A Correctness Proof of a Cache Coherence Protocol*

Amy Felty and Frank Stomp
Bell Laboratories
700 Mountain Avenue
Murray Hill, NJ 07974, USA

Abstract

SCI – Scalable Coherent Interface – is a new IEEE standard for specifying communication between multiprocessors in a shared memory model. In this paper we model part of SCI by a program written in a UNITY-like programming language. This part of SCI is formally specified in Manna and Pnueli’s Linear Time Temporal Logic (LTL). We prove that the program satisfies its specification. The proof is carried out within LTL and uses history variables. Structuring of the proof is achieved by means of auxiliary predicates.

1. Introduction

In this paper we formalize and verify part of the SCI (Scalable Coherent Interface) protocol [17]. This protocol is an IEEE standard for specifying communication between shared memory multiprocessors. It is called scalable because the protocol is intended to be performed in a system which may consist of up to 64,000 processors. The correctness proof we present in the current paper is carried out for an arbitrary, finite number of processors (and not for some maximum number of processors).

Our model of the protocol has been extracted from the informal description of a document from 1990 when the SCI protocol had been proposed as an IEEE standard. (It became a standard in 1992.) The SCI protocol is large and complex. For this reason, we consider only the cache coherence portion of this protocol. In addition, we model only an abstraction of this portion. For example, we do not keep track of processors which want to read only (and not write) and we consider the problem with one cache line only. (Multi cache lines require a straightforward extension of the proof. In essence, we need copies of our current proof.) Also, in our model of the protocol we assume messages sent from one process to another process arrive at the latter process in the same order as sent. In the standard this is not necessarily the case. For any proof of this complexity and size, it is essential for both the verifier and the reader to structure the proof. We do so by formulating a number of lemmata, each of which can be proved directly or using previously formulated (and proved) lemmata. Also, we introduce a number of auxiliary predicates as an abstraction mechanism. In addition, for rather big lemmata we prove properties under certain assumptions, which are then later discharged.

Our part of the SCI protocol is formally modeled by a program written in a guarded command programming language similar toUNITY [5]. Its specification is formulated in Manna and Pnueli’s Linear Time Temporal Logic (LTL) [29]. We prove within LTL that the program meets its specification. A history variable is used in order to reason about the program’s communication behavior. Managing the complexity of the correctness proof is accomplished by means of auxiliary predicates. In addition to these auxiliary predicates and the history variable, we also use logical variables in our correctness proof. They are used to freeze the values of the history and of certain program variables during a computation when reasoning about the program.

The presence of multiple caches introduces the problem of coherence. According to [4] a memory scheme is coherent if the value returned on a read is the value given by the latest store with the same address. Coherence is usually achieved by snooping. In essence, all processors listen to a bus, and either invalidate or update their caches when data is written into memory. This kind of cache coherence protocols relies on a broadcasting mechanism. They do not scale well because the bus becomes a bottleneck. In non-snooping cache coherence algorithms it is often the case that memory keeps track of the caches which may be affected when data is written into memory. In this case the bottleneck is at the memory controller. To overcome these bottlenecks the SCI protocol decentralizes the communication. Broadcast is replaced by point-to-point communication which requires more messages per read/write but messages are sent only to the relevant processes. For bookkeeping, doubly linked lists of processes are used to keep track of the caches which need
to be updated when data is modified.

An attempt to validate the program verified in the current paper has been made by the model checking community. Holzmann [14] using SPIN [15], Kurshan [22] using COSPAN [23], and Long and McMillan [27] using SMV [30] report to have validated the program for up to five processes. The problem that each of the model checkers face in this case is the state explosion problem.

Other work on the formal specification of the SCI protocol has been carried out by Gjessing et al. [9, 10]. Using stepwise refinement, multiple layers of the protocol are formalized at different levels of abstraction and functions are defined which map one level to the next. The lowest level of formal description is comparable with the C-code specification in the SCI document. This formalization work is part of an ongoing effort to fully verify the SCI cache coherence protocol. Stern and Dill [36] describe an ongoing project of automatically verifying the SCI protocol. They have discovered several errors in the C-code which defines that protocol. An overview of the SCI protocol and related projects can be found in [12].

There is a vast amount of work done on other cache coherence algorithms, see, e.g., [1, 34, 35, 16] to name just a few of them. The algorithm proposed by Afek, Brown, and Merritt in [1] explores a formalization of Lamport’s notion of sequential consistency [25]. (Whereas cache coherence ensures that processors have a consistent view of the cache, sequential consistency addresses the question in what order data writes are observed by other processors [32].) This algorithm has recently been the subject of various verification methods: Brinksma [3] uses queue-like action transducers; Gerth [8] uses a generalized version of refinement; Graf [11] uses abstraction and model checking; Janssen, Poel, and Zwiers [18] apply a compositional approach; Jonsson, Pnueli, and Rump [19] apply a partial order transducer; Katz [20] uses ISTL [21]; Ladkin, Lamport, Olivier, and Roegel [24] apply the temporal logic TLA [26]; Lowe and Davies [28] use CSP [13]. In each of these proofs the emphasis is on sequential consistency. Pong and Dubois [33] present a general technique for verifying cache coherence protocols. They use a symbolic representation of the system state keeping track of whether the caches have 0, 1, or multiple copies. We are not convinced that their technique is applicable to the algorithm analyzed in the current paper, because of the doubly linked list. Other cache coherence protocols have been validated in [6] and in [31], using the model checker SMV.

The rest of this paper is organized as follows: In the next section we introduce some basic notions and notation. Both the informal and formal descriptions of the algorithm analyzed in our paper are given in Section 3. The algorithm’s formal specification in formulated in Section 4. Section 5 contains a proof that the algorithm satisfies its specification.

We have not employed any form of automation in our proof. Formalizing the correctness proof using a theorem prover is left for future research. Finally, Section 6 draws some conclusions.

2. Preliminaries

The system considered in this paper consists of a process \(m\) called memory and a number of processes called processors to distinguish them from \(m\). The set of all processors is denoted by \(\mathcal{P}\). The term process denotes either a processor or memory. Every process has its own identity distinct from the identities of all other processes.

The cache coherence algorithm is modeled in a guarded command language similar to UNITY [5]. The program consists of a state formula and a (finite) set of guarded actions. The state formula describes the states in which the program may start its execution.

Our program consists of send- and receive-commands as well as the more conventional statements such as assignments and conditionals. To be more precise, every process \(p\) in the system maintains its own message queue \(buf[p]\) to record messages which have been sent to, but not yet received by, \(p\). Sending message \(M\) from process \(p\) to \(q\) is achieved by \(p\) executing the send-command \(buf[q]!M\). This causes message \(M\) to be appended to queue \(buf[q]\).

As usual in the description of network algorithms, we distinguish between different types of messages. A type is identified with a string of characters. A message of type \(T\) and arguments \(args\) is represented by \(T(args)\). To allow a receiving process to determine the identity of the sender of a message, the first component of \(args\) is always the identity of that message’s sender. (This restriction could be relaxed. We refrain from doing so because it eases our proof.)

A receive-command is of the form \(buf[p]?T(args)\). Command \(buf[p]?T(args)\) can be executed by process \(p\) only if \(buf[p]\)’s first message is of type \(T\) in the state of its execution. In this case, we say that the receive-command is enabled in that state. Its execution causes process \(p\) to receive the first message of the queue, and to delete this message from the queue.

The guard of an action is either a boolean condition or a receive-statement. In case of a boolean condition, we say that guard \(g\) is enabled in some state if \(g\) evaluates to true in that state.

In the semantics of programs, we use history variable \(h\) which can take sequences as values. The empty sequence is denoted by \(\epsilon\). Every element in sequence \(h\) is of the form \(\langle send, p, M, q\rangle\), to denote that process \(p\) has sent message \(M\) to process \(q\), or \(\langle rec, p, M, q\rangle\), to denote that process \(q\) has received message \(M\) from process \(p\). As usual, variable \(h\) is updated whenever a send- or receive-command is
executed. E.g., if \textit{buf} [q]!M is executed by process \textit{p}, then \langle \textit{Snd}, \textit{p}, M, q \rangle is appended to \textit{h}.

Our program always starts in a state satisfying \textit{h} = \epsilon. Let \textit{P} \equiv (\Theta, A) denote this program, where \Theta describes the state in which the program may start its execution, and where \textit{A} describes the program’s set of actions. Let \textit{\tau} denote the idling action [29]. A computation sequence of \textit{P} is an infinite sequence \textit{s}0 \xrightarrow{a1} \textit{s}1 \xrightarrow{a2} \textit{s}2 \cdots \textit{sn} \cdots \textit{sn} \cdots of states \textit{sn} and actions \textit{an} \in \textit{A} \cup \{ \textit{\tau} \} (n \geq 0), such that \textit{s}0 satisfies formula \Theta, and such that for all \textit{n} \geq 0 the following is satisfied:

- Either some action \textit{an} \in \textit{A} is enabled in state \textit{sn}, and \textit{sn}+1 is the state resulting when \textit{an} is fired in \textit{sn}; or no action in state \textit{sn} is enabled, \textit{sn} = \textit{sn}+1, and \textit{an} = \textit{\tau}.
- Every action in \textit{A} which is enabled from some point onwards in the sequence is eventually taken (weak fairness [7]).

