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Abstract
We describe the formalization of a correctness proof for a conflict
detection algorithm for XACML (eXtensible Access Control Mark-
up Language). XACML is a standardized declarative access control
policy language that is increasingly used in industry. In practice it is
common for rule sets to grow large, and contain unintended errors,
often due to conflicting rules. A conflict occurs in a policy when one
rule permits a request and another denies that same request. Such
errors can lead to serious risks involving both allowing access to an
unauthorized user as well as denying access to someone who needs
it. Removing conflicts is thus an important aspect of debugging
policies, and the use of a verified algorithm provides the highest
assurance in a domain where security is important. In this paper,
we focus on several complex XACML constructs, including time
ranges and integer intervals, as well as ways to combine any number
of functions using the boolean operators and, or, and not. The latter
are the most complex, and add significant expressive power to the
language. We propose an algorithm to find conflicts and then use
the Coq Proof Assistant to prove the algorithm correct. We develop
a library of tactics to help automate the proof.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifiying and Verifying and Reasoning about
Programs; K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords program correctness, formal verification, access control,
policy analysis, Coq, XACML

1. Introduction
XACML (eXtensible Access Control Markup Language) [11] is
a policy specification language that allows policies to be defined
in a wide variety of domains. It is an OASIS [10] standard that
is becoming more widely used, especially in recent years (see
e.g., [12]). Its expressive power allows access control policies to
strike a balance between secure and flexible access; policies must
prevent access when there is a security risk and allow access when
required, such as in a medical emergency when a doctor needs
immediate access to medical records. Errors in policies can pose

serious risks, and conflicts in policy rules are a common source of
errors.

We present an algorithm for detecting conflicts in policies, and
implement it and prove its correctness in the Coq Proof Assistant [1,
4]. We do not cover all of XACML here, but do cover a significant
sublanguage of XACML 3.0 [11]. The main restriction is that we
do not cover all of the XACML’s defined functions. Policies express
various conditions on attributes and their values, and a request is
composed of pairs of attributes and their values. Functions are used
in a rule to express how components of a request match components
of the rule, in order to determine which requests the rule applies to.
For example, suppose a rule allows access to a particular student to
enter the Formal Methods Research Lab (FMLab) during its opening
hours. The function integer-equals may be used to indicate that
the student’s ID number must match the subject attribute in a request
in order for the rule to apply. Other allowable functions include those
that can test membership in a bag, for instance, testing if the resource
attribute in the request is one of Lab1,. . .,LabN. Still other examples
include functions for testing whether or not the time attribute in a
request (representing the time the request was made) matches the
time constraints expressed in the rule.

This work reports on and significantly extends the work in the
first author’s thesis [14] and our workshop paper [15], which in
turn extend previous work on detecting conflicts in Cisco firewall
rules [2]. The format of firewall rules is fairly restricted and rules
express constraints on a fixed number of attributes in a fixed order.
XACML is a significantly more general and expressive language,
even considering the sublanguage considered here, mainly due to
allowing a much larger set of attributes as well as fairly complex
conditions on these attributes. As a result, conflict detection is
considerably more complex than for firewall rules. The statement of
correctness and its proof are not complicated, but require considering
a large number of cases, including many “corner cases” that can be
difficult to get right. In fact, in an earlier version of this proof,
we stated a hypothesis to help simplify the proof development.
When we later went back to remove this hypothesis, we found
it was inconsistent, and a few of these corner cases relied on this
inconsistency. Fortunately, these errors were not difficult to fix, but
they did require a slight modification to the affected cases in the
conflict detection program.

In order to handle the added complexity, the work involved
some effort in automating proofs using Coq’s Ltac facility [4]. This
automation helped to both simplify the proofs and shorten the proof
text. Even so, at about 4000 lines, the proof script is significantly
larger than the one in [2]. We were able to reuse a small part of
the previous proof development because the high-level statement of
correctness and its proof are the same here. The underlying lemmas
and definitions that these proofs depend on however, are significantly
different.
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Many policy languages, including XACML, have their own built-
in rule-combining algorithms for resolving conflicts. XACML’s
choices include “deny-overrides,” “permit-overrides,” “first-applicable,”
and “only-one-applicable.” The first two allow a policy writer to ex-
plicitly specify that a rule that denies (respectively, permits) access
always overrides a rule that permits (respectively, denies) access.
The third specifies that the first rule in sequential order that applies
to a request is the one that takes priority. The last states that if
more than one rule or policy applies, no decision will be returned.
Policy writers make use of these rule-combining mechanisms, but
unintended errors in the form of conflicts are still common. Many
policies, for instance, are developed over a period of time, often
with a change in personnel, where one policy administrator de-
velops the initial policy, and later administrators make changes.
The conflict detection algorithm we present here provides a tool
for static analysis and policy debugging. It identifies all conflicts.
Policy maintainers decide which ones are errors that need fixing,
and which ones can remain and be handled by the rule-combining
algorithm. For example, a user taking advantage of “first-applicable”
may ignore conflicts arising from rules intended as exceptions that
are placed before default rules.

In the next section (Sect. 2), we present the encoding of policies
and requests in Coq using a running example. In Sect. 3, we present
the conflict detection algorithm, and in Sect. 4, we discuss its proof
of correctness. We discuss future work in Sect. 5, related work in
Sect. 6, and we conclude in Sect. 7.

