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Abstract— XACML (eXtensible Access Control Markup 
Language) is a declarative access control policy language that 
has unique language constructs for factoring out access control 
logic. These constructs make the specification of access control 
requirements more compact than decision trees, which can be 
considered the most natural way to specify access control logic. 
However, many publications report that performance of 
XACML policy decision point (PDP) engines is greatly affected 
by the structure of policy sets. In this paper we first explore the 
causes of potential inefficiencies of XACML policies, and then 
propose a procedure to re-structure policy sets vertically by 
modifying the distribution of access control logic among 
different configurations of structural elements, in order to 
remove much of this inefficiency. This is in contrast to 
horizontal re-ordering of constant structural elements.  Our 
procedure can be applied regardless of the complexity and 
structure of the original policy set. We also compare the 
performance of policy sets that take advantage of the 
expressive power of XACML targets to decision trees. 

Keywords: access control; policy restructuring;  
XACML. 

I.  INTRODUCTION 
While early access control (AC) policy specification 
languages were based on the principle of specifying simple 
combinations of attribute values to govern an effect (permit 
or deny), more recent languages started to incorporate 
policy language constructs that take advantage of the 
benefits resulting from allowing more complex 
combinations, such as the aggregation of common attribute 
values. This extra expressive power allows the policy writer 
to reduce the number of policies required in order to comply 
with a given set of AC requirements. It is a well-known fact 
that there is great benefit in reducing the number of policies 
because it makes the management of policies easier and also 
reduces the risk of errors. The XML based XACML 
language [1][2] has a number of such powerful constructs. 
While in general, an AC policy can be abstracted to a 
Boolean expression, XACML structures such Boolean 
expressions into hierarchical groupings using the concept of 
targets, which allow the specification of alternate conditions 
of combinations of attribute values. XACML targets are not 
pure Boolean expressions. Instead they structure logic along 
specific language constructs that represent only a subset of 
the capabilities of Boolean expressions. As a result, when 
structuring a given policy, the AC policy designer must 

make critical design choices that can impact performance of 
PDPs and management of the policies in general. 
 
These features are very efficient for specifying the most 
recent AC models, especially those that are particularly 
efficient for expressing fine grained AC, such as the ABAC 
[3] and RBAC [4][5] models, as well as many other derived 
models.   
 

In this paper, we first review XACML structuring 
mechanisms, exploring the factors that specifically govern 
such structuring, in order to motivate restructuring.  We then 
explore the possibilities of improvements. In particular, we 
present a specific procedure for restructuring policies that 
has the potential to greatly increase the efficiency of policy 
evaluation. 

II. STRUCTURAL MODELS FOR POLICY LOGIC 
SPECIFICATION 

A. XACML Hierarchical Structuring Elements 
XACML has two basic levels of constructs to express 
structuring: 
 

• Hierarchical partitioning blocks: policy sets that 
contain other policy sets or policies that further 
contain rules. 

• Access control logic blocks that contain fine-
grained logic on attributes. 

 

 
Figure 1: The XACML 3.0 policy set model 
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However, one of the characteristics of XACML AC logic 
blocks is that its grammar, as shown in Figure 1, allows 
only specific configurations of conjunctions and 
disjunctions for expressing logic in the form of targets and 
conditions. Targets are used as the primary logic description 
technique in all three levels of partitioning blocks: policy 
sets, policies and rules. Rule conditions have an additional 
level of logic expressed by pure Boolean expressions, which 
are used mostly for continuous domains such as numeric 
types including date and time.  
 

1) Partition Blocks as Decision Trees 
The partitioning block structural elements are organized as 
decision trees where alternate edges for a given node (a 
structural element) represent disjunctions only, while 
sequences of edges represent conjunctions. 
 
Access control logic is expressed using an instance of the 
policy set model such as shown on Figure 2. This figure 
presents the hierarchy of the partitioning blocks. At this 
level, we have the structure of a decision tree. However, the 
evaluation of the logic is located inside these blocks which, 
instead of trees, contain graphs that each has a starting and a 
terminal node. A terminal node of one block is the starting 
node of a subsequent block. For example, the terminal node 
of a policy target is the starting node of each child rule 
targets.  