An obvious property which holds continuously during execution of the program is: The sequence of messages received by process \textit{q} from process \textit{p} is a prefix of the sequence of messages sent by \textit{p} to \textit{q}. Let \textit{h} \langle \textit{Rec}, \textit{p}, \textit{q} \rangle denote the sequence of messages in sequence \textit{h} that have been received by process \textit{q} from process \textit{p}; it is obtained by projection of \textit{h} onto elements of the form \langle \textit{Rec}, \textit{p}, \textit{T}(\textit{args}), \textit{q} \rangle. Similarly, let \textit{h} \langle \textit{Snd}, \textit{p}, \textit{q} \rangle denote the sequence of messages in sequence \textit{h} that have been sent by process \textit{p} to process \textit{q}. The property of the program mentioned above is then expressed by \textit{h} \langle \textit{Rec}, \textit{p}, \textit{q} \rangle \subset \textit{h} \langle \textit{Snd}, \textit{p}, \textit{q} \rangle, where \subset denotes the usual prefix operator on sequences.

As discussed, message queue \textit{buf} [\textit{p}] takes sequences consisting of elements of the form \textit{T}(\textit{args}) as values. Intuitively, \textit{buf} [\textit{p}] is the sequence of messages sent to, but not yet received by \textit{p}. Let \textit{buf} [\textit{p}] \langle \textit{q} \rangle denote the sequence of messages in \textit{buf} [\textit{p}] of the form \textit{T}(\textit{q}, \textit{args})\textit{s}, i.e., those messages sent by \textit{q} to \textit{p} but not yet received by \textit{p}. (Recall that the first component of a message is the identity of a process.)

For sequences \textit{h}1, \textit{h}2, let \textit{h}1 \uplus \textit{h}2 denote the sequence obtained by appending \textit{h}2 to \textit{h}1; and let \textit{h}1 \cap \textit{h}2 denote the difference between sequences \textit{h}1 and \textit{h}2, i.e., \textit{h}1 \cap \textit{h}2 = \textit{h} if \textit{h}2 \cap \textit{h} = \epsilon; it is \epsilon, otherwise. The following holds continuously during execution of the program: \textit{h} \langle \textit{Snd}, \textit{p}, \textit{q} \rangle \cap \textit{h} \langle \textit{Rec}, \textit{p}, \textit{q} \rangle = \textit{buf} [\textit{q}] \langle \textit{p} \rangle, i.e., the sequence of messages sent from \textit{p} to \textit{q} not yet received by \textit{q} can be found (in the same order as sent) in \textit{q}'s buffer. In other words, if some message is in process \textit{p}'s buffer, then that message has been sent to \textit{p} (hence, recorded in \textit{h}), and that message has not yet been received by \textit{p}. Thus, messages sent from one process to another process are received in the same order as sent.

Throughout this paper we use Manna and Pnueli’s Linear Time Temporal Logic LTL [29]. In particular, we use the temporal operators \( \square \) (always), \( \diamond \) (eventually), \( O \) (next), \( W \) (weak-until), and \( U \) (strong-until). Note that the \( \diamond \) operator can be derived from the \( \square \) operator; and that the \( U \) operator can be derived from the \( W \)- and the \( \diamond \)-operator.

\section{Program}

We now present the informal and formal descriptions of the program analyzed in the rest of this paper.

\subsection{Informal Description}

Memory \textit{m} maintains its (own) variables \textit{cv}m, \textit{status}m, and \textit{head}m. Variable \textit{cv}m (\textit{m}'s cache value) records the cache from \textit{m}'s point of view. For ease of exposition, we assume that the value of \textit{cv}m is always some natural number. The initial value of \textit{cv}m is irrelevant.

Variable \textit{status}m has initial value \textit{Home}. This variable can take the values \textit{Home}, \textit{Fresh}, or \textit{Gone}. Intuitively, \textit{head}m records the processor to which \textit{m} has last sent a response to a read- or write-query and for which a read- or write-query is in progress. (It is \textit{nil} if no such process exists.) Roughly, a read/write query is in progress for a processor after it has indicated that it wants to read or write until it goes off the doubly linked list mentioned in Section 1. During this period a series of messages is exchanged and the processor might be granted permission to read or write the cache.

Every processor \textit{p} maintains its (own) variables \textit{cv}p, \textit{status}p, \textit{head}p, \textit{succ}p, and \textit{pred}p.

Variable \textit{cv}p (\textit{p}'s cache value), whose initial value is irrelevant, records the cache from processor \textit{p}'s point of view. Similarly to memory's variable \textit{cv}m, it is assumed that the value of \textit{cv}p is always a natural number.

To describe the interpretation of variable \textit{cs}p (\textit{p}'s cache status), we introduce the notion of the owner of the cache: If there are no write-queries in progress, then we say that \textit{m} is the owner of the cache; otherwise, the processor to which \textit{m} has last sent a response to a read- or write-query and for which a read- or write-query is in progress is the owner of the cache. This description is not precise, but suffices for the informal explanation of the algorithm. The notion of the owner of the cache will be formally defined in Section 4.

Variable \textit{cs}p's initial value is \textit{invalid}. This is also its value when \textit{p} has no read- or write-requests in progress. (In this case, the processor has no interest in the cache value and might have an incorrect value. The processor must reissue
a query to get the correct value.) It has value dirty, if for
some processor, possibly different from \( p \), a write-request
is in progress and \( p \) is the owner of the cache. It is fresh,
otherwise. As with the notion of the owner of the cache,
the description of the intuition behind variable \( c_s_p \) is again
imprecise. The value of \( c_s_p \) may be invalid if \( p \) has made
a read- or write-query but is not yet part of the shared list
which we introduce below.

The initial value of the variables \( \text{pred}_p \) and \( \text{succ}_p \) is nil.
This is also the value of these variables when no read- or
write-request is in progress. When processors issue read-
or write-requests (to memory), they will always receive a
response back (from memory). Intuitively, when such a
request is in progress for processor \( p \), \( \text{succ}_p \) records the
processor \( q \) such that the following is true: Prior to \( p \), \( m \)
has most recently sent a response to \( q \), and a read- or write-
request is in progress for \( q \). (It is nil, if no such process
exists.) Analogously, when a read- or a write-request is in
progress for processor \( p \), \( \text{pred}_p \) records the next processor
after \( p \) that received a response from memory and for which
a read- or write-request is in progress. (It is \( m \), if no such
processor exists.) Thus, in an idealized view, the processors
for which there is a read- or write-request in progress form a
doubly linked list. For processor \( p \), \( \text{succ}_p \) identifies the next
element in the list, and \( \text{pred}_p \) identifies the previous element
in the list. Following [17] we call this list the shared list.
(The idealized view may be corrupted because the processes
perform their computation concurrently with respect to each
other.)

The last variable to be discussed is \( \text{status}_p \), for processor
\( p \). It can take the values:

- **Off**, if no read- or write-request is in progress for pro-
cessor \( p \).

- **Pending**, if \( p \) has issued a read- or a write-request and
it is waiting for a response (from memory).

- **Inqueue**, if \( p \) has received the response from memory
to its read- or write-request and \( p \) attempts to prepend
to the shared list.

- **Inlist**, if \( p \) has succeeded in joining the shared list.

- **Delright**, if \( p \) attempts to go off the shared list
and notifies the processor identified by \( \text{succ}_p \) of this.

- **Delleft**, if \( p \) attempts to go off the shared list and notifies
the processor identified by \( \text{pred}_p \) of this.

- **Ftod (Fresh to dirty)**, if \( p \) has a read-query in progress
and issues a request to \( m \) to modify the cache.

- **Purging**, if \( p \) has permission to write and is in the phase
of deleting all other processors from the shared list.

We are now ready to discuss the algorithm. We relate the
discussion to actions in the formal description of the algorithm
given in Section 3.2.

If processor \( p \) is in the Off state (\( \text{status}_p = \text{Off} \) holds),
then it can send a message \( \text{read}_p \text{cache}_\text{fresh}(p) \) to memory
indicating that \( p \) wants to read the cache; or a message
\( \text{read}_p \text{cache}_\text{gone}(p) \) indicating that \( p \) wants to modify the
cache. Processor \( p \) then goes to the Pending state waiting
for a response from memory. (Cf. the actions labeled \( p_1 \)
and \( p_2 \) in Section 3.2.)

If memory \( m \) receives \( \text{read}_p \text{cache}_\text{fresh}(p) \), then it
sends a message \( \text{read}_p \text{cache}_\text{freshR} \) as a response to \( p \). This
message carries 4 arguments. The first one is the identity
of \( m \); the second one is the processor which will be \( p \)'s
successor in the shared list (this value is nil if the shared list
is empty and \( p \) will become the only processor in the shared
list); the third argument is the value of \( c_v_m \); and the fourth
argument is either gone if \( m \) is not the owner of the cache,
or ok otherwise. Memory also updates its variable \( \text{head}_m \)
(from \( m \)'s point of view \( p \) is the new head of the shared list).
If \( p \) is the first processor on the list from \( m \)'s point of view,
then \( m \) goes to the \( \text{Fresh} \) state. (Cf. the action labeled \( m_1 \)
in Section 3.2.)