In the Coq code presented below, Prop is Coq’s built-in type of
propositions, while bool is in Set and is Coq’s boolean datatype;
the latter is used in the conflict detection program. We use Coq’s
built-in lists and integers. The :: operator is an infix cons operator
on lists, ++ is infix append, and In is used for list membership.
We use both Coq’s comparison operators on integers, such as =,
<, <=, etc., and their boolean counterparts, whose names end in
“b”. For example, (i<j) is in Prop, while (i <b j) is in bool.
The connectives /\, \/, and ~ are used to construct propositions,
while &&, ||, and negb are the corresponding boolean operators. In
addition to these, we also have a type called trilean which is like
a boolean but with an extra non-applicable value. It is only used in
cases where the policy file contains unexpected values or functions.
In general, they can be thought of as booleans. They use three values,
T, F, and NA, which correspond to true, false, and non-applicable
values, respectively. They include the usual connectives, denoted
as /\t, \/t, and ~t. They work the same way as the usual boolean
operators, with NA taking priority in conjunction and disjunction (e.g.
T /\t NA = NA). The files of the Coq formalization are available
at www.eecs.uottawa.ca/~afelty/cpp16/.

2. Encoding XACML Policies in Coq
We present the part of XACML that involves specifying individual
rules within a policy, and we present only enough of the XACML
syntax (which uses XML) to enable us to describe the components of
a rule and how they are encoded in Coq. A rule is made up of a target,
an optional set of conditions, and an effect that indicates whether
the rule will permit or deny access. A target groups together the
subject, resource, and action components of a rule. In the example
mentioned earlier, the student’s ID number is the subject, “enter”
is the action, and FMLab is the resource. The lab’s opening hours
are expressed in the rule’s condition. Figure 1 illustrates how this
rule could be expressed in XACML. We have elided many parts for
readability, for example name integer-equal is short for urn:-
oasis:names:tc:xacml:1.0:function:integer-equal, and
we only show the general format excluding resources, actions, and
conditions, whose syntax is similar syntax to subjects.

Multiple targets are allowed, simply by adding more elements
of the form <AllOf>...</AllOf> in the Target’s section. For a

<Rule RuleId="Rule3" Effect="Permit">
<Target> <AnyOf> <AllOf>

<Match MatchId="integer-equal">
<AttributeValue DataType="integer">

123</AttributeValue>
<AttributeDesignator

AttributeId="student_ID"
Catagory="access-subject".../>

</Match>
...

</AllOf> </AnyOf> </Target>
<Condition>...</Condition>

</Rule>

Figure 1. Example XACML rule

rule to apply, any of the targets mentioned must match a request.
Conditions are similar to targets except that they must all be satisfied
for a rule to apply, as opposed to needing only one target. If the
target doesn’t include any subject in its definition, then the rule
applies regardless of which subject made a request. Similarly, if the
resources, action or even the entire target is missing, then a request
always applies to the resource, action or target (respectively) portion
of the rule. Note that one aspect of XACML that we ignore is the
use of global targets, i.e., those that are found at the policy-level and
apply to every rule in the policy file. Here we have only considered
local rule-level targets. This omission is without loss of generality,
since the information in a global target can be instead included in
the target of each individual rule, resulting in an equivalent (but
possibly more verbose) policy.

We illustrate the encoding of XACML rules in Coq via an exam-
ple. Consider a policy for students to access computing and research
laboratories at a university. We assume there are undergraduate
and graduate computing laboratories where students work on their
course work, and some number of research laboratories that each
have graduate students assigned to them. We initially include the
following rules: (1) anyone is allowed (undergraduates, graduate
students, and professors) to enter the undergraduate computing labo-
ratory during its opening hours, (2) graduate students and professors
are allowed to enter the graduate computing laboratory during its
opening hours, (3) the student with ID number 123 is allowed to
enter FMLab during its opening hours, and (4) the student with
ID number 456 is allowed to enter the AI Research Lab during its
opening hours. We give the Coq definition of a rule first and then
fill in the details.

Inductive effect: Set := permit | deny.
Record rule: Set :=

ruleCons {eff: effect; rules: srac}.

A rule is a Coq record with two fields. The first field has type
effect, defined as an enumerated type with two elements via a Coq
inductive definition. The second field combines four of XACML’s
elements and is of type srac, which stands for “subject-resource-
action-condition.” In XACML, all of these elements use the same
representation and can be combined to form complex rules using
logical operators, as defined below.

Inductive srac : Set :=
| single : core -> nat -> srac
| and : srac -> srac -> srac
| or : srac -> srac -> srac
| not : srac -> srac.

In single, the first argument, of type core, is used to encode the
core XACML functions such as “integer-equal” shown in Figure 1.
These will be explained in more detail later. Its second argument
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is a natural number. These numbers indicate which field from the
requests the rule uses. XACML would reference the field by name,
and allow them in any order, but we chose to map them to specific
numbers for easier access. For this example, the mapping of field
names to numbers is 1: ID number, 2: location, 3: action, 4: current
time, 5: registration status and 6: subject type. Note that the fields
follow this order for this example only but the list can be of any
size and any order. The constructors and, or, and not are used to
combine single elements of type srac in the obvious way.

We present Coq code for rules (2) and (3) above before filling in
the definition of core and other missing details.

Definition Rule2 := ruleCons permit
(and (and (and (or Grads Professors)

GradLab) Enter) GlabHours).
Definition Rule3 := ruleCons permit

(and (and (and G123 FMLab) Enter)
FMlabHours).

In the encoding of rules, Grads, Professors, GradLab, Enter,
GlabHours, G123, FMLab, and FMlabHours, are all elements of
type srac (whose definitions we discuss later). Note that Rule3
is an equivalent rule to the XACML coded rule in Figure 1. Their
effects are both permit. The XACML function “student ID = 123”
from the figure is translated into G123. The parts omitted from the
XACML code translate to the resource FMLab, the action Enter,
and the condition FMlabHours.

In order to fill in the missing definitions, we first need to define
the core type, which is the type of the first field of the single
constructor in the srac type. Its definition (below) shows how we
encode XACML’s main functions in Coq:

Definition MIDNIGHT := 86400.
Definition Z’ := {z:Z | 0 <= z <= MIDNIGHT}.
Definition Z’NM := {z:Z | 0 <= z < MIDNIGHT}.