 
Figure 2: A XACML policy logic partitioning 

 
2) XACML Parse Tree Oriented Target Logic 

In XACML 3.0, access control logic is represented inside 
the target construct of each structural element (policy sets, 
policies and rules). The XACML target is expressed more 
like a parse tree where alternative edges represent both 
disjunction and conjunction, which is radically different 
from decision trees. Furthermore, there are limitations in 
expressive power due to the kind of construct that is allowed 
at each depth of the parse tree. For example the possible 
logic expressed in a target using AnyOf and AllOf language 
constructs results in specific logical patterns as shown on 
Figure 3. 

 
Figure 3: XACML 3.0 target parse tree Structure 

 
In order to appraise the use of XACML targets in practice, it 
is interesting to instead represent target logic as a directional 
graph as shown on Figure 4. Such a graph can be used as a 
decision graph, i.e. a top-down walk through the nodes and 
edges. This graph has a very unique shape. In such a graph, 
as in a decision tree, a sequence of edges determines 
conjunction while alternate edges from a node represent 
disjunction. In the case of XACML targets, the AnyOf 
constructs are concatenated as a sequence, while the AllOf 
constructs form alternate edges from a given AnyOf node. 
Inside an AllOf node, the arguments are themselves 
represented as sequences of matches. The most important 
fact is that all the AllOfs of an AnyOf merge together to a 
common terminal node that itself is either the starting node 
of the next AnyOf construct, or the last node of the current 
target construct as shown on Figure 4.  

 
Figure 4: XACML 3.0 target represented as a graph 
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B. The Benefits of Structuring 
Normally, the primary goal of the structuring mechanism of 
XACML policies is to provide a more efficient evaluation of 
requests by a Policy Decision Point (PDP). These 
evaluations are performed by a top down search of the 
decision tree as shown in Figure 2. A request is evaluated 
first against the top level policy set target. If its logic 
satisfies the request for the attributes it contains, it then 
explores its children’s policies target logic. Then, once a 
policy target is satisfied, it further evaluates the targets and 
conditions of this policy’s child rules. If an attribute is not 
used in the policy logic, this is considered as satisfying any 
value that this attribute can match. If any of these structural 
elements is not satisfied, it prevents the evaluation of 
elements that are further down in the hierarchy. A 
description of this process and its resulting savings in terms 
of computation costs is provided in [7]. 
 
While the structuring mechanisms in XACML are available, 
they do not prevent bad specifications, especially when 
policies evolve over time. This often occurs when 
modifications are performed by different engineers with 
different backgrounds both in experience and programming 
styles. The difficulties include the awareness of the existing 
policy logic implemented at different intervals of time, as 
well as and especially the knowledge of how to modify an 
existing policy so as to satisfy new needs. 
  
While these structuring mechanisms exist and have already 
demonstrated their benefits, implementation inefficiencies 
are not always avoided.  As a result, there has been 
extensive research on finding new ways to optimize policies 
so as to further reduce processing time and avoid PDP 
bottlenecks. 
 
As has already been mentioned in [7], there are cases where 
the principle of hierarchical structures of decision trees does 
not avoid searching all the rules of a policy or at least some 
of its subtrees. Effectively, the efficiency of this process can 
depend on the distribution of logic expressed as match 
expressions on attributes among these structural elements. 
For example, let’s consider an AC specification where we 
have structured the logic in three policies P1, P2 and P3 and 
further in corresponding rules. The logic in our examples 
uses two attributes and their related matching values, i.e. a 
resource R {r1, r2, r3} and an action A {a1, a2, a3}. Each 
policy has a different number of rules depending on the way 
we distribute the matches for each attribute among policy 
and rule targets. In the ABAC model and its implementation 
language XACML 3.0, the order of attributes in the parse 
tree representing a XACML target is not prescribed. Thus, 
several different policy writers could use different orders. 
This will naturally lead to redundancies for a specific effect, 
or conflicts in the case of the use of opposite effects (e.g., 
Permit/Deny). Here we use a single match in each partition 
level. Figure 5 shows two different structuring strategies. 