If memory \( m \) receives message \( \text{read}_p \text{cache}_\text{gone}(p) \),
then it sends a message \( \text{read}_p \text{cache}_\text{goneR} \) back to \( p \). This
message also carries 4 arguments with the same interpre-
tation as the ones in \( \text{read}_p \text{cache}_\text{freshR} \). As in the case
of message \( \text{read}_p \text{cache}_\text{fresh}(p) \), \( m \) updates its variable
\( \text{head}_m \). Finally, \( m \) goes to the \( \text{Gone} \) state. (There is at least
one write-request in progress.) (Cf. the action labeled \( m_2 \)
in Section 3.2.)

When \( p \) receives message
\( \text{read}_p \text{cache}_\text{freshR}(m, q, c_v, \text{arg}) \) it assigns \( m \) to \( \text{pred}_p \). (From \( p \)'s point of view it is the processor to which \( m \)
has last sent a response to a read- or write-query and for which
a read- or a write-query is in progress.) Now, if \( q \) is nil then \( p \)
immediately goes to the shared list, and \( p \) becomes the only
processor in the list. It records the value of \( m \)'s cache and
also records that this is a fresh copy. Otherwise, if \( q \) is not
nil, then \( p \) attempts to prepend to the shared list by sending
message \( \text{preprend}(p) \) to \( q \). If \( \text{arg} = \text{gone} \) holds then \( c_s_p \)
remains invalid and the proper value of the cache will be
transferred to \( p \) at a later stage in the computation. This
possibility occurs if memory was not the cache owner at the
time it responded to \( p \)'s query. In this case \( p \) must get its
cache value and cache status from its successor in the shared
list later, and may then become the owner of the cache. Ad-
ditional action is taken only if \( \text{arg} = \text{ok} \) holds. If this is so,
then processor \( p \) records the value of \( m \)'s cache and records
that it now has a fresh copy of the cache. (Cf. the action la-
beled \( p_3 \) in Section 3.2.) In the case of a \( \text{read}_p \text{cache}_\text{goneR} \)
message, \( p \) also records that it has become the owner of
the cache, by assigning value \text{dirty} to its variable \( c_s_p \). (Cf. the
Upon receipt of message prependQ\((q, \text{nil}, \text{ok}, \text{cv}_q, \text{cs}_q)\), a processor \(q\) grants permission to processor \(p\) to prepend to the shared list provided that \(q\) is in the Inlist state, by sending message prependR\((q, q, \text{ok}, \text{cv}_q, \text{cs}_q)\) back to \(p\). The first argument is, as for all messages, the identity of the sender; the second argument is the identity of the head of the shared list; the third argument indicates permission to prepend to the shared list. If this permission is granted, then \(q\) records that processor \(p\) is \(q\)’s new predecessor. (For this purpose, the variable \(\text{pred}_q\) is used.) If \(q\) was the owner of the cache, then it passes ownership on to \(p\). Processor \(q\) then records that it is not the owner of the cache any more (by assigning \text{fresh} to its variable \text{cs}_q). It sends message prependR\((q, \text{nil}, \text{ok}, \text{cv}_q, \text{cs}_q)\) when \(q\) is in the phase of notifying its predecessor that it is going off the shared list, and that the shared list becomes empty. In this case, \(p\) can safely prepend. Processor \(q\) sends message prependR\((q, r, \text{retry}, \text{cv}_m, \text{cs}_m)\) in all other cases to notify \(p\) that \(p\) cannot prepend (yet) and that it should redirect its request to processor \(r\). Argument \(r\) is \text{succ}_q if processor \(q\) is going off the shared list. Otherwise processor \(q\) does not go off the shared list and \(r = q\) holds. (Cf. the action labeled \((p5)\) in Section 3.2.)

After processor \(p\) has received message prependR\((q, r, \text{arg}, \text{cv}, \text{cs})\), \(p\) retries to prepend to the shared list if \(\text{arg} = \text{retry}\) holds. It does so by sending message prependQ\((p)\) to processor \(r\). If, on the other hand, \(\text{arg} = \text{ok}\) holds, then \(p\) gets onto the shared list and becomes the new head of the list. More precisely, \(p\) goes to the Inlist state, and records that \(r\), which is either the identity of a processor or \text{nil}, is its successor. Processor \(p\) also assigns the values of \(\text{cv}\) and \(\text{cs}\) to \(\text{cv}_p\) and \(\text{cs}_p\), respectively, if \(\text{cs}_p\) was \text{invalid}. (Cf. the action labeled \((p6)\) in Section 3.2.) (The value of \(\text{cs}_p\) is \text{invalid} if memory was not the owner of the cache when it sent its response to \(p\)’s read- or write-query.)

In the Inlist state, processor \(p\) has several possibilities:

(a) It may attempt to modify the cache when it is the owner of the cache. This case occurs if \(\text{cs}_p = \text{dirty}\) holds. As will be shown in our correctness proof, this occurs when \(p\) is at the head of the shared list. If no other processors are in the shared list, then \(p\) simply modifies the cache. If other processors are part of the shared list, then \(p\) notifies them to go off the list. Other processors are in the shared list if \(\text{succ}_p \neq \text{nil}\) holds. To purge processors from the list, \(p\) sends message purgeQ\((p)\) to its successor in the list. In order to record that \(p\) is purging processors, \(p\) goes to the Purging state. (Cf. the action labeled \((p7)\) in Section 3.2.)

A processor \(q\) receiving message purgeQ\((p)\) records that it is off the shared list by setting both its variables \(\text{succ}_q\) and \(\text{pred}_q\) to \text{nil}. Processor \(q\) also sets its variable \(\text{cs}_q\) to \text{invalid}. If \(q\) is in the Inlist state, then it simply goes to the Off state. Otherwise, as we will show, processor \(q\) has issued some query to some other processor, and waits until it has received a response to that query before \(q\) goes to the Off state. In either case, \(q\) sends a message purgeR\((q, r)\) back to processor \(p\). Argument \(r\) is the processor that follows \(q\) in the shared list if such a processor exists; otherwise, \(r = \text{nil}\) holds. (Cf. the action labeled \((p16)\) in Section 3.2.)

When \(p\) receives message purgeR\((q, r)\), it continues purging processor \(r\) until it has received a message purgeR\((q', \text{nil})\), for some processor \(q'\). This means that the shared list consists only of processor \(p\). In this case, \(p\) can safely modify the cache; and \(p\) goes back into the Inlist state. (Cf. the action labeled \((p17)\) in Section 3.2.)

(b) Processor \(p\) is at the head of the shared list, and may attempt to modify the cache, even though it is not the owner of the cache. This happens when \(p\) has issued a read query before, but now decides that it wants to modify the cache.

From our correctness proof it follows that in this case, \(\text{cs}_p = \text{fresh}\) and \(\text{pred}_p = m\) holds. Processor \(p\) issues a query (to memory) to transfer ownership of the cache to \(p\) by sending message modifydataQ\((p)\) to \(m\) and going into the Fiod state to wait for a response. (Cf. the action labeled \((p8)\) in Section 3.2.)

Upon receipt of message modifydataQ\((p)\), memory grants permission to \(p\) to modify the cache if \(p\) is also the head of the shared list from \(m\)’s point of view. It does so by sending message modifydataR\((m, \text{ok})\) to processor \(p\) and going into the Gone state. (Now, there exists at least one processor which attempts to modify the cache.) If \(p\) is not the head of the shared list from \(m\)’s point of view, then \(m\) does not grant permission to modify the cache by sending message modifydataR\((m, \text{reject})\) to processor \(p\). (Cf. the action labeled \((m4)\) in Section 3.2.)

When processor \(p\) receives response modifydataR from memory, \(p\) goes back into the Inlist state. If it has been granted permission to modify the cache, then \(p\) records this by changing its variable \(\text{cs}_p\) from \text{fresh} to \text{dirty}. (Ownership of the cache has been transformed from \(m\) to \(p\).) (Cf. the action labeled \((p9)\) in Section 3.2.)

(c) Processor \(p\) attempts to go off the shared list.

In this case, \(p\) has to inform its predecessor and its successor in the shared list (if any) that it is attempting to go off the list. If \(p\) has a successor in the shared list, then it sends a message delrightQ\((p, \text{pred}_p, \text{cs}_p)\) to its successor \(q\) and goes into the Delright state. This message is to be interpreted as a request of \(p\) to \(q\) to go off the list. (Cf. the action labeled \((p10)\) in Section 3.2.)
When \( q \) has received message \( \text{delleftQ} \), it grants \( p \)'s query, provided that \( q \) itself is not waiting for any response due to an outstanding query and provided that \( q \)'s predecessor is \( p \) indeed. Processor \( q \) does so by sending message \( \text{delrightR}(q, \text{ok}) \) to \( p \) and by recording its new predecessor in the shared list. If ownership of the cache has to be passed from \( p \) to \( q \), then \( q \) also copies the third argument of the \( \text{delrightQ} \) message into its variable \( cs_q \). The query associated with the \( \text{delrightQ} \) message is not granted by \( q \) if \( q \) is waiting for a response to one of its own queries, or if \( p \) is not its predecessor in the shared list (from \( q \)'s point of view.) In this case, \( q \) sends message \( \text{delrightR}(q, \text{reject}) \) to \( p \). (Cf. the action labeled \( p12 \) in Section 3.2.)