Inductive core : Set :=
| any : reqValue -> core
| empty : reqValue -> core
| intInRange : Z -> Z -> core
| intGt : Z -> core
| intLt : Z -> core
| timeInRange : Z’ -> Z’ -> core
| na : core.

There are four main constructors implementing these functions,
which have arguments of types Z and Z’. Z is Coq’s built-in integer
type, and Z’ encodes the subset of the integers that represent time,
restricting time values to be between 0 and the number of seconds in
24 hours. Our time ranges include their lower bound but exclude the
upper bound. In particular, when we write (timeInRange m M),
a time t in a request is considered to match if m ≤ t < M , i.e.,
t is in the interval [m,M). The type Z’NM is similar but excludes
midnight. We will see later that it is used in requests. Note that a
request includes the time it was made as one of the attributes, and if
a request is done at midnight, it will never meet any of the time range
conditions within rules because no time range starts at the upper
bound. Because of this requests can’t take the value MIDNIGHT,
otherwise it would cause problems with correctness, which is why
requests are from Z’NM instead of Z’.

The constructor intInRange is used to encode XACML integer
ranges. With ranges, we can also represent integer equalities by
setting both ends of the range to the same value. Similarly, intGt
and IntLt, in combination with integer equality, are used to encode
not only greater-than and less-than functions, but also greater-
than-or-equal and less-than-or-equal. We combine these functions
to reduce the number of functions needed to be implemented

without losing any power of expression. By reducing the number of
implemented functions, we reduce code size and increase efficiency.
We especially gain efficiency when performing conflict detections.
This algorithm must compare fields of two rules, and minimizing
the number of functions greatly reduces the numbers of pairs of
functions that need to be compared. If we had included the three
extra functions mentioned, the number of pairs to check would
increase from 72 = 49 (because of the 7 constructors) to 102 = 100.
Note that the core functions were chosen in a way that makes them a
closed set under conjunction and negation (negating sometimes leads
to multiple core functions combined with srac’s or constructor).

The first constructor, any, represents that any subject, resource,
action, or condition (depending on its location) applies as long as
the field has the specified type, while the second, empty, is for
when no value applies. The na constructor is used in error cases
which only occur when the policy file uses functions we haven’t yet
implemented, or uses unexpected values such as a decimal when
an integer is expected. The reqValue inductive type appears in the
types of any and empty. Its main use is to denote types and values
for requests. In practice policies are used to evaluate requests, but it
is convenient to express some of the elements of policy rules using
some of the constructors of reqValue. Its definition is:

Inductive reqValue: Set :=
| timeReq : Z’NM -> reqValue
| intReq : Z -> reqValue
| blank : reqValue.

The values of the fields in a request (in our example, these can be any
of the 6 attribute/value pairs listed above) can either be an integer
representing a valid time (timeReq), an integer encoding any of
the other fields such as resources and subjects (intReq), or blank
when a particular field is absent from a particular request. We use
Z’NM here because we do not want the value of MIDNIGHT occuring
in requests for the reason mentioned above.

We can now fill in the definitions of the particular fields used in
our encoding of rules (2) and (3). Most of the XACML functions
occurring in Rule2 and Rule3 are strings encoded as integers,
represented in Coq as follows:

Definition intEq (z:Z)(n:nat):srac :=
single (intInRange z z) n.

Definition Grads: srac := intEq 1 6.
Definition Professors: srac := intEq 2 6.
Definition GradLab := intEq 2 2.
Definition Enter: srac := intEq 0 3.
Definition G123: srac := intEq 123 1.

In the definition of intEq, the first argument is an integer value
or the integer encoding of a string, while the second argument is
the index of the field it is referencing. For example, Grads and
Professors represent two different subject types (field number 6)
and G123 represents the student whose student number is 123 (field
number 1).

The only other XACML functions occurring in this example are
those in the definitions of GlabHours and FMlabHours, which use
timeInRange, one of the constructors in the definition of core,
and not, the last constructor in the definition of srac. They are
represented as follows:

Lemma ThreeAm_rc : 0 <= 10800 <= MIDNIGHT.
Definition ThreeAm:Z’ :=

(exist _ 10800 ThreeAm_rc).

Definition GlabHours: srac :=
not (single (timeInRange ThreeAm FourAm) 4).

Definition FMlabHours:srac :=

168



single (timeInRange SixAm ElevenPm) 4.

The types Z’ and Z’NM were defined earlier but not yet used in
examples. Elements of both of these dependent types are a pair
containing an integer and a proof that the integer is in the restricted
range. The above example illustrates this representation for 3am.
Other times are represented similarly.

We assume for this example that students can access the graduate
lab anytime except for between 3am and 4am, and that the formal
methods lab is open from 6am to 11pm. We note that in XACML,
the time range GlabHours would simply be expressed as the range
4am to 3am which would “wrap around” midnight, with 3am on the
next day. We separate these ranges into two sections. The reasoning
behind this will be explained later.

To continue our example, suppose that the university has decided
to update the lab access policy, instituting a new rule that (5) denies
access to research labs to students whose registration has lapsed.
Suppose also that (6) students who have violated some university
policy are no longer allowed to enter research labs after 5pm. In this
example, we will assume that student 123 has violated some rule.
We add the following two rules (and associated definitions).

Definition NotRegistered := intEq 0 5.
Definition Violations := intEq 123 1.
Definition After5:srac :=

single (timeInRange FivePm Z’MIDNIGHT) 4.
Definition AnyTime: srac :=

single (any (timeReq Z’NM0)) 4.
Definition AnyLocation :=

single (any (intReq 0)) 2.
Definition Rule5 := ruleCons deny

(and (and (and NotRegistered
(or FMLab AILab)) Enter) AnyTime).

Definition Rule6 := ruleCons deny
(and (and (and Violations AnyLocation)

Enter) After5).

