type system, butTwelf is monomorphic. Thus, the above encoding is the only possibility.Both of the above �Prolog and Twelf encodings look promising as a basisfor a proof system with polymorphic lemmas [2].



7 Other issuesAlthough we are focusing on the interaction of the meta-level type systemwith the object-logic lemma system, are other aspects of metalanguage im-plementation are also relevant to our needs for proof generation and checking.Type abbreviations In the domain of proof-carrying code, we encodetypes as predicates which themselves take predicates as arguments. Forexample, our program has declarations like this one:type hastype (exp! form)! (exp! exp)! exp!((exp! form)! (exp! exp)! exp!form) ! form.Neither Terzo nor Teyjus allow such abbreviations and this is rather an in-convenience. ML-style (nongenerative) type abbreviations would be veryhelpful. In the object-types-as-meta-terms encoding (Section 6), Twelf de�-nitions can act as type abbreviations, which is a great convenience.Arithmetic. For our application, proof-carrying code, we wish to provetheorems about machine instructions that add, subtract, and multiply; andabout load/store instructions that add o�sets to registers. Therefore werequire some rudimentary integer arithmetic in our logic.Some logical frameworks have powerful arithmetic primitives, such asthe ability to solve linear programs [13] or to handle general arithmetic con-straints [6]. For example, Twelf will soon provide a complete theory of therationals, implemented using linear programming [18]. Some such as Elf1.5 have no arithmetic at all, forcing us to de�ne integers as sequences ofbooleans. On the one hand, linear programming is a powerful and generalproof technique, but we fear that it might increase the complexity of thetrusted computing base. On the other hand, synthesizing arithmetic fromscratch is no picnic. The standard Prolog is operator seems a good com-promise and has been adequate for our needs.Representing proof terms. Parameterizable data structures with higher-order uni�cation modulo �-equivalence provide an expressive way of repre-senting formulas, predicates, and proofs. We make heavy use of higher-orderdata structures with both direct sharing and sharing modulo �-reduction.The implementation of the metalanguage must preserve this sharing; other-wise our proof terms will blow up in size.Any logic programming system is likely to implement sharing of termsobtained by copying multiple pointers to the same subterm. In Terzo, thiscan be seen as the implementation of a reduction algorithm described byWadsworth [19]. But we require even more sharing. The similar terms ob-tained by applying a �-term to di�erent arguments should retain as muchsharing as possible. Therefore some intelligent implementation of higher-order terms within the metalanguage|such as Teyjus's use of explicit sub-stitutions [10, 11]|seems essential.



Programming the prover. In this paper, we have concentrated on anencoding of the logic used for proof checking. But of course, we will alsoneed to construct proofs. For the proof-carrying code application, we need anautomatic theorem prover to prove the safety of programs. For implementingthis prover, we have found that the Prolog-style control primitives (suchas the cut (!) operator and the is predicate), which are also available in�Prolog, are quite important. �Prolog also provides an environment forimplementing tactic-style interactive provers [4]. This kind of prover is usefulfor proving the lemmas that are used by the automatic prover. Neither Elfnor Twelf have any control primitives. However, there are plans to addan operator to Twelf similar to Prolog cut [15], which would allow us toimplement the automatic prover in the same way as in �Prolog. It is notpossible to build interactive provers in Elf or Twelf, so proofs of lemmas usedby the automatic prover must be constructed by hand.8 ConclusionThe logical frameworks discussed in this paper are promising vehicles forproof-carrying code, or in general where it is desired to keep the proof checkeras small and simple as possible. We have proposed a representation for lem-mas and de�nitions that should help keep proofs small and well-structured,and it appears that each of these frameworks has features that are useful inimplementing, or implementing e�ciently, our machinery.Although the lemma system shown in this paper is particularly lightweightand simple to use, its lack of polymorphic de�nitions and lemmas has led usto further investigate the encodings (sketched in Section 6) that use object-level polymorphic types [2].AcknowledgementsWe thank Robert Harper, Frank Pfenning, Carsten Sch�urmann for advice about en-coding polymorphic logics in a monomorphic dependent-type metalanguage; RobertHarper and Daniel Wang for discussions about untyped systems; Ed Felten, Neophy-tos Michael, Kedar Swadi, and Daniel Wang for providing user feedback; GopalanNadathur and Dale Miller for discussions about �Prolog.References[1] Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In6th ACM Conf. on Computer and Communications Security, Nov. 1999.[2] Andrew W. Appel and Amy P. Felty. Polymorphic lemmas in LF and �Prolog.In preparation, 1999.[3] Luis Damas and Robin Milner. Principal type-schemes for functional programs.In Ninth ACM Symposium on Principles of Programming Languages, pages207{12, New York, 1982. ACM Press.[4] Amy Felty. Implementing tactics and tacticals in a higher-order logic program-ming language. J. Automated Reasoning, 11(1):43{81, August 1993.
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