Now if processor \( p \) receives message \( \text{delrightR} \) it may be that \( p \) was purged off the list in the meantime. In this case, its variable \( cs_p \) will have value \textit{invalid} and it will go directly to the \textit{Off} state. If \( p \) has not been purged its behavior is as follows: If \( p \) receives a message \( \text{delrightR}(q, \text{reject}) \), then \( p \) simply goes back into the \textit{Inlist} state, because no permission had been granted to \( p \) to go off the list. If \( p \), on the other hand, receives a message \( \text{delrightR}(q, \text{ok}) \) then \( p \) has to inform its predecessor in the shared list that it is going off the list. Informing the predecessor that \( p \) is going off the shared list is also immediately done if \( p \) has no successors in the list (without going through the \textit{Delright} state). To do so, \( p \) sends message \( \text{delleftQ}(q, \text{succ}_p, cv_p) \) to the process (which might be memory) identified by variable \( \text{pred}_p \), and goes into the \textit{Dellest} state. (Cf. the actions labeled \( p11 \) and \( p13 \) in Section 3.2.)

To describe the response to message \( \text{delleftQ} \), we distinguish 2 cases:

(c1) Message \( \text{delleftQ} \) is received by memory.

If \( p \) is not the head of the shared list from \( m \)'s point of view, then \( m \) sends a message \( \text{delleftR}(m, \text{reject}) \) to processor \( p \). This message is not to be interpreted as a rejection to \( p \) of \( m \) to go off the list, but rather as information that \( p \) should retry to send other \( \text{delleftQ} \) messages later because the shared list is in the process of being modified.

If \( p \) is the head of the list from \( m \)'s point of view, then \( m \) informs \( p \) that it can go off the shared list. Memory \( m \) does so, by sending a message \( \text{delleftR}(m, \text{ok}) \) to \( p \). Memory \( m \) then copies the value of the third argument of message \( \text{delleftQ} \) into its variable \( cv_m \) (\( p \) could have been the owner of the cache and modified it.) It records that the processor identified by the second argument of the \( \text{delleftQ} \) message is the new head of the shared list. Note that there is no such processor if this argument is \textit{nil}. In this case, memory \( m \) goes back to the \textit{Home} state because no read- or write queries are in progress any more. (Cf. the action labeled \( m3 \) in Section 3.2.)

(c2) Message \( \text{delleftQ} \) is received by processor \( q \).

First processor \( q \) checks if \( p \) is its successor in the shared list. It then also checks if it is either not waiting for a response, is waiting for a \( \text{modifydataR} \) message, or is waiting for a \( \text{delrightR} \) message. (These responses do not cause processor \( q \) to change the shared list.) If so, \( q \) sends message \( \text{delleftR}(q, \text{ok}) \) to processor \( p \) to inform \( p \) that it can safely go off the list. Processor \( q \) also updates its successor in the shared list (by using the second argument of the \( \text{delleftQ} \) message it received). There is no need for processor \( q \) to update its variable \( cv_q \) because \( p \) is not at the head of the shared list, hence not the owner of the cache.

In all other cases, \( q \) sends message \( \text{delleftR}(q, \text{reject}) \) to \( p \), to inform \( p \) to resend the \( \text{delleftQ} \) message later (cf. case (c1) above). (Cf. the action labeled \( p14 \) in Section 3.2.)

Upon receipt of message \( \text{delleftR} \), processor \( p \) immediately goes to the \textit{Off} state, if some processor has purged him off the list (i.e., when \( cs_p = \text{invalid} \)), or if \( p \) has been informed that it is safe to go off the list (i.e., when \( \text{arg} = \text{ok} \). (Cf. the case of \( \text{delrightR} \) messages.) Otherwise, if \( p \) receives message \( \text{delleftR}(q, \text{reject}) \), then \( p \) retries to go off the list by again sending message \( \text{delleftR} \) to its predecessor (which may be another processor than when it first sent that message). (Cf. the action labeled \( p15 \) in Section 3.2.)

This completes our informal description of the algorithm.

3.2. Formal Description

As mentioned before, a program consists of an initial condition and a finite collection of actions. We first specify the initial condition, and thereafter the actions.

Initially, no communication has taken place and all the buffers are empty; process \( m \) is in the \textit{Home} state and its variable \( \text{head}_m \) has value \textit{nil}; and every processor is in the \textit{Off} state, its own cache-status is \textit{invalid}, and its forward and backward pointers have value \textit{nil}. Thus, the initial condition is the conjunction of

- \( h = \epsilon \),
- \( \text{status}_m = \text{Home} \land \text{buf}[m] = \epsilon \land \text{head}_m = \text{nil} \), and
- for all \( p \in P \), \( \text{status}_p = \text{Off} \land \text{buf}[p] = \epsilon \land \text{cs}_p = \text{invalid} \land \text{succ}_p = \text{nil} \land \text{pred}_p = \text{nil} \).
The collection of actions is specified below. There, \( z := ? \) denotes the random assignment to model writing the cache.

### Processor \( p \)

1. \( \text{status}_p = \text{Off} \) 

   - \( \text{buf}[m]!\text{read\_cache\_freshQ}(p) ; \text{status}_p := \text{Pending} \)

2. \( \text{status}_p = \text{Off} \) 

   - \( \text{buf}[m]!\text{read\_cache\_goneQ}(p) ; \text{status}_p := \text{Pending} \)

3. \( \text{buf}[p]!\text{read\_cache\_freshR}(q, r, cv, arg) \rightarrow \) 

   - if \( r = \text{nil} \) then \( \text{status}_p := \text{Inlist} ; \text{cv}_p := cv ; \text{cs}_p := \text{fresh} \) 

   - else \( \text{buf}[r]!\text{prependQ}(p) ; \text{status}_p := \text{Inqueue} ; \) 

   - if \( \text{arg} = \text{ok} \) then \( \text{cv}_p := cv ; \text{cs}_p := \text{dirty} \) 

4. \( \text{buf}[p]!\text{read\_cache\_goneR}(q, r, cv, arg) \rightarrow \) 

   - \( \text{pred}_p := q \) 

   - if \( r = \text{nil} \) then \( \text{status}_p := \text{Inlist} ; \text{cv}_p := cv ; \text{cs}_p := \text{dirty} \) 

   - else \( \text{buf}[r]!\text{prependQ}(p) ; \text{status}_p := \text{Inqueue} ; \) 

   - if \( \text{arg} = \text{ok} \) then \( \text{cv}_p := cv ; \text{cs}_p := \text{dirty} \) 

5. \( \text{buf}[p]!\text{prependQ}(q) \rightarrow \) 

   - if \( \text{status}_p = \text{Inlist} \) then \( \text{buf}[q]!\text{prependR}(p, p, ok, cv_p, cs_p) ; \text{pred}_p := q \) 

   - if \( \text{cs}_p = \text{dirty} \) then \( \text{cs}_p := \text{fresh} \) 

   - else \( \text{status}_p := \text{Delleft} \) 

   - then if \( \text{succ}_p = \text{nil} \) then \( \text{buf}[q]!\text{prependR}(p, \text{nil}, ok, cv_p, cs_p) ; \text{cs}_p := \text{invalid} ; \text{pred}_p := \text{nil} \) 

   - else \( \text{buf}[q]!\text{prependR}(p, \text{succ}_p, \text{retry}, cv_p, cs_p) ; \text{cs}_p := \text{invalid} ; \text{pred}_p := \text{nil} ; \text{succ}_p := \text{nil} \) 

   - else \( \text{buf}[q]!\text{prependR}(p, r, cv_p, cs_p) \) 

6. \( \text{buf}[p]!\text{prependR}(q, r, arg, cv, cs) \rightarrow \) 

   - if \( \text{arg} = \text{ok} \) then \( \text{status}_p := \text{Inlist} ; \text{succ}_p := r ; \) 

   - if \( \text{cs}_p = \text{invalid} \) then \( \text{cs}_p := cv ; \text{cs}_p := \text{cs} \) 

   - else \( \text{buf}[r]!\text{prependQ}(p) \) 

7. \( \text{status}_p = \text{Inlist} \land \text{cs}_p = \text{dirty} \rightarrow \) 

   - if \( \text{succ}_p = \text{nil} \) then \( \text{buf}[\text{succ}_p]!\text{purgeQ}(p) ; \text{status}_p := \text{Purging} ; \text{succ}_p := \text{nil} \) 

   - else \( \text{buf}[\text{cs}_p]!\text{purgeQ}(p) ; \text{status}_p := \text{Delleft} \) 

8. \( \text{status}_p = \text{Inlist} \land \text{cs}_p = \text{fresh} \land \text{pred}_p = m \rightarrow \) 

   - \( \text{buf}[m]!\text{modifydataQ}(p) ; \text{status}_p := \text{Ftod} \) 

9. \( \text{buf}[p]!\text{modifydataR}(q, arg) \rightarrow \) 

   - \( \text{status}_p := \text{Inlist} ; \) 

   - if \( \text{arg} = \text{ok} \) then \( \text{cs}_p := \text{dirty} \) 

10. \( \text{status}_p = \text{Inlist} \land \text{succ}_p \neq \text{nil} \rightarrow \) 

    - \( \text{buf}[\text{succ}_p]!\text{delrightQ}(p, \text{pred}_p, \text{cs}_p) ; \text{status}_p := \text{Delright} \) 

11. \( \text{status}_p = \text{Inlist} \land \text{succ}_p = \text{nil} \rightarrow \) 

    - \( \text{buf}[\text{pred}_p]!\text{delleftQ}(p, \text{nil}, cv_p) ; \text{status}_p := \text{Delleft} \) 