For any z in the range 0 <= z <= MIDNIGHT, we write Z’z to
denote its corresponding value in Z’ (and omit its definition here),
and similarly for any z in the range 0 <= z < MIDNIGHT, we write
Z’MNz. Note that the definition of NotRegistered is having value
0 for registration status (field number 5), and that the definition
of Violations includes only student 123. Given these definitions,
Rule5 and Rule6 directly encode the new rules. Note that these
rules introduce some conflicts. A particular graduate student who is
not registered may be both allowed and denied access to one of the
research labs. To avoid this conflict, all rules permitting access must
be restricted to registered students only. This first kind of conflict is
a result of being denied and permitted access to the same resource.
The other kind of conflict introduced here is due to intersecting time
ranges. Since the resource component of rule (6) is AnyLocation,
this rule applies to all labs. There is a conflict with rule (3), for
instance, since student 123 is allowed and denied access to FMLab
during the hours between 5pm and 11pm.

Our conflict detection program reports the following list of pairs
of rules to be in conflict: (1,6)::(2,6)::(3,5)::(3,6)::(4,5)::nil.1 While
this example is simple, it is quite common for new rules to be added
that don’t take into account all the necessary content of the old rules,
causing bugs requiring the update of existing rules to fix them.

As mentioned earlier, a policy is a set of rules, and policies
are used to evaluate requests. A policy is represented here using
Coq lists (since we reference rules by their placement in the list).
To illustrate requests, suppose the registered (registration status

1 Actually, our algorithm begins rule numbering at 0, so what we have
called Rule1 is denoted as 0. We have added 1 to all numbers in the output
presented here for readability.

1) graduate (subject type 1) student 123 wants to enter (action 0)
the graduate lab (location 2) at 3pm. The encoding in Coq of this
specific example is as follows:

Definition Request1 :=
(intReq 123)::(intReq 2)::
(intReq 0)::(timeReq ThreePm)::(intReq 1)::
(intReq 1)::nil.

Note that there are exactly six elements in this list, corresponding to
the six attribute/value pairs, and that they appear in order by field
number.2

3. Detecting Conflicts in Policy Rules
Consider the conflict mentioned above between rules (3) and (6):
student 123 is allowed and denied access to the graduate lab during
the hours between 5pm and 11pm. There is a conflict because
all fields of both rules “overlap”. The subjects overlap since rule
3 applies to student 123 and rule 6 applies to any student with
violations (such as student 123). The resource (FMLab) in rule
(3) is one of several labs covered by rule (6). The action fields in
both rules are exactly the same, and finally, there is overlap in the
two time ranges in the conditions of these rules (the first covers
6am-11pm, and the second covers 5pm to midnight). The key to the
algorithm is correctly defining this overlap. Figure 2 defines the main
function coreCheck, which detects overlap between two elements
of type core, then returns this overlap (as a core). This function
must consider every possible case for each of the two arguments.
Note, that there is never any overlap between constructors whose
arguments have different types (e.g. intLt and timeInRange never
overlap), which reduces the number of cases from 49 to 21. We
remind the reader that we currently have 2 types—integers and time.

The function in Figure 2 starts by eliminating any cases with
different types (using the function typeDiff) and those that contain
errors such as ranges having an upper bound that is smaller than its
lower bound (using the function invalidArgs). Note that we return
na instead of empty when either invalidArgs or typeDiff is true
because if we negate that core, it should still report the error as
opposed to returning any (the negation of empty). The function then
goes through each remaining pair of core functions to see how each
intersect. The first pairs involve any and empty. If c1 is the function
any, regardless of what c2 is, the overlap between any and c2 will
be c2, which is returned. Similarly, if c1 is the function empty, then
no request value can apply to its function, thus no request can apply
to both c1 and c2 thus empty (=c1) is returned. Also, if c2 is either
any or empty then c1 or empty, respectively, is returned.

The next example we consider is when both c1 and c2 are
time ranges. The time range [m1,M1) (i.e., any t such that m1 ≤
t < M1) and the time range [m2,M2) overlap if m1 < M2

and m2 < M1. If this is the case, then they intersect at the time
range [max(m1,m2),min(M1,M2)), which is returned by the
function. If either of m1 < M2 and m2 < M1 are false, there is
no overlap, and thus empty (timeReq Z’NM0). Note that any and
empty have arguments (of type reqValue), which denote their type.
We arbitrarily chose the values timeReq Z’NM0 and intReq 0 to
be used as time and integer types, but any other values can be used.

In [15] we had originally used “wrapping” time ranges, just as
XACML does. Such a time range was denoted by having the upper
bound smaller than the lower bound of the time range. By allowing
this type of time range, instead of the single if statement in the
(timeInRange m2 M2) case of the coreCheck function, which
has two conditions (expressing inequalities such as (m1 <b M2)),

2 In particular, recall that the arguments of the requests for this example are
ordered as follows :1: ID number, 2: location, 3: action, 4: current time, 5:
registration status, and 6: subject type.
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Definition coreCheck (c1 c2: core) : core :=
if typeDiff (type c1) (type c2) then na else
if invalidArgs c1 then na else
if invalidArgs c2 then na else
match c1 with
| any _ => c2
| empty _ => c1

| timeInRange m1 M1 =>
match c2 with
| any (timeReq z2) => c1
| empty (timeReq z2) => empty (timeReq Z’NM0)
| timeInRange m2 M2 => if m1 <b M2 /\b m2 <b M1

then timeInRange (max’ m1 m2) (min’ M1 M2)
else empty (timeReq Z’NM0)

| _ => na
end

| intGt m1 =>
match c2 with
| any (intReq z2) => c1
| empty (intReq z2) => empty (intReq 0)
| intInRange m2 M2 => if m1 <b M2

then intInRange (max (m1+1) m2) M2
else empty (intReq 0)

| intGt m2 => intGt (max m1 m2)
| intLt M2 => if m1 <b (M2-1)

then intInRange (m1+1) (M2-1)
else empty (intReq 0)

| _ => na
end

...
end.

