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Abstract. This paper describes a prototype of a programmable interactive
theorem-proving system. The main new feature of this system is that it
supports the construction and manipulation of tree-structured proofs that
can contain both metavariables and derived rules that are computed by
tactic programs. The proof structure encapsulates the top-down refinement
process of proof construction typical of most interactive theorem provers.
Our prototype has been implemented in the logic programming language
AProlog, from which we inherit a general kind of higher-order metavariable.
Backing up, or undoing, of proof construction steps is supported by solving
unification and matching constraints.

1 Introduction

Interactive proof construction typically proceeds top-down, starting with the state-
ment of the theorem to be proven, and then successively refining goals into subgoals.
This pattern is characteristic of most interactive systems, although there are large
differences in the kinds of refinement that can be performed and in the underly-
ing ideas of proof and state of the system. Our focus is on refinement by tactics.
Loosely speaking, a tactic is a program that reduces a goal (typically a sequent) to
a sequence of subgoals such that the goal can be inferred from the subgoals.

The set of refinements used to construct a proof has a natural tree structure.
A system that directly supports this structure can provide a number of useful op-
erations for building, manipulating and reading proofs. For example, subproofs of
interest, or the steps leading up to a particular subgoal, can be quickly located
via user-directed navigation of the tree. Bad proof strategies can be corrected by
locating the first bad step in the tree, then removing just the part of the argument
that depended on the step. The inferences in a proof can be replayed when, for ex-
ample, a definition is changed, allowing one to recover all the portions not affected
by the change. Proofs can be cut-and-pasted, and used for reasoning by analogy.
[2] contains more examples of such operations.

Metavariables are supported in a number of existing systems [8, 3, 13, 10, 9, 4].
There are many compelling examples of their usefulness in interactive proofs. A
common example is “existential introduction”. Removing the existential quantifier
in the goal - Jz. p(z) requires a witness. We can use a metavariable X to stand
for the witness term, refining the goal to the subgoal - p(X). We can instantiate
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X to a specific term later in the proof, at which time it will be replaced wherever
it occurs. The point of postponing choice of the witness is that the details of the
proof of p(X) may make it possible to automatically find an instantiation of X, or
at least make it easier for the user to determine it. For example, p(X) may be an
equation that can be manipulated to present an explicit solution X = ¢ for X.

There are many similar examples. Metavariables can be used to stand for pro-
grams to be synthesized from constructive proofs [11, 13], for induction hypotheses
(or program invariants, as in [8]) that can be strengthened as proof progresses,
and for “don’t care” arguments to functions, such as type arguments or domain-
membership evidence for constructive partial functions, that can be automatically
deduced in a uniform way. Also, various procedures for automating reasoning make
essential use of metavariables, and some of these procedures can be more usefully
integrated with an interactive system if the system supports metavariables.

We have designed and implemented a theorem-proving system for constructing
and manipulating refinement-tree proofs with metavariables. Proofs are trees of
goals where each node g has associated with it a “justification” which specifies
how the goal g can be inferred from its children. This justification can be a rule
(name), in which case g and the children of g must be the conclusion and premises,
respectively, of an instance of the rule, or it can be a representation T of a tactic.

A fundamental problem is to explain how T relates to g and its children g1, ..., gn.
If we ignore metavariables, we can take T to be a program which, when applied to
g, produces g1, ..., gn. If we allow metavariables, then this explanation no longer
suffices. Suppose that after this tactic refinement was done, some metavariable in-
stantiations were made, resulting in instances g¢', ¢},...,45, of g and g1,...,gn.
What should be the relationship of T to ¢’, g1, ...,957

One possibility is to restrict the tactic language so that we are guaranteed
that the relationship above continues to hold: T' applied to g’ produces subgoals
9%, --,95,. We reject this possibility for two main reasons. First, although a pure
logic programming language would preserve this relationship, we want to allow the
use of a more practical programming language for tactic programming in order to
enable users to achieve a high degree of automatic support for proof construction.
For example, we would like to be able to accommodate the full AProlog language
including its non-logical operators, and also the functional language ML, which has
been proven well-suited to tactic programming.

Second, this property to be guaranteed is not respected by many commonplace
and useful tactics. For example, suppose that we have a goal X +0 > 0 F ¢(X),
where X is a metavariable we intend to instantiate in another part of the proof,
and the refinement step we wish to make is to simplify the goal using a tactic
Simplify, say, that repeatedly applies common arithmetic rewrite rules. Assume
the subgoal produced by Simplify is X > 0 F ¢(X). If, later during the proof,
X gets instantiated to 1 + 0, then the subgoal becomes 1+ 0 > 0 F ¢(1 + 0),
yet if Simplify were re-executed on the new goal, it would produce the subgoal
1 > 0 F ¢(1). This example illustrates another problem with using a pure logic
programming language for tactics: we do not want simplification to instantiate X,
but instead to treat it as a constant. In general, we want some tactics to instantiate



metavariables, and others to treat them as constants.