 
• Policy set 1 has an inversion in attribute 

distribution between policies and rules for 
describing logic. For example policy P1 and P2 
targets handle attribute R in the policy target and 
attribute A in the rule target while policy P3 does 
the reverse. 

• Policy set 2 follows the principle of using only one 
homogeneous kind of attribute in the respective 
levels of policy and rule target. Policy targets 
contain only attribute R expressions, while rule 
targets contain only attribute A expressions. 

 
For these particular configurations, policy set 2 is more 
efficient since for example it requires only four comparisons 
to find the matches for attribute A value a3 and attribute R 
value r3 while it requires six comparisons to achieve the 
same result for policy set 1. In more detail, for policy set 1, 
the six targets of policies P1, P2, P3 and rules R3, R4 and R5 
are evaluated while for policy set 2, only the four targets for 
policies P1, P2, P3 and rule R5 are evaluated. 
 

 
Figure 5: Equivalent policy set structures 

 
Table 1 shows the PDP request processing costs in terms of 
comparisons for each combination of attribute values that is 
covered by the policy sets along with the total cost for 
evaluating requests for all combinations of values. 
 

Requests/policy sets PS1 PS2 
R: r1 and A: a1 7 5 
R: r2 and A: a2 7 5 
R: r1 and A: a3 6 5 
R: r2 and A: a3 6 5 
R: r3 and A: a3 6 4 

Total comparisons costs 32 24 
Table 1: Request processing costs 
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In the above example, we have considered only the five 
requests that will return an effect of permit or deny. All 
remaining cases would return not applicable. Normally, with 
the cardinality of this example there are nine possible 
combinations of requests |{r1, r2, r3}| x |{a1, a2, a3}| = 9. The 
total comparison costs shown in Table 1 suggest a plain 
average cost indicator where each request has the same 
probability of occurrence as others. Operational realities 
would be more along a weighed cost configuration. 
Effectively, resources are not used in an equal manner by 
the same subjects for the same actions. Some resources are 
used more than others and even changes of usage pattern 
can occur depending on external events as reported in [6]. 

C. Expressing Access Control Requirements As Decision 
Trees 

Decision trees [12] are well-known for expressing access 
control logic [14][16]. They are in fact the most efficient 
representation from the point of view of request processing 
by a PDP, since a subtree will be explored only if its parent 
edge satisfies the request. Boolean expressions are decision 
trees. XACML rules have conditions that are Boolean 
expressions. Structuring capabilities of Boolean expressions 
have been explored in [10]. However, from an access 
control logic specification point of view decision trees 
require considerable redundancy of definitions. For 
example, given the alphabets for three attributes 
representing subject, resource and action S = {s1, s2}, R = 
{r1, r2, r3}, A = {a1, a2}, we obtain one possible decision tree 
for the complete state space regardless of the effect (permit 
or deny) as shown on Figure 6. 
 

 
Figure 6: XACML policy set decision tree 

 
Also, we can observe that Figure 6 shows what could be 
specification redundancies. Effectively, the subtrees of the 
edges s1 and s2 that consist of logic for attributes R and A 
are identical. In reality, this might not be the case since each 
leaf is associated with potentially different effects (permit or 
deny or not-applicable). It is the distribution of these effects 
that will determine which subtrees are either fully or 
partially redundant. 
 
Also, decision trees can be structured differently in ordering 
the attributes among each level of the tree. For our above 

example, the three attributes can produce six possible 
different hierarchical structures for the decision tree 
representing their combinations as shown on Figure 7. 
 