Figure 2. Detecting overlap in rule components

we needed to express four different cases with nine conditions total.
By using XACML’s complexity to our advantage (now that we have
implemented the or operator), we can split these time ranges into
two time ranges: the first one starting at time 0 and ending at the
upper bound of the original, and the second starting at its lower
bound and ending at midnight. Rejoining them with or essentially
treats them as separate rules. By splitting them up into two separate
ranges, we also avoid the problem of having two distinct overlaps.
For example, if one time range starts at 5am and ends at 4am, and
the other time range starts at 3am and ends at 6am, the overlap is
described as two separate time ranges: between 3am and 4am and
between 5am and 6am. By splitting the first time range into two
ranges, we still get both overlaps, but by treating them as separate
rules, we simplify the process of finding them, which increases
efficiency.

For the cases when c1 is (intGt m1), first consider the simple
case when c2 has the same form: (intGt m2). There is always an
overlap, where the overlap is (intGt (max m1 m2)). In the case
when c2 is (intLt M2), then there is overlap if and only if m1 <
(M2 − 1) with the overlap being the range [(m1 + 1), (M2 − 1)].

We previously said that core (using or) was built so that it
was closed under not. We can in fact transform the rules into an
equivalent set that does not contain not, which will reduce the
complexity of our conflict detection algorithm. We do this with
the removeNots function in Figure 3, which calls notCheck. An
abbreviated version of the latter function also appears in the figure.
The notCheck function works by changing each case of core
into accepting every value it previously wouldn’t, rejecting the

Definition notCheck (c : core) (n:nat) : srac :=
if invalidArgs c then single na n else
match c with
| any r => single (empty r) n
| empty r => single (any r) n
| timeInRange m M => ...
| intInRange m M => or

(single (intLt m) n) (single (intGt M) n)
| intGt m => single (intLt (m+1)) n
| intLt M => single (intGt (M-1)) n
| na => single na n
end.

Function removeNots (s:srac)
{measure notSize s} : srac :=

match s with
| not (single c1 n) => notCheck c1 n
| not (or s1 s2) => and (removeNots (not s1))

(removeNots (not s2))
| not (and s1 s2) => or (removeNots (not s1))

(removeNots (not s2))
| not (not s1) => removeNots s1
| and s1 s2 => and (removeNots s1)

(removeNots s2)
| or s1 s2 => or (removeNots s1)

(removeNots s2)
| single c n => s
end.

Figure 3. Removing not from rules

ones it previously would, and removing the negation. For example,
The opposite effect of (intGt m) is the function (intLt (m+1)).
Ranges are slightly more complicated as the unaccepted range is two
separate intervals. We can, however, use the or constructor to handle
this situation. For example, the negation of (single (intInRange
m M) n) is (or (single (intLt m) n) (single (intGt M)
n)). Time ranges act similarly to integer ranges except with special
cases for when its bounds contain either 0 or midnight. Note that
this function can only be used when the srac is in negation normal
form, that is when negations are only negating atoms. To do this,
we can use DeMorgan’s laws. The removeNots function performs
this operation by pushing all occurrences of not inward, calling
notCheck when it gets to a leaf.

We also need to convert the srac into disjunctive normal form.
We do so with the code in Figure 4. The function convertDNF is
used by the code in Figure 5, which performs a kind of “normaliza-
tion” that transforms the tree structure that comes from the logical
connectives to a list of lists. The inner lists denote a conjunction
of elements of type srac, and the outer list represents a disjunc-
tion of its elements. First toLists is called, which converts one
rule’s srac (named s) to normal form with all occurrences of not
removed as described above (see Figure 3). Having rules in DNF
is important because it allows us to treat each disjunct as its own
rule. After converting to DNF, split will separate the disjuncts.
Once it gets to an and, because we are in DNF with no negation,
we know that all that will be found below will be conjuncts. We can
pass control to split’ which uses a modified merge sort (see Coq
manual [4] for a similar merge sort), that uses the field’s identify-
ing numbers as sorting keys to combine all of the rule’s parts. We
modified the case when the two rules use the same key; we combine
them using coreCheck in Figure 2 instead of adding both entries to
the sorted list.
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Fixpoint distr’ (s1 s2 : srac) :=
match s2 with
|or s3 s4 => or (distr’ s1 s3) (distr’ s1 s4)
| _ => and s1 s2
end.

Fixpoint distr (s1 s2 : srac) : srac :=
match s1 with
| or s3 s4 => or (distr s3 s2) (distr s4 s2)
| _ => distr’ s1 s2
end.

Fixpoint DNF (s : srac) : srac :=
match s with
| or s1 s2 => or (DNF s1) (DNF s2)
| and s1 s2 => distr (DNF s1) (DNF s2)
| _ => s
end.

Definition convertDNF (s : srac) : srac :=
DNF (removeNots s).

Figure 4. Converting rules to disjunctive normal form

Fixpoint merge l1 l2 :=
let fix merge_aux l2 :=
match l1, l2 with
| nil, _ => l2
| _, nil => l1
| (c1, n1)::l1’, (c2, n2)::l2’ =>

if blt_nat n1 n2
then (c1, n1) :: merge l1’ l2

else if beq_nat n1 n2
then (coreCheck c1 c2, n1) ::

merge l1’ l2’
else (c2, n2) :: merge_aux l2’

end
in merge_aux l2.

Fixpoint split’ (s : srac) :
list (core * nat) :=

match s with
| and s1 s2 => merge (split’ s1) (split’ s2)
| single c n => (c, n) :: nil
| _ => nil
end.

Fixpoint split (s : srac) :
list (list (core * nat)) :=

match s with
| or s1 s2 => split s1 ++ split s2
| _ => split’ s :: nil
end.