12. \( \text{buf}[p]!\text{delrightQ}(q, r, cs) \rightarrow \) 

    - if \( \text{status}_p = \text{Inlist} \land \text{pred}_p = q \) then \( \text{buf}[q]!\text{delrightR}(p, \text{ok}) ; \text{pred}_p := r \) 

    - if \( \text{cs} = \text{dirty} \) then \( \text{cs}_p := \text{cs} \) 

    - else \( \text{buf}[q]!\text{delrightR}(p, \text{reject}) \) 

13. \( \text{buf}[p]!\text{delleftQ}(q, arg) \rightarrow \) 

    - if \( \text{cs}_p = \text{invalid} \) then \( \text{status}_p := \text{Off} \) 

    - else \( \text{arg} = \text{reject} \) then \( \text{status}_p := \text{Inlist} \)

### Memory \( m \)

1. \( \text{buf}[m]!\text{read\_cache\_freshQ}(p) \rightarrow \) 

   - if \( \text{status}_m = \text{Done} \) then \( \text{buf}[p]!\text{read\_cache\_freshR}(m, \text{head}_m, \text{cv}_m, \text{gone}) \) 

   - else \( \text{buf}[p]!\text{read\_cache\_freshR}(m, \text{head}_m, \text{cv}_m, \text{ok}) \) 

   - \( \text{head}_m := p \) 

   - if \( \text{status}_m = \text{Home} \) then \( \text{status}_m := \text{Fresh} \) 

2. \( \text{buf}[m]!\text{read\_cache\_goneQ}(p) \rightarrow \) 

   - if \( \text{status}_m = \text{Done} \) then \( \text{buf}[p]!\text{read\_cache\_goneR}(m, \text{head}_m, \text{cv}_m, \text{gone}) \) 

   - else \( \text{buf}[p]!\text{read\_cache\_goneR}(m, \text{head}_m, \text{cv}_m, \text{ok}) \) 

   - \( \text{head}_m := p ; \text{status}_m := \text{Done} \) 

3. \( \text{buf}[m]!\text{delleftQ}(p, q, cv) \rightarrow \) 

   - if \( \text{head}_m = p \) then \( \text{buf}[m]!\text{delleftR}(m, \text{ok}) ; \text{head}_m := q \) 

   - if \( q = \text{nil} \) then \( \text{status}_m := \text{Home} \) 

   - else \( \text{buf}[p]!\text{delleftR}(m, \text{reject}) \) 

4. \( \text{buf}[m]!\text{modifydataQ}(p) \rightarrow \) 

   - if \( \text{head}_m = p \) then \( \text{buf}[m]!\text{modifydataR}(m, \text{ok}) ; \text{status}_m := \text{Done} \) 

   - else \( \text{buf}[p]!\text{modifydataR}(m, \text{reject}) \)

### 4. Specification

We now present the formal specification of the program in the previous section. Our proof that this program satisfies its specification is given in Section 5.

As remarked, every process has its own view of the cache. We stipulated that the value of the cache is the value of the owner of the cache. This is not quite true, however, because it might be that ownership (and hence, the value of the cache) is being transferred from one process to another process. Hence the informal requirement that the processor \( p \) with \( \text{cs}_p = \text{dirty} \) is the owner of the cache also needs to be refined in order to ensure the obviously desired property.
that at any time during computation at most one process is the owner of the cache.

First we formally define the notion of the owner of the cache. The owner is \( m \), if \( m \) is in the Home- or Fresh-state. Otherwise, it is either processor \( p \) for which \( cs_p = dirty \) holds and which has not been granted permission to go off the shared list; or it is the processor to which ownership of the cache is being transferred. A processor with \( cs_p = dirty \) is granted permission to go off the shared list, if it receives message \( delleftR(q, ok) \) from some process \( q \), or if it has no successor in the shared list and receives message \( delleftR(q, ok) \) from its successor \( q \). Ownership is transferred from one process to another through a message if that message causes the process to go into a state with \( cs_p = dirty \). This can happen when one of the following messages is in transit: \( read\_cache\_goneR(m, r, cv, arg) \) with \( arg = nil \lor arg = ok \), \( prependR(q, r, ok, cv, dirty) \), \( modifydataR(m, ok) \). The formal definition of the owner of the cache is given next. In our correctness proof we will show that at any time during computation there exists exactly one owner of the cache. Therefore, if a processor is the owner then \( status_m = Gone \) holds.

Hereafter, we often omit types of data in formal definitions whenever immaterial. Also, all free variables in a formula are assumed to be universally quantified.

**Definition 4.1**

(a) cache-owner = \( m \), if \( status_m = Home \lor status_m = Fresh \) holds.

(b) cache-owner = \( p \), for some \( p \in \mathcal{P} \), if
\[
(cs_p = dirty \land status_p = Delleft \land \neg \exists q. delleftR(q, ok) \in buf[p]),
\]
\[
(cs_p = dirty \land status_p = Delleft \land status_p = Delleft \land \neg \exists q. delleftR(q, ok) \in buf[p]),
\]
\[
\exists r, cv, arg.
\]
\[
read\_cache\_goneR(m, r, cv, arg) \in buf[p]
\]
\[
\land (r = nil \lor arg = ok),
\]
\[
\exists q, r. prependR(q, r, ok, cv, dirty) \in buf[p],
\]
\[
\lor \exists m. modifydataR(m, ok) \in buf[p].
\]

The value of the cache is the value of the cache owner’s copy of the cache if the owner’s cache status has value \( dirty \). If ownership is being transferred to a process by means of a message, then that message carries the value of the cache as an argument, except for message \( modifydataR(m, ok) \). The latter case is the only time that a processor \( p \) with \( cs_p = fresh \) is granted permission to modify the cache, and we define the value of the cache by \( cs_p \). It will be shown in Section 5 that before the cache value is modified, \( cs_p \) is the same as \( cs_m \) (\( m \) is the previous owner of the cache).

**Definition 4.2**

(a) \( cache-value = cv_m \), if cache-owner = \( m \) holds.

(b) \( cache-value = cv_p \), if \( p \in \mathcal{P} \) and either
\[
(cs_p = dirty \land status_p = Delleft \land \neg \exists q. delleftR(q, ok) \in buf[p]),
\]
\[
(cs_p = dirty \land status_p = Delleft \land \exists q. delleftR(q, ok) \in buf[p]),
\]
\[
\exists q, r. prependR(q, r, ok, cv, dirty) \in buf[p],
\]
\[
\lor \exists m. modifydataR(m, ok) \in buf[p].
\]

We say that a processor is \( idle \), if it is either in the \( Off \) state or if it has sent a read- or write-query that has not yet been received by memory; a processor is \( entering \) if memory has received the read- or write-query and the processor is in the Pending- or the Inqueue-state; a processor is \( leaving \), if it is about to go off the list, more precisely, if the processor is in the Delleft- or Delright-state and it has either been purged by another processor or a message \( delleftR(q, ok) \) has been sent to that processor; finally, a processor which is not \( idle \), not \( entering \), and not \( leaving \), is called \( visiting \). A processor is called \( staying \) if it is \( visiting \) and it is not been granted any permission to go off the list.

**Definition 4.3** For processors \( p \in \mathcal{P} \), define

(a) \( idle(p) \), if \( status_p = Off \),
\[
read\_cache\_freshQ(p) \in buf[m], \text{ or read\_cache\_goneQ(p) \in buf[m].}
\]

(b) \( entering(p) \), if \( \neg idle(p) \) and either
\[
status_p = Pending \lor status_p = Inqueue.
\]

(c) \( leaving(p) \), if \( status_p = Delleft \lor status_p = Delright \) and \( cs_p = invalid \lor \exists q. delleftR(q, ok) \in buf[p] \).

(d) \( visiting(p) \), if \( \neg idle(p) \), \( \neg entering(p) \), and \( \neg leaving(p) \).

(e) \( staying(p) \), if \( visiting(p) \), \( status_p = Delleft \), and \( \neg delleftR(q, ok) \in buf[p] \).

A process \( p \) is said to have a consistent view of the cache if \( cs_p = cache-value \) holds. We require that during computation there always exists a unique owner of the cache, that \( visiting \) processors always have a consistent view of the cache, and that only the owner of the cache can modify the cache. We also require that the owner of the cache will eventually have a proper copy of the cache, and that a processor which is in the Purging-state will eventually be able
to modify the cache. The latter occurs if a process receives a message purgeR and it goes into the Inlist-state. We cannot prove that processors which have indicated that they want to modify the cache will eventually do so, because this property is not true. (Such processors may be purged off the list when another processor has become the owner.) Also, processors that indicated that they want to read only might later get permission to write. This can be avoided by maintaining an additional variable for every processor indicating whether it issued a read- or a write query. We have abstracted away from this in the model of our paper. The discussion above leads to the following formal specification of the program:

**Definition 4.4** The following is required to hold continuously during computation of the program:

(a) $\exists ! p. (p \in P \cup \{m\} \land \text{cache-owner} = p)$.  
(There exists always exactly one owner of the cache.)

(b) $\forall p \in P, (\text{staying}(p) \Rightarrow cv_p = \text{cache-value})$.  
(Staying processors have a consistent view of the cache.)