 
Figure 7: Decision tree equivalence 

 
However, it is interesting to note that these equivalent 
variants of the same decision tree are also equivalent from a 
PDP request evaluation performance point of view. For 
example, the worst case represented by a request using the 
last value in the set of each attribute s2, r3 and a2 requires 
exactly 7 match attempts before finding a full match 
satisfying all attributes. Thus, re-ordering full state space 
decision trees is of no value from a request evaluation 
performance point of view. However, we have determined 
that partial trees for a given effect could gain from re-
ordering. However decision trees are considerably 
inefficient from an administration point of view because 
they produce redundant subtrees.   
 
Finally, other methodologies, some graphical, can be used to 
design access control policy sets. [15] proposes a procedure 
based on business process models. [17] proposes a similar 
process as role mining in RBAC for ABAC. 

III. THE ART OF RESTRUCTURING XACML POLICY SETS 

A. A Review of Existing Restructuring Algorithms and 
Procedures 

XACML restructuring algorithms can be classified into two 
broad categories: 
 

• Horizontal re-ordering, consisting of optimizing 
the order of alternate children of policy sets (policy 
sets or policies) and/or optimizing the order of 
child rules of policies, as described in [6]. This also 
includes weighing requests according to statistical 
usage. In this approach, the overall vertical 
structure remains constant, i.e. the content of 
policy sets, policies and rules and their 
corresponding targets expressions remain constant.  

• Vertical re-ordering, consisting of redistributing 
logic among hierarchical partitioning blocks 
including changing the configuration of these 
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blocks entirely [7] [9]. For example interchanging 
the logic contained in a rule target with one of its 
parent policies, or even further upstream targets of 
policy set parents. Consequently, vertical 
restructuring produces completely different 
contents of policy sets, policies or rules. 

B. A Procedure for Vertical Restructuring 
 

1) Limitations of the Subsumption Algorithm 
In previous work, we have defined a subsumption algorithm 
for compressing policies [9].  This algorithm cannot solve 
the problem of restructuring the three policies of policy set 1 
in Figure 5. This is because this subsumption algorithm 
works only in the case where Boolean expressions resulting 
from the sequences of elements in policy set, policy and rule 
targets have n-1 attribute expressions in common, where n is 
the total number of attributes used in such a Boolean 
expression. In fact, this algorithm works only for specific 
structures that consist of a conjunction, where each element 
is either an atomic operation or a disjunction of operations 
on the same attribute.  
 
For example the two following Boolean expressions: 
 
A1 == v1 /\ A2 == v2 /\ A3 == v3 
A1 == v1 /\ A2 == v2 /\ A3 == v4 

 
can be collapsed into the following single expression: 
 
A1 == v1 /\ A2 == v2 /\ (A3 == v3 \/ A3 == v4) 

 
In the example of Figure 5, the n - 1 common elements 
restriction is not satisfied since all operations have different 
attribute values as shown in Table 2.  

 
Attribute Policy 1 Policy 2 Policy 3 

A A == a1 A == a2 A == a3 

R R == r1 R == r2 R == r1 \/ R == r2 \/ R == r3 

Table 2: Heterogeneity of attribute operations 
 
However, we can show that policy set 1 can still be used to 
derive policy set 2 which is not compressed in the sense of 
[9]. In particular, it does not produce a compressed policy 
set that contains a reduced number of policies and/or rules, 
but its overall structure is more efficient. For example, in 
our case, policy set 1 and 2 contain exactly the same number 
of policies or rules but the access control logic is distributed 
differently among them. We have found that the 
subsumption algorithm can still be used by first deriving the 
traces from policy set 1 and applying the algorithm on the 
traces instead of the original policy set. These traces can 
have n - 1 common elements and thus be compressed into 
policies with more complex expression content: 
 

Trace 1: R == r1 /\ A == a1 
Trace 2: R == r2 /\ A == a2 

Trace 3: A == a3 /\ R == r1  
Trace 4: A == a3 /\ R == r2  
Trace 5: A == a3 /\ R == r3  

 
2) Using Decision Trees 

Decision trees can be implemented in XACML using the 
recursive nature of the policy set language construct. 
However, they can be fastidious to compose due to the 
verbosity of XACML. Here, we will discuss the 
transformation of a decision tree into a more compact 
XACML structure that uses the aggregation capabilities of 
the XACML target. The purpose of this exercise is to 
determine which of the structures—decision trees or 
compact XACML policy sets—is the more efficient. 
 