Definition toLists (s :srac) :
list (list (core*nat)) :=
split (convertDNF s).

Figure 5. Normalizing rules

Inductive trilean : Set :=
| T : trilean | F : trilean| NA : trilean.

Fixpoint nonEmptyCore (c :core) : trilean :=
if invalidArgs c then NA else
match c with
| empty _ => F
| na => NA
| _ => T
end.

Fixpoint nonEmptyRule
(lc : list (core*nat)) : trilean :=

match lc with
| nil => T
| (c,n):: lc’ =>

nonEmptyCore c /\t nonEmptyRule lc’
end.

Fixpoint lCheck (l1 : list (list (core*nat)))
(l2 : list (core*nat)) : trilean :=

match l1 with
| nil => F
| l :: l1’ =>

nonEmptyRule (merge l l2 \/t lCheck l1’ l2)
end.

Fixpoint llCheck (l1 l2 :
list (list (core*nat))) : trilean :=

match l2 with
| nil => F
| l :: l2’ => lCheck l1 l \/t llCheck l1 l2’
end.

Figure 6. Finding overlap

The next step is to compare different rules using the code in
Figure 6. The llCheck function takes 2 rules’ srac components
that have been converted into their list of lists equivalent, and then
recursively takes each sub-list from the first argument and each sub-
list from the second argument and uses the merge function from
Figure 5 on each pair. If any of the merged rule parts are non-empty,
the rules overlap.

The top-level code for detecting conflicts appears in Figure 7.
If two rules have overlap and they also have a different effect, the
rules are in conflict. Note that we could use the same approach to
find redundancies by simply changing the code to look for the same
effect instead of different ones.

To detect if two rules conflict, we go through the policy, repre-
sented as a list of rules, to find all conflicts. This part of the imple-
mentation comes directly from [2], and we do not repeat it here.3 Fig-
ure 7 shows the type of the main function called find_conflicts
(which uses two other helper functions not shown). Together, they
define a recursive traversal of the list of rules. For each rule r in the
list, all rules occurring after r are tested for conflict with r by call-
ing conflict_check. This function returns true when the effects
from each rule are different (tested by effectDiff), the rules over-
lap (tested by llCheck), and neither rule contain errors (tested by
validCores, not shown). The find_conflicts function returns
a list of pairs of indices of those rules that conflict.

3 The only modification is that the call to the new conflict_check function
defined here instead of the one in [2].
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Definition effectDiff:
effect -> effect -> bool := fun a1 a2 =>

match a1, a2 with
| permit, deny => true
| deny, permit => true
| _, _ => false
end.

Definition trileanTrue (t:trilean) : bool :=
match t with
| T => true
| _ => false
end.

Definition conflict_check: rule ->
rule -> bool := fun r1 r2 =>

match r1 with (ruleCons e1 s1) =>
match r2 with (ruleCons e2 s2) =>

effectDiff e1 e2 && trileanTrue
(llCheck (toLists s1) (toLists s2)) &&
validCores (toLists s1) &&
validCores (toLists s2)

end
end.

Definition find_conflicts :
list rule -> list (nat*nat).

Figure 7. Finding all conflicts

4. Correctness
In order to express correctness of our algorithm, we must first define
declaratively what it means for two rules to conflict, and then show
that our implementation finds exactly those pairs of rules that satisfy
this definition. As discussed earlier, a conflict occurs between two
rules if one rule permits a request and another denies that same
request, expressed directly as follows:

Definition rule_conflict (r1 r2: rule): Prop:=
exists rq:list reqValue,
(rule_permit rq r1 /\ rule_deny rq r2) \/
(rule_deny rq r1 /\ rule_permit rq r2).

To fill in this definition, we must define rule_permit (defined
in Figure 8) and rule_deny (omitted since it is similar). The
rule_permit function takes a request and a rule, checks to see
if the rule’s effect is permit, and checks that the request applies
to the rule using function sracMatch. This function evaluates each
branch recursively until it gets to a core function, which tests (in
coreMatch) whether the request’s field applies to the particular
function from the rule. The sracMatch function then combines the
evaluations using rules for and, or and not.

We also define the following (omitting its definition and just
showing its type):

Definition rs_conflict:
list rule -> nat -> nat -> Prop := ...

This property is defined using rule_conflict and holds when the
two rules at the given indices in the list of rules are in conflict. Both
rs_conflicts and rule_conflict are the same as in [2], though
the definitions they rely on (e.g., rule_permit, sracMatch, etc.)
are, of course, quite different.

The correctness of the algorithm is expressed by the two the-
orems at the bottom of Figure 9. Recall that the function call
(find_conflicts rs) (discussed in Sect. 3 and defined in Fig-

Definition coreMatch
(reqv:reqValue) (c: core) : trilean :=

if invalidArgs c then NA else
match reqv with
| timeReq req =>

match c with
| any (timeReq r) => T
| empty (timeReq r) => F
| timeInRange m M =>

if m <=b req /\b req <b M
then T else F

| _ => NA
end

| intReq req =>
match c with
| any (intReq r) => T
| empty (intReq r) => F
| intInRange m M =>

if m <=b req /\b req <=b M
then T else F

| intGt m => if m <b req then T else F
| intLt M => if req <b M then T else F
| _ => NA
end

| blank => NA
end.

Fixpoint sracMatch (reql : list reqValue)
(s : srac) : trilean :=

match s with
| single c n =>

coreMatch (nth n reql blank) c
| and s1 s2 =>

sracMatch reql s1 /\t sracMatch reql s2
| or s1 s2 =>

sracMatch reql s1 \/t sracMatch reql s2
| not s1 => ~t sracMatch reql s1
end.

Definition rule_permit (rq : list reqValue)
(rl : rule) : Prop :=
eff rl = permit /\
sracMatch rq (rules rl) = T.