(c) $\text{cache-value} \neq O(\text{cache-value}) \Rightarrow \text{cache-owner} \in P$  
$\land cv_{\text{cache-owner}} = \text{cache-value} \land \text{cache-owner} = O(\text{cache-owner}) \land O(cv_{\text{cache-owner}}) = O(\text{cache-value})$.  
(Only a processor which is the owner can modify the cache value.)

(d) $(\text{cache-owner} = p) U (\text{cache-owner} = p \land cv_p = \text{cache-value})$.  
(The owner of the cache eventually has a proper copy of the cache.)

(e) $[(p \in P \land \text{cache-owner} = p \land \text{status}_p = \text{Purging}) \land (\text{cache-owner} = p \land \text{status}_p = \text{Purging} \land \exists q. \text{first}(\text{buf}[p]) = \text{purgeR}(q, \text{nil})) \land (\text{first}(\text{buf}[p]) = \text{purgeR}(q', \text{nil})) U (\text{status}_p = \text{Inlist} \land \text{cache-owner} = p)]$.  
(A processor in the Purging-state eventually receives a purge response and goes into the Inlist-state from which it can modify the cache. See the program text.)

5. Correctness Proof

We prove that the program in Section 3.2 satisfies the specification formulated in Definition 4.4.

5.1. Invariants

In this subsection we list a number of properties which continuously hold during execution of the program. Some of these properties deal with types; some other properties are formulated in order to show that there are no unspecified receipts. (For every process, if it can receive a message then it can execute at least one action that deals with that message.) The invariants are also used to establish that the program satisfies its specification. The proofs that the temporal properties which we formulate do hold for the program are omitted from this paper, because of the space limitations. They can be established by techniques described in [29].

We will use the notation msgQ to denote messages, such as purgeQ, which are associated with a query. In the description we will refer to a message such as purgeQ as a purge-query. The same conventions apply to the notation msgR, associated with a response.

It is easy to formulate and prove that queries are only sent by processors (and never by memory); that read-, write-, and modifydata responses are only sent by memory and to processors; and that prepend responses are only sent by processors to processors. By looking at the program text it follows that every processor can deal with every message it receives during execution. In other words, there are no unspecified receipts for processors.

Prepend- and delright queries are sent only to processors (and never to memory); purge queries and purge responses are sent by processors to processors; and delleft responses are always sent to processors (never sent to memory). Consequently, there are no unspecified receipts for m. In particular, m will never receive a message of the form msgR(arg), i.e., once associated with a response.

**Lemma 5.1** The following continuously holds during execution of the program: status_m = Home $\Leftrightarrow$ head_m = nil.

An occurrence of message msgQ is outstanding for processor p, if p has sent msgQ to some process and not received message msgR thereafter.

**Definition 5.1**

(a) $\text{Out}(msgQ, p, i)$ is defined as $0 < i \leq |h|$  
$\land \exists q \in P \cup \{m\}, (\exists \text{arg}, h[k]) = \langle \text{Snd}, p, \text{msgQ}(\text{arg}), q \rangle$  
$\land \forall q' \in P \cup \{m\}, \forall \text{arg}', \forall j$:  
$(i < j \leq |h|) \Rightarrow h[j] \neq \langle \text{Rec}, q', \text{msgR}(\text{arg}'), p \rangle$.

(b) $\text{outstanding}(msgQ, p) \equiv \exists i. \text{Out}(msgQ, p, i)$.
Lemma 5.2 The following continuously holds during execution of the program:

(a) Every processor has at most one outstanding query.

(b) For every processor $p$,

\[ \text{status}_p = \text{Off} \Rightarrow p \text{ has no outstanding queries.} \]
\[ \text{status}_p = \text{Pending} \Rightarrow p \text{ has an outstanding read- or write query.} \]
\[ \text{status}_p = \text{Inqueue} \Rightarrow p \text{ has an outstanding prepend query.} \]
\[ \text{status}_p = \text{Inlist} \Rightarrow p \text{ has no outstanding queries.} \]
\[ \text{status}_p = \text{Delleft} \Rightarrow p \text{ has an outstanding delleft query.} \]
\[ \text{status}_p = \text{Delright} \Rightarrow p \text{ has an outstanding delright query.} \]
\[ \text{status}_p = \text{Purging} \Rightarrow p \text{ has an outstanding purge query.} \]
\[ \text{status}_p = \text{Frd} \Rightarrow p \text{ has an outstanding modifydata query.} \]

(c) $h[i] = \langle \text{Snd}, p, \text{msgR}(\text{arg}), q \rangle \in h \\
\Rightarrow \exists j \exists \text{arg}'$. \\
\[ (1 \leq j \leq i \wedge h[j] = \langle \text{Rec}, q, \text{msgQ}(\text{arg}'), p \rangle \in h \\
\wedge \forall k, \forall \text{arg}''. (j < k < i) \\
\Rightarrow h[k] = \langle \text{Snd}, p, \text{msgR}(\text{arg}''), q \rangle \rangle. \]

(If $p$ responds to process $q$, then there has been a request to $p$, and $p$ has not responded to that request before.)

(d) $\exists q \in P \cup \{m\}$ \\
\[ \forall i \exists \text{arg}. (i < j \leq |h| \\
\wedge h[j] = \langle \text{Snd}, q, \text{msgR}(\text{arg}'), p \rangle \\
\wedge \text{msgR}(\text{arg}') \in \text{buf}[p]). \]

(Any process has an outstanding query if either that query is in transit or $p$’s buffer contains a response to that query.)

Lemma 5.3 For every processor $p$, the following continuously holds during execution of the program:

(a) $(\text{status}_p = \text{Delright} \land \text{cs}_p \neq \text{invalid} \land \text{pred}_p = z) \land \text{Out}(\text{msgQ}, p, i)$ \\
\[ \Rightarrow \exists q \in \text{BUFSIZE} \cup \{m\}. \exists \text{arg}. \text{msgQ}(p, \text{arg}) \in \text{buf}[q] \\
\wedge \forall j \exists \text{arg}'$. (i < j < |h| \\
\wedge h[j] = \langle \text{Snd}, q, \text{msgR}(\text{arg}'), p \rangle \\
\wedge \text{msgR}(\text{arg}') \in \text{buf}[p]). \]

(Any process has an outstanding query if either that query is in transit or $p$’s buffer contains a response to that query.)

(b) $(\text{status}_p = \text{Delright} \land \text{cs}_p = \text{cs} \\
\wedge \text{cs} \neq \text{invalid} \land \text{delleftR}(q, ok) \in \text{buf}[p])$ \\
\[ \land \text{W} \]
\[ ((\text{status}_p = \text{Delright} \land \text{cs}_p = \text{invalid}) \\
\lor (\text{status}_p = \text{Delleft} \land \text{cs}_p = \text{cs})). \]

(c) $(\text{status}_p = \text{Delright} \land \text{cs}_p = \text{invalid}) \land \text{W} \land \text{status}_p = \text{Off}.$

(d) $(\text{status}_p = \text{Delleft} \land \text{pred}_p = z_1 \land \text{succ}_p = z_2) \land \text{W} \land \text{status}_p = \text{Off}.$

(e) $(\text{status}_p = \text{Delleft} \land \text{delleftR}(q, ok) \in \text{buf}[p]) \land \text{W} \land \text{status}_p = \text{Off}.$

(f) $(\text{status}_p = \text{Delleft} \land \text{cs}_p = \text{invalid}) \land \text{W} \land \text{status}_p = \text{Off}.$

Recall that we have introduced the notions of a process being idle, entering, and visiting (see Definition 4.3). We have:

Lemma 5.4 For every processor $p$, the following continuously holds during execution of the program:

(a) $\text{idle}(p) \land \text{W} \land \text{entering}(p).$

(b) $\text{visiting}(p) \land \text{W} \land (\text{leaving}(p) \lor \text{status}_p = \text{Off}).$

(c) $\text{leaving}(p) \land \text{W} \land \text{status}_p = \text{Off}.$

Let us call a processor active if it is either entering or visiting. By $\text{active}(p)$ we denote that processor $p$ is active. We next assign ranks to active processors according to the order in which read and write queries are received by $m$. First we define an auxiliary function:

Definition 5.2 For processors $p$ and natural numbers $n$ define, $\text{Last activated}(p) = n$, if $\text{active}(p)$ and the following holds:

- Either $h[n] = \langle \text{Rec}, p, \text{read}_p \cdot \text{cache freshQ}(p), m \rangle$ or $h[n] = \langle \text{Rec}, p, \text{read}_p \cdot \text{cache goneQ}(p), m \rangle$.

- For all $i$ with $n < i \leq |h|$, either $h[i] \neq \langle \text{Rec}_p, \text{read}_p \cdot \text{cache freshQ}(p), m \rangle$ or $h[i] \neq \langle \text{Rec}_p, \text{read}_p \cdot \text{cache goneQ}(p), m \rangle$.

Definition 5.3 For processors $p$ such that active$(p)$ holds,

- $\text{rank}(p) = 0$, if for some natural number $n$.
- $\text{Last activated}(p) = n$, and for all natural numbers $m$ and for all processors $q$, $(q \neq p \land \text{active}(q) \land \text{Last activated}(q) = m) \Rightarrow m > n$. 

10
Lemma 5.5 For every processor \( p, q \), the following continuously holds during execution of the program:

(a) \( \text{active}(p) \Rightarrow \exists n. \text{Last}_{\text{activated}}(p) = n \).