As we have mentioned above, a XACML policy set is a 
kind of decision tree and the restructuring process that uses 
the subsumption algorithm can be performed only on one 
subset of the decision tree at a time corresponding to a 
specific effect (permit or deny separately). For example in 
the three-attribute decision tree depicted in Figure 8, the 
black edges correspond to the effect permit and the grayed 
edges correspond either to the effect deny or to the effect 
not-applicable. 
 

 
Figure 8: XACML decision subtree for effect permit 

 
From that decision tree or from any corresponding XACML 
decision tree/graph hybrid, we can easily derive the five 
following traces merely by walking the tree once and 
collecting the traces of edges back to the root: 
 

Trace 1: S == s1 /\ R == r1 /\ A == a1 
Trace 2: S == s1 /\ R == r1 /\ A == a2 
Trace 3: S == s1 /\ R == r3 /\ A == a2 
Trace 4: S == s2 /\ R == r2 /\ A == a1 
Trace 5: S == s2 /\ R == r3 /\ A == a2 
 

These traces  can also represent  policies expressed in 
simple logic, consisting of a list of single conjunctions, 
similar to Access Control Lists (ACL) policies. This logic 
can itself be distributed among XACML structural 
components (policy set, policy and rule) producing 
equivalent logic. These five traces/policies can be 
compressed using the subsumption algorithm described in 
[9], giving one possible policy set shown as a hybrid 
decision tree in Figure 9. 
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These examples demonstrate the challenges facing the 
policy designer when composing XACML policy sets. A 
manual optimization could be complex. An illustration of 
these challenges can be derived from [7]. Effectively they 
propose an algorithm for computing performance of various 
randomly or manually restructured policy sets. They do not 
show any restructuring algorithm per se.  Thus, the novelty 
of our approach is in the automation of this process. 
 

 
Figure 9: Policy set compression result (S-R-A) 

 
Interesting is the fact that when this procedure is applied to  
policy set 1 in Figure 5, we indeed obtain policy set 2 which 
is the more efficient policy set configuration. Also, if we 
change the order of attributes in the decision tree of Figure 8 
we obtain always the same identical tree shown in Figure 9, 
with the only difference being that the attributes change 
levels, with each level retaining the same structure 
(AnyOfs), like for example the tree of Figure 10.  However, 
these trees produce different average number of 
computation costs.  

 
Figure 10: Compression result on resource, action, 

subject ordering (R-A-S) 
In Table 3Table 3, we have summarized the computation 
costs for the original decision tree and two possible vertical 
orderings of attribute expressions. As expected, the decision 
tree has the best performance while the XACML hybrid 
decision/graph trees have equal costs. Normally one would 
expect that the XACML code restructuring produces code 
savings. This particular example does not. The duplication 
of expressions exists in both cases. However, this is mainly 
due to the nature of the example, the subset of the decision 
tree chosen and the limited number of attributes.  
 

Requests Decision 
tree 

S-R-A 
ordering 

R-A-S 
ordering 

s1-r1-a1 3 4 4 
s1-r1-a2 4 5 5 
s1-r3-a2 3 5 5 
s2-r2-a1 3 3 3 
s2-r3-a2 4 6 6 

Total costs 17 23 23 
Table 3: Cost comparison on order of attributes 

 
Also, it is interesting to note that the resulting restructured 
policy set of Figure 9 shows a different kind of redundancy 
on the first level composed of  policy sets, where the targets 
for attribute S show values s1 and s2 first separately and then 
combined into an AnyOf.  This in fact is the result of the 
restrictive grammar of the XACML target language 
construct, and is not an oddity resulting from a faulty 
restructuring algorithm. Also, this does not mean that the 
XACML language is bad but instead shows the limitation of 
factoring out common behavior in general.  
 