Figure 8. Determining if a rule applies to a request

ure 7) returns a list of integer pairs, corresponding to the index of
each rule, which the algorithm finds to be in conflict. Thus, the
proposition (In (i,j) (find_conflicts rs)) should be true
if and only if there exists a request which applies to both rules as
defined by (rs_conflict rs i j). In the completeness theorem,
we add the condition that (i < j) simply to avoid finding each
conflict twice. These theorems use many lemmas to help prove their
claims, and the most important ones appear in the figure. Most of
the work and lines of code in the Coq formalization come from the
proofs of these lemmas. For example, we proved the correctness of
the overlap for each non-trivial pair of core functions that we cover.

The lemma named coreCheckCorrect is the correctness
lemma for every core function, which uses the lemmas for each
specific pair to complete its proof. This lemma proves both the
soundness and completeness of this part of the algorithm (specif-
ically the coreCheck function). We were also required to show
that all the conversions we did resulted in equivalent rules. This
property is stated as lemma llCorrect. After this lemma are the
lemmas llCheckSound and llCheckComplete which go a step
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Lemma coreCheckCorrect: forall (c1 c2 : core) (reqv : reqValue),
coreMatch reqv (coreCheck c1 c2) = ((coreMatch reqv c1) /\t (coreMatch reqv c2)).

Lemma llCorrect:forall (s : srac) (lr : list reqValue), llMatch (toLists s) lr = sracMatch lr s.

Lemma llCheckSound : forall (s1 s2: srac), llCheck (toLists s1) (toLists s2) = T ->
validCores (toLists s1) = true -> validCores (toLists s2) = true ->
exists lr : list reqValue, (llMatch (toLists s1) lr /\t llMatch (toLists s2) lr) = T.

Lemma llCheckComplete : forall (s1 s2: srac), (exists lr : list reqValue,
(llMatch (toLists s1) lr /\t llMatch (toLists s2) lr) = T) ->
llCheck (toLists s1) (toLists s2) = T.

Theorem conflict_check_soundness: forall r1 r2: rule,
conflict_check r1 r2 = true -> rule_conflict r1 r2.

Theorem conflict_check_completeness: forall r1 r2: rule,
rule_conflict r1 r2 -> (conflict_check r1 r2 = true).

Theorem conflicts_soundness: forall (rs:rule_set)(i j:nat),
In (i, j) (find_conflicts rs) -> rs_conflict rs i j.

Theorem conflicts_completeness: forall (rs:rule_set)(i j:nat),
(i < j) -> rs_conflict rs i j -> In (i, j) (find_conflicts rs).

Figure 9. Lemmas and theorems for correctness

further and prove the correctness for llCheck. Taking one more
step further, we find two theorems (conflict_check_soundness
and conflict_check_completeness) stating the correctness for
conflict_check. These theorems are used to prove the main
theorems for correctness for the highest level of the algorithm
(conflicts_soundness and conflicts_completeness). Their
proofs follow the same structure as the proofs found in [2].

5. Future Work
We have proven that the XACML functions never introduce na
unless there were problems at the policy level (lemma not shown). In
the current implementation, the tests for correctness happen at each
step of the algorithm. Future work will involve removing these tests
and having one that tests the entire policy file before running conflict
detection. This would improve the efficiency of the conflict detection
algorithm, and separate error checking from conflict detection.

A number of XACML’s core functions and types remain unim-
plemented, thus future work will involve adding more of these to the
algorithm’s code base. We have built the program and proofs with
expansions in mind, thus few changes to the current code and proofs
should be needed. For example, if we wanted to add a new type
and/or new functions, we simply need to add the type to reqValue,
add the functions to core, add how they work in coreMatch, how
they combine with other core functions in coreCheck, and prove
the overlaps stated in coreCheck are correct. On a similar topic, we
use integers to encode string equality functions, but are currently
working on adapting our code to use Coq’s string library. This library
would be a more natural fit, but it is not as mature as the libraries
for numbers.

Currently, we can only run our code in Coq after having trans-
lated a XACML policy into Coq code. Once more of XACML has
been implemented, we will extract the code into OCaml and write a
parser (and prove it correct) so that we can test XACML policies in
their original XML format. We will then test the code to see how it
scales for large policies. As the code is based on our previous work
[2], we expect similar positive results for scaling.

Another direction for this work is to improve the library of
tactics we developed for proof automation. For example, they could
be generalized further to prevent proofs from changing too much in
situations such as the one we encountered, where we needed to redo
many proofs in the process of fixing an incorrect hypothesis. These
tactics could not only help with simplifying our current proofs, but
also aid in proving lemmas after the expansion of our results to new
functions and types.

The top level of the algorithm uses the algorithm described in [2].
While there is nothing wrong with the correctness or efficiency of
this algorithm, we plan to re-implement this part in order to return
more useful information. In particular, we will return the overlaps
as opposed to simply stating which rules are in conflict. We have
designed this algorithm so that it knows what the conflicts are at
each step and returns them, but we have not yet incorporated it
into the correctness proof. This is because we started by directly
adopting the structure of the algorithm in [2].

Our algorithm was specifically designed with XACML in mind,
however, since XACML is such a general language, our algorithm
should be able to find conflicts between rules written in any other
language that defines its rules with an effect and a combination of
functions that apply to particular fields.

6. Related Work
There is much work on developing algorithms and tools for analyz-
ing policies. We focus mainly on other work on conflict detection for
XACML, though we also mention a few examples of work on con-
flict detection for other languages as well as other kinds of analyses
developed specifically for XACML.

With regard to our own past work, as mentioned, this work
extends our work on conflict detection for firewalls [2]. We have
also been involved in work on a tool for administering XACML
policies, with a focus on usability aspects for policy administrators
that do not necessarily have a technical background [16, 17]. An
implementation of conflict detection (unverified) was also part of
that work. We have also worked on an analysis that compresses
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XACML policies with the goals of reducing risks of conflicts and
improving the performance of access granting tools [18].