(b) \( (p \neq q \land \text{active}(p) \land \text{active}(q)) \Rightarrow \text{rank}(p) \neq \text{rank}(q) \).

(c) \( (\text{active}(p) \land \text{rank}(p) = n) \Rightarrow (!\text{active}(p) \lor \text{rank}(p) < n) \).

(d) \( (\text{active}(p) \land \text{rank}(p) = n) \Rightarrow \forall m < n. \exists p' \in P. (\text{active}(p') \land \text{rank}(p') = m) \).

The next two lemmata are critical for our correctness proof. They show various properties including how messages sent from one processor to another relate to the ranks of those processors. In both these lemmata we formulate invariants of the program which hold under certain assumptions. This is done to reduce the size of the lemmata. (Without these assumptions, the invariants cannot be proved.) The assumptions will be discharged later.

Lemma 5.6 Let \( \alpha \) be some computation sequence of the program. Assume that, for all processors \( p, q, \) and \( r \),

\[ (\text{status}_p = \text{Purging} \lor \text{status}_p = \text{Fiod}) \Rightarrow (\text{staying}(q) \Rightarrow \text{succ}_q \neq p) \land \text{purgeQ}(q) \notin \text{buf}[p] \land \text{purgeR}(q, p) \notin \text{buf}[r] \]

holds in some state in \( \alpha \). Then the conjunction of (a), ..., (q) is preserved by every action of the program.

(a) \( (\text{status}_p = \text{Off} \lor \text{status}_p = \text{Pending}) \Rightarrow c_{sp} = \text{invalid} \).

\( \text{status}_p = \text{Inlist} \Rightarrow c_{sp} \neq \text{invalid} \).

\( \text{status}_p = \text{Purging} \Rightarrow (c_{sp} = \text{dirty} \land \text{succ}_p = \text{nil}) \).

\( \text{status}_p = \text{Fiod} \Rightarrow (\text{cs}_p = \text{fresh} \land \text{pred}_p = m) \).

\( \text{status}_p = \text{Inqueue} \Rightarrow (\text{pred}_p = m \land \text{succ}_p = \text{nil}) \).

\( \text{delrightQ}(q, r, cs) \in \text{buf}[p] \Rightarrow (r \neq \text{nil} \land cs \neq \text{invalid}) \).

\( \text{visiting}(p) \land \text{status}_p \neq \text{Delfleft} \land \text{delrightQ}(p, r, cs) \in \text{buf}[p] \Rightarrow \text{succ}_p = q \).

\( \text{visiting}(p) \land \text{delrightQ}(q, r, cs) \in \text{buf}[p] \Rightarrow \text{succ}_p = q \).

(b) \( (\text{status}_p \neq \text{Inqueue} \land cs_p = \text{invalid}) \Rightarrow (\text{pred}_p = \text{nil} \land \text{succ}_p = \text{nil}) \).

\( cs_p \neq \text{invalid} \Rightarrow \text{pred}_p \neq \text{nil} \).

\( \text{head}_m = \text{nil} \Rightarrow \forall p \in P. (\text{idle}(p) \lor \text{leaving}(p)) \).

(d) \( (\text{head}_m = p \land p \neq \text{nil}) \Rightarrow p \) is maximal ranked active processor.

(e) \( (\text{idle}(p) \lor \text{entering}(p) \lor \text{leaving}(p) \lor p \) is maximal ranked visiting processor \)

\( \Rightarrow (\text{staying}(q) \Rightarrow \text{succ}_q \neq p) \land \text{purgeQ}(q) \notin \text{buf}[p] \land \text{purgeR}(q, p) \notin \text{buf}[r] \).

(f) \( (\text{read_cache}, \text{freshR}(\text{m}, q, cv, arg) \in \text{buf}[p] \lor \text{read_cache}, \text{goneR}(\text{m}, q, cv, arg) \in \text{buf}[p]) \Rightarrow ((q = \text{nil} \land \text{rank}(p) = 0) \land q' \in P. \neg \text{visiting}(q')) \lor (q \in P. |\text{entering}(q) \lor q \) is maximal ranked visiting processor \)

\( \land \text{rank}(p) = (\text{rank}(q) + 1) \land cv_m = cv \).

(g) \( (\text{visiting}(p) \land \text{status}_p \neq \text{Purging} \land \text{succ}_p \neq \text{nil}) \Rightarrow \text{rank}(p) = 0 \).

(h) \( (\text{visiting}(p) \land \text{succ}_p = q \land q \neq \text{nil}) \Rightarrow (\text{visiting}(q) \land \text{rank}(p) = (\text{rank}(q) + 1) \land (\text{entering}(p) \lor p \) is maximal ranked visiting processor \).

(i) \( \text{prependQ}(q) \in \text{buf}[p] \Rightarrow \text{rank}(q) = (\text{rank}(p) + 1) \land (\text{entering}(p) \lor p \) is maximal ranked visiting processor \).

(k) \( \text{prependR}(q, q, ok, cv, cs) \in \text{buf}[p] \Rightarrow q \) is maximal ranked visiting processor \)

\( \land cs \neq \text{invalid} \land \text{pred}_q = p \land \text{rank}(p) = (\text{rank}(q) + 1) \land (\text{staying}(p') \Rightarrow \text{pred}_p' = m) \).

(l) \( \text{prependR}(q, \text{nil}, ok, cv, cs) \in \text{buf}[p] \Rightarrow \forall p' \in P. \neg \text{visiting}(p') \land \text{rank}(p) = 0 \land cs \neq \text{invalid} \).

(m) \( \text{prependR}(q, r, retry, cv, cs) \in \text{buf}[p] \Rightarrow (\text{entering}(r) \lor r \) is maximal ranked visiting processor \)

\( \land \text{rank}(p) = (\text{rank}(r) + 1) \land [(\text{visiting}(r) \land q \neq r) \lor q = r] \).

(n) \( \text{purgeQ}(q) \in \text{buf}[p] \Rightarrow (\text{visiting}(p) \land \text{rank}(p) = (\text{rank}(p) + 1) \land \text{pred}_p = m \land \text{staying}(p) \Rightarrow p \) is maximal ranked staying processor \).
(q) \[ cs_p \neq invalid \]
\[ \Rightarrow \ pred_p = m \]
\[ \forall \exists q \in \mathcal{P}. \quad \text{pred}_p = q \]
\[ \land ( \quad \text{cs}_q = invalid \]
\[ \forall q \text{ is the smallest ranked entering or staying processor with} \]
\[ \text{rank}(q) > \text{rank}(p)) \]
\[ (\text{visiting}(q) \land \text{delright}(q, r, cs) \in \text{buf}[p]) \]
\[ \Rightarrow \ r = m \]
\[ \forall (r \in \mathcal{P} \land \text{cs}_r = invalid) \]
\[ \forall (r \in \mathcal{P} \land \text{cs}_r \neq invalid) \]
\[ \land r \text{ is the smallest ranked entering or staying processor with} \]
\[ \text{rank}(r) > \text{rank}(q)). \]

Lemma 5.7 Consider an arbitrary computation sequence \( \alpha \) of the program. Assume that the conjunction of (1), (a), \ldots, (q) as defined in Lemma 5.6 holds in some state in \( \alpha \). Then the conjunction of (i), \ldots, (vii) below is preserved by every action of the program.

(i) status\( m = \text{Home} \)
\[ \Rightarrow \] (cs\( p = \text{invalid} \lor \exists q', \text{delleft}(q', ok) \in \text{buf}[p] \]
\[ \land \text{read}_m\text{fresh}R(m, r, cv, arg) \in \text{buf}[p] \]
\[ \land \text{read}_m\text{gone}R(m, r, cv, arg) \notin \text{buf}[p] \]
\[ \land \text{prepend}R(q, r, arg) \notin \text{buf}[p] \]
\[ \land \text{modifydata}(p, ok) \in \text{buf}[p] \]
\[ \land \text{purge}R(q) \notin \text{buf}[p] \]
\[ \land \text{purgeR}(q, r) \notin \text{buf}[p]. \]

(ii) status\( m = \text{Fresh} \)
\[ \Rightarrow \] (status\( p = \text{Inqueue} \lor \text{visiting}(p) \)
\[ \Rightarrow \] (cs\( p = \text{fresh} \land cv_m = cv_p) \]
\[ \land \text{read}_m\text{fresh}R(m, r, cv, arg) \in \text{buf}[p] \]
\[ \land \text{read}_m\text{gone}R(m, r, cv, arg) \notin \text{buf}[p] \]
\[ \land \text{modifydata}(m, ok) \in \text{buf}[p] \]
\[ \land \text{purge}Q(q) \notin \text{buf}[p] \land \text{purgeR}(q, r) \notin \text{buf}[p] \]
\[ \land \text{prepend}R(q, r, arg, cs) \in \text{buf}[p] \]
\[ \Rightarrow \] (cs\( p = \text{fresh} \land cv = cv_m \)
\[ \land (\text{visiting}(p) \lor \text{delright}(m, r, cs) \in \text{buf}[p]) \]
\[ \Rightarrow \] (cs\( p = \text{fresh.} \)

(iii) \exists p \in \mathcal{P}. \text{cache-}\text{owner} = p \Rightarrow \text{status}_m = \text{Done}. \]