3) Enhancement of the Subsumption Algorithm 
The results of the subsumption algorithm shown in Figure 9 
are however suggesting a possible enhncement.of this 
algorithm. Effectively, the presence of duplicate operations 
on the same attribute s1 and s2 could be factored out by 
connecting the subtree r3 – a2 to both of the other subtrees 
starting with operations on attributes s1 and s2 individually 
rather than as a disjunction. The result of this additional step 
shown in Figure 11 is rather surprising because it produces 
the decision tree from which we started with in the first 
place with an insignificant difference in the horizontal 
ordering of the subtrees. However, this same result is not 
achievable by attempting to refine Figure 10 because there 
are no duplicate operations, neither on the first level nor any 
subsequent level. This, in itself is an interesting property 
that shows that the vertical ordering of attributes is in fact 
important. Thus, at first glance, the algorithm needs to be 
applied several times in order to find the more efficient 
configuration. However, the problem is that the number of 
orderings can be non-polynomial. This can be easily 
avoided altogether by instead inspecting each level of the 
tree individually to detect attribute operation duplications. 
When a level reveals such a duplication, the entire level can 
be pushed to the top where the factoring out can then be 
performed. 
 
From a practical point of view, this exercise produced some 
interesting findings. It shows that any policy set structure 
can be transformed into a decision tree using the enhanced 
subsumption algorithm. Also, the policy set of Figure 10 
could have been the starting point because this policy set 
could have been manually encoded by some policy 
engineer. In this case, generating traces from this policy set 

239



 

 

and applying the enhanced subsumption algorithm on them 
would have resulted in the more performant decision tree. 
 

 
Figure 11: Enhanced compressed policy 

 
4) Transforming Boolean Expressions into XACML 

Structural Elements 
 

In figures 9, 10 and 11 we have suggested the XACML 
structural elements of policy sets, policies and rules for each 
level of the decision trees for the purpose of better 
understanding. This was for convenience purposes only. The 
subsumption algorithm for vertical restructuring does not 
produce this naturally. However, this structure can be easily 
derived. First of all, the bottom level always needs to be a 
rule. Thus, working upward, the level above the rule level 
naturally becomes a policy while any levels above the 
policy level all become policy sets because policy sets are 
the only recursive constructs in XACML. Also, it is 
important to note this procedure produces a flattening of 
Boolean expressions. Effectively, after generating the traces, 
the relationship between elements of the trace and XACML 
structural elements disappears. This means that it is no 
longer possible to distinguish that a conjunction is the result 
of a target AllOf element or the natural conjunction linking 
policy sets to their child policies or policies to their child 
rules. 

IV. SUMMARY OF THE PROCEDURE FOR RESTRUCTURING 
XACML POLICIES 

A. General Procedure Summary 
In light of these findings, we propose the following 
procedure for performing vertical and horizontal 
restructuring of XACML policy sets. 

• Step 1: transform a XACML policy set into a 
graph which is a hybrid between a decision 
tree and sub-graphs. 

• Step 2: generate all the traces of that graph. 
The traces represent pure conjunctions 
between attributes match expressions and thus 
each trace can be used as a policy. 

• Step 3: perform the subsumption policy 
compression algorithm [9] on these traces. 

• Step 4: factor out duplicate operations on the 
same decision tree level. 

• Step 5: perform horizontal restructuring [6] 
based on probabilities of requests. 

• Step 6: compute the total cost of request 
processing of the compressed policies using 
the algorithm proposed in [7]. 

• Step 7: repeat step 2 to 5 using a different 
order in the sequence of attribute conditions of 
traces as a best-first search heuristic. 

• Step 8: compare costs of the various orderings 
of attributes and choose the best one. 