Huonder [8] developed a conflict algorithm that is generic in
the sense that in order to work with concrete XACML policies
it must first be extended with definitions (of XACML functions
and intersections). He also proposes ways to resolve conflicts. For
example, he proposes automatically repairing them by replacing
the rule set with an equivalent one without conflicts. In order to do
so, whenever there is a conflict, it has to be resolved according to
the default resolution policy. For example, if “first-applicable” is
chosen, and a rule that denies the request comes first in the policy,
then all conflicting rules that appear later have to be changed so that
they don’t cover this request. In other words, the overlap has to be
determined and removed. His algorithms are quite different from
ours and not verified. Also, this may resolve the conflicts, but does
not necessarily remove the bugs, and furthermore an automatically
modified policy makes it harder for the policy administrator to read
and understand it. In contrast, our approach provides an opportunity
for the administrator to examine each conflict and determine the
best way to resolve it him/herself.

In [9], a formal tool is used to analyze policies. Policies and
requests are modeled in the Alloy analyzer, and first-order queries
are presented to answer questions such as whether or not there are
two rules in a given policy that conflict. The subset of XACML
considered is simpler than ours. For example, conditions are not
considered, and thus complications such as those resulting from
time constraints are not handled.

In [3], the author proposes another generic conflict algorithm
which can be modified to work with any policy language in which
policies are formulated as sets of rules. This algorithm needs to be
extended with definitions in order to be used with specific languages.
Our work goes much deeper into XACML than this paper does,
allowing our algorithm to be used in actual policies (although
simplified ones at the moment).

In [13] a method for intersecting policy files is proposed. This
work is targeted towards companies trying to merge their policies, in
order to get a combined policy which includes the rules from each
individual company.

In [6], the authors do a change-impact analysis in which they
detect the set of requests which have their access effect changed
when the rule set is modified. They first convert the policies into
a decision-diagram format. When a rule is added to a policy, the
algorithm reports the set of requests such that a permit becomes
a deny (or a deny a permit). We note that this algorithm could be
extended to detect conflicts by removing rules one at a time. Each
time a change is detected, the rule removed is in conflict with at
least one other rule in the set. The intersection between the removed
rule and the conflicting rules is the set of requests the algorithm
reported as being changed. A drawback of this approach is that it
can’t report which rules the removed rule conflicts with. Another
drawback is that this algorithm can’t be used to find redundant rules.
In our algorithm, as mentioned, we can make one small change to
detect redundant rules—simply replacing the call to effectDiff
with a call to a function that checks for both rules having the same
effect.

In [7], the authors perform verification of access control policies
using a SAT solver. They develop a formal model for access
policies that includes combinators that model the policy-combining
algorithms of XACML. They are able to prove, for example, that
a large policy that may be obtained by combining several smaller
policies (possibly with different combinators attached to different
parts of the policy) correctly denies or permits various accesses. As
the authors point out, the semantics of the rule combining operators
are quite complex. They simplify these semantics, use the simplified
model for their verification experiments, but also discuss how the

original semantics can be captured by their model. This kind of
analysis is quite different than ours. We detect conflicts and give
the policy maintainer the opportunity to remove them so that policy
decisions do not rely on the rule-combining mechanisms to correctly
resolve conflicts dynamically. Also, they only consider conditions
on integers and booleans. In addition, they restrict their analysis to
policies that use bounded domains.

Conflict detection is also considered as part of the work in [5].
The authors illustrate how term rewriting can be used to show that
policies satisfy various properties, including consistency, which
indicates the lack of conflicts. They show how this property follows
from the standard property of confluence, which can be checked
by many modern rewriting tools. They also identify a variety of
conditions under which policies can be composed and still retain
consistency. Their work does not address the question of finding and
reporting individual conflicts, but instead focuses on this and other
global properties. Also, their examples focus on simple conditions,
which don’t include time constraints. They also show how the policy-
combining operators of XACML can be incorporated as rewrite rules.
Their handling of these operators suggest a way in which we could
also incorporate them, in our case, by generalizing the definition
of conflict. Working out the details of this generalization is another
subject of future work.

7. Conclusion
We have presented an algorithm for detecting conflicts in XACML
rules for a substantial subset of the XACML policy language that
includes fairly complex conditions. The algorithm is relatively
simple; in fact, because of the goal of proving it correct, it was
simplified over time as the proof proceeded. We have fully verified
its correctness in Coq, along the way defining tactics to automate
proofs, designed to be general enough to be reused in many of
the lemmas in the proof development. Detecting (and removing)
conflicts is an important part of the debugging process for access
control policies.

Our contributions beyond the work reported in our workshop
paper [15] are numerous. Perhaps the most significant was the
incorporation of the and, or, and not operators, which greatly
extend the expressiveness of the sublanguage of XACML that we
now handle. We also now allow more than one condition in rules,
which also extends the expressiveness to include an important part of
XACML. Another significant improvement is our new approach to
handling time ranges, whose benefits were discussed earlier. Finally,
we cover more integer functions of XACML and have extended
the set of requests that can now be handled. (In our previous work,
requests were limited to four arguments, but we have generalized
the algorithm and proof to handle requests represented as lists where
each element of the list can use the logical operators such as and to
form compound expressions.)

As mentioned, one of the main directions of future work is to
extend our results to cover the full expressive power of XACML. In
the context of the work described in [17], a conflict detection pro-
gram that covers a larger sublanguage of XACML was implemented.
The implementation in [17] is in Java and Prolog, and thus the focus
in that work was not on designing an algorithm in Coq that could be
proved correct. However, establishing correctness was understood
to be important from the beginning and we believe that although
significant extensions will be required to the current formal proof
development to handle this larger subset, there will be no significant
obstacles.
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