(iv) status\( m = \text{Done} \)
\[ \Rightarrow \exists p \in \mathcal{P} \land \text{cache-}\text{owner} = p \]
\[ \land \forall q \in \mathcal{P}. \quad (\text{active}(q) \land \text{rank}(q) < \text{rank}(p)) \]
\[ \Rightarrow \text{cs}_q = \text{invalid} \]
\[ \forall q \in \mathcal{P}. (\text{active}(q) \land \text{rank}(q) < \text{rank}(p)) \]
\[ \Rightarrow \text{staying}(q) \]
\[ \forall q \in \mathcal{P}. \forall cv, arg. \]
\[ (\text{read}_q\text{fresh}R(m, r, cv, arg) \in \text{buf}[q] \]
\[ \land (\text{arg} = \text{ok} \lor \text{arg} = \text{nil}) \]
\[ \Rightarrow \text{rank}(q) < \text{rank}(p) \]
\[ \forall q \in \mathcal{P}. \forall cv. \]
\[ (\text{read}_q\text{gone}R(m, r, cv, gone) \in \text{buf}[q] \]
\[ \land \text{read}_q\text{gone}R(m, r, cv, gone) \in \text{buf}[q] \]
\[ \Rightarrow (q \neq nil \land \text{rank}(q) > \text{rank}(p)) \]
\[ \forall q \in \mathcal{P}. \forall q', c, \text{cv}. \]
\[ \text{prependR}(q', r, ok, cv, fresh) \in \text{buf}[p] \]
\[ \Rightarrow \text{rank}(q) < \text{rank}(p) \land cv = \text{cache}\text{value}. \]

(v) For all processors \( p \in \mathcal{P} \),
\[ (\text{read}_q\text{fresh}R(m, r, cv, arg) \in \text{buf}[p] \]
\[ \land (\text{arg} = \text{ok} \lor \text{arg} = \text{nil}) \]
\[ \Rightarrow \text{cv} = \text{cache}\text{value} \]
\[ \land \text{modifydata}(m, ok) \in \text{buf}[p] \]
\[ \Rightarrow \text{cv} = \text{cache}\text{value} \]
\[ \land (\text{delleft}(p, nil, cv) \in \text{buf}[m] \]
\[ \land p \text{ is maximal ranked visiting processor} \]
\[ \Rightarrow \text{cv} = \text{cache}\text{value}. \]

We next combine the two previous invariants into one, at the same time discarding the assumptions under which these invariants were derived. To do so, we apply the following (sound) proof rule:
\[ \begin{array}{c}
(A \land B) \Rightarrow (B \land C) \\
\{A \land B \land C\} \Rightarrow (B \land C)
\end{array} \]
\[ \Rightarrow A \Rightarrow (A \land B \land C) \Rightarrow \{A \land B \land C\} \]

for every action \( s \).

This rule allows us to conclude:

Lemma 5.8 The conjunction of (1), (a), \ldots, (q) as defined in Lemma 5.6, and (i), \ldots, (vii) as defined in Lemma 5.7 continuously holds during execution of the program.

A tedious but straightforward proof allows us to conclude:

Theorem 5.1 The program satisfies its specification.
Proof (sketch): We have to show that every computation sequence satisfies the temporal properties formulated in Definition 4.4. Note that Lemma 5.8 shows that each of the conjuncts formulated in the Lemmata 5.6 and 5.7 holds during the program’s execution. We concentrate on two cases, corresponding to the clauses (a) and (b) in Definition 4.4:

(a) At any point during computation, there exists exactly one owner of the cache.
If status\(_m\) = Home or status\(_m\) = Fresh, then \(m\) is the owner. To complete the proof for this case, it remains to show that no processor can be the owner. This follows from (a1) and (a2) below and Definition 4.1.

(a1) For no processor \(p\), cs\(_p\) = dirty, and the disjunction of status\(_p\) = Delleft \& \(\neg\exists q . \text{delleft}(q, ok) \in \text{buf}[p]\) and status\(_p\) = Delleft \& succ\(_p\) = nil \& \(\neg\exists q . \text{delleft}(q, ok) \in \text{buf}[p]\) holds.
Suppose, to obtain a contradiction, that for some processor \(p'\), cs\(_{p'}\) = dirty, and the disjunction of status\(_{p'}\) = Delleft \& \(\neg\exists q . \text{delleft}(q, ok) \in \text{buf}[p']\) and cs\(_{p'}\) = dirty \& status\(_{p'}\) = Delleft \& succ\(_{p'}\) = nil \& \(\neg\exists q . \text{delleft}(q, ok) \in \text{buf}[p']\) holds.
If status\(_m\) = Home then we immediately obtain a contradiction because Lemma 5.7(i) expresses that for all processors \(p\), cs\(_p\) = invalid or \(\exists q . \text{delleft}(q, ok) \in \text{buf}[p]\) holds.
If status\(_m\) = Fresh then Lemma 5.7(ii) implies that for processor \(p'\), whose existence was assumed above, status\(_{p'}\) = Inqueue and \(\neg \text{visiting}(p')\) hold. From Definition 4.3 we obtain that status\(_{p'}\) = Off, status\(_{p'}\) = Pending, or leaving\((p')\) holds. The first two possibilities lead to an immediate contradiction, because each of them implies that cs\(_{p'}\) = invalid (see Lemma 5.6(a)); the third possibility also leads to a contradiction, because it implies that cs\(_{p'}\) = invalid or \(\exists q . \text{delleft}(q, ok) \in \text{buf}[p]\).
We conclude that (a1) holds.

(a2) For no processor \(p\), message read\(_{\text{cache}}\text{-}\text{gone}(m, r, cv, arg)\) with (\(r = \text{nil} \lor \text{arg} = \text{ok}\)), prepend\(_{\text{R}}(q, r, ok, cv, \text{dirty})\), or modifydata\(_{\text{R}}\)(\(m, ok\)) is in \(p\)’s buffer.
This is a consequence of Lemma 5.7(i, ii).

If on the other hand status\(_m\) = Gone holds in some state, then Lemma 5.7(iv) implies that there exists exactly one processor that is the owner of the cache. (Note that, by definition, \(m\) is not the owner.)

(b) Staying processors always have a consistent view of the cache.

Note that for every staying processor \(p\), cs\(_p\) \(\neq\) invalid holds. This is so, because by Definition 4.3, staying\((p)\) implies visiting\((p)\) \& status\(_p\) \(\neq\) Delleft \& \(\neg\exists q . \text{delleft}(q, ok) \in \text{buf}[p]\). The latter implies \((\text{status}_p = \text{Inlist} \lor (\text{status}_p = \text{Delright} \& cs_p \neq \text{invalid}) \lor \text{status}_p = \text{Fiod} \lor \text{status}_p = \text{Purging})\). The claim then follows from Lemma 5.6(a).

Now, if status\(_m\) = Home then there exist no staying processors (using Lemma 5.1 and Lemma 5.6(c)), and we are done.
If status\(_m\) = Fresh, then (b) follows from Lemma 5.7(ii) and the observation that \(m\) is the owner of the cache.
If status\(_m\) = Gone, then, by Lemma 5.7(iv), there exists exactly one processor which is the owner of the cache. The same lemma also implies that every staying processor \(p\) has a lower rank than the owner of the cache, and that \(p\) has a consistent view of the cache. □

6. Conclusions

The SCI protocol is a new standard for specifying communication between multiprocessors in a shared memory model. In this paper we have considered the cache coherence portion of this protocol. We have modeled and verified an abstraction of this portion. For example, we have not kept track of processors which want to read only (and not write) and we have considered the problem with one cache line only. (Multi cache lines require a straightforward extension of the proof.) Also, we have used only three values for the cache status of a process, whereas in the full protocol more values are employed. We have presented a specification of our model and shown that the model meets this specification. The correctness proof has been carried out within Linear Time Temporal Logic.

Our proof has been carried out by pen and paper. We realize that handwritten proofs may contain errors. For this reason we are now in the process of formalizing our whole proof. This work is done jointly with Doug Howe using the theorem prover Nuprl. Another reason to advocate the use of mechanical tools to support human reasoning became evident when doing the correctness proof. Lemma 5.6, for example, is rather tedious to prove. The correctness of a clause depends on several clauses which are defined later in the lemma. When one of the clauses turns out to be invalid (as has happened quite frequently when formulating the lemma), all previously verified clauses need to be reproved because they might depend on the modified one. A tool which could keep track of such dependencies or which could redo the proof would be of great help. We are convinced that such tools are even essential if such proofs are carried out on a regular basis.
We have used assumptions in lemmata in order to structure the correctness proof. These assumptions have been discharged at a later stage in the proof. In contrast to compositional approaches, our assumptions may refer to global properties. We believe that our approach is worth further research, since it allows more transparent formulations of properties and structuring their proofs. This may have an impact on reducing complexity of automated proofs.

In previous work [2], with Ramesh Bharadwaj, we have investigated how to combine model checking and theorem proving to verify a broadcasting protocol. The work reported in the current paper serves as a foundation for a case study to push the limits of formal verification by means of tools to really large programs. In the future we will try to mechanically verify even larger programs.

Acknowledgements

Thanks are due to David Long for discussing the model in Section 3. His original model has served as a basis for both our model as well for the models studied by Holzmann, Kurshan, and McMillan. We also thank Thor Jeremiassen and Michael Merritt for suggestions on improving the presentation.

References