B. Handling Absent Attributes 
In a XACML policy, when an attribute is not used in a 
match expression, this is equivalent to specifying all values 
that a given attribute can have, i.e. its full alphabet. This is 
indeed a very powerful feature that does not exist in many 
other AC languages. However, the absence of an attribute 
has very interesting benefits from a computation cost point 
of view since by definition it eliminates a number of 
computations altogether. Currently the policy compression 
algorithm from [9] cannot handle such cases. Solutions to 
include absent attributes are proposed in [16] where they are 
called missing attributes. However, the use of such an 
approach is for further study. 
 

C. Proof of Equivalence 
In previous work [9] on the subsumption algorithm, we have 
already demonstrated the benefits of using theorem proving 
techniques to provide correctness guarantees for our 
algorithm.  In particular, in that work, we used the Coq 
Proof Assistant [19] to prove that a compressed policy set is 
equivalent to an original collection of simple policies. In 
this work, we can also provide such formal correctness 
guarantees, which in this case show that the results of 
restructuring are equivalent to the original complex policy 
sets.  For example, we have verified the equivalence of the 
policy sets of Figure 5. XACML target match expressions 
can be easily proved equivalent with a single Coq command 
“tauto” that is able to automatically prove tautologies in 
propositional logic, which is our case here. For the 
interested reader, we give the full Coq script for this 
example. Both original and compressed policy sets are 
expressed as Boolean expressions as follows: 
 
Section figures_5. 
 
Inductive resources: Set := R1 | R2 | R3. 
Inductive actions: Set := A1 | A2 | A3. 
 
Variable R:resources. 
Variable A:actions. 
 
Definition PS1 := (R=R1 /\ A=A1)  
       \/ (R=R2 /\ A=A2)  
 \/ (A=A3 /\ (R=R1 \/ R=R2 \/ R=R3)) : Prop. 
 
Definition PS2 := (R=R1 /\ (A=A1 \/ A=A3))  
                  \/ (R=R2 /\ (A=A2 \/ A=A3))  
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       \/ (R=R3 /\ A=A3): Prop. 
 
Lemma fig5a :PS1   -> PS2. 
Proof. 
unfold PS1, PS2. tauto. 
Qed. 
 
Lemma fig5b : PS2   -> PS1. 
Proof. 
unfold PS1, PS2. tauto. 
Qed. 
 
Theorem fig5 : PS1 <-> PS2. 
 
Proof. 
split. exact fig5a. exact fig5b. 
Qed. 
 
End figures_5. 

V. FUTURE WORK 
The redundancies of specification caused by the XML 
hierarchical model of monolithic trees, both in XACML and 
decision trees could be avoided. Other tree-based 
specification languages in a variety of other fields different 
from access control use the concept of decision tree. This is 
the case, for example, in the Tree and Tabular Combined 
Notation (TTCN) [18] that is used for specifying tests in the 
domain of telecommunication protocols.  TTCN uses the 
concept of collections of trees, where each individual tree 
can be attached to the leaves of any other tree.  This 
technique allows unlimited re-usability of subtrees. This 
feature actually already exists in XML with the reference 
mechanism for schemas and there are already two similar 
concepts in XACML, namely, policy and policy set 
references and variables. However these references are used 
exclusively as an inheritance mechanism and apply to an 
entire policy, while XACML variables are snippets of 
Boolean expressions that can be used only in rule conditions 
and are not re-usable in the more restrictive XACML target. 
Thus, we propose to introduce the concept of independent 
sub-tree definitions and the attachment mechanism. Also, 
complex models such as the RBAC profile [11] may not be 
amenable to such a restructuring procedure, mainly because 
they are highly dependent on policy and rule combining 
algorithms, which operate on sets of intentional opposite 
effects (permit/deny). 

VI. CONCLUSION 
In this paper, we have examined some key factors in 

understanding problems of adequately structuring XACML 
policy sets and shown the limitations of re-structuring 
procedures when taken individually. We have proposed a 
procedure that combines these diverse procedures into a 
single procedure with the goal of increasing efficiency of 
the evaluation of requests against a policy. 
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