One of the design goals for our system is programmability. We want to sup-
port programming of a wide range of procedures and tools for automating proof
construction. We have therefore designed a simple proof structure with a small set
of simple basic operations for constructing proofs. In particular, we have tried to
avoid including in a proof information pertaining to the history of its construction,
such as a record of metavariable instantiations. Section 2 gives a slightly simplified
account of our approach to proofs. Section 5 gives some implementation details.

An important operation in interactive theorem provers is “undoing” parts of a
proof attempt. Metavariables cause serious complications for this operation.

Without metavariables, subproofs P; and P; with no nodes in common are inde-
pendent, and can be treated as completely separate tasks. However, metavariables
can introduce dependencies between the subproofs. Suppose that a step in building
P; involves the instantiation of a logic variable X that is mentioned in P,. The
instantiation replaces all occurrences of X in P,, and subsequent steps in building
P, may take advantage of this change. If we now decide that P; was a bad proof
attempt, we could just remove it from the main proof and start a new subproof. But
this would not completely undo the effect of the bad subproof P;. We might also
want to find and remove the parts of Py that depended on X'’s instantiation, and,
in addition, uninstantiate any of the variables instantiated by refinements within
these parts.

One kind of “undo” is directly inherited from our implementation language
AProlog (see [4] for details). This is “chronological undo”, which undoes proof mod-
ifications in the order they were performed. This is a useful form of undo, especially
for quick local backups, and is the only form of undo in all other systems with
metavariables except ALF [10]. However, it is unsatisfactory in general since it will
often remove parts of the proof which are independent of the targeted parts.

We have designed a number of undo procedures that improve on chronological
undo and have implemented one of them. These procedures are based on solving
sequences of higher-order matching and unification problems. In section 3 we give
an example session with our system that illustrates some of the problems and issues
for designing undo operations for this kind of proof. Section 4 describes the undo
procedure, and Section 5 gives some details of its implementation.

Our prototype has been implemented in the higher-order logic programming lan-
guage AProlog [12], from which we inherit a general kind of higher-order metavari-
able, similar to what is found in Isabelle [13]. Our proof structure is inspired by
Nuprl [2, 1]. The system is generic, in the sense that it can easily accommodate
most logics that can be specified in the general style of LF [7] and Isabelle [13]. The
exact style of encoding of logics in our system is very similar to [4], except that we
have made a commitment to sequent-calculus presentations.

Although we have based our prototype on AProlog, the ideas are applicable to
tactic systems based on ML such as LCF [6], Nuprl [2] and HOL [5]. Implementing
the ideas for such systems would be straightforward, although it would be much
more work because ML lacks AProlog’s built-in support for metavariables, bound
variables and unification.



The conclusion of the paper has a few additional comparisons with related work
and a brief discussion of future work.

2 Proofs

This section gives a simplified account of our proof data-structure. Two of the prin-
ciple constituents of proofs are goals and tactics. Goals are intended to be sequents
in the logic being implemented (the “object logic”), and tactics are programs from
some programming language. To make the presentation simple, and to keep the de-
scription here close to what has been implemented, we assume that both goals and
tactics are represented as terms in the simply-typed A-calculus. In our implemen-
tation, object logics are encoded as A-terms and tactics are programs in AProlog, a
language whose programs are all A-terms.

There are a number of differences between the implementation and what is
described here, mostly for reasons of efficiency and ease of tactic programming.
Some of the more important differences are given at the end of the section.

Let A be the set of terms of the typed A-calculus over some set of base types
and some set of constants. We identify a@n-equal terms. Thus, when we say that
there is a substitution o such that o(e) = o(e’), we mean that e and €’ have a
higher-order unifier. We distinguish a base type and define the set G of goals to be
the set of all terms in A of this type.

Metavariables in this setting are simply the free variables of a goal. We will use
capital letters to stand for metavariables. Ordinary variables in our representation
are bound by MA-abstractions. See the implementation section for details on this
representation.

A proof is a tree of goals where each node has associated with it a justification.
The justification says how the goal can be inferred from its children. We will specify
what the justifications are below, but for now, assume that for any justification j
there is an associated pair s(j) = (g,9), called a step, where g is a goal and g is a
sequence gi,...,gn (n > 0) of goals. We place the following restriction on proofs.
Let g be a node in the tree, let j be its associated justification, and let g be the
sequence of children of g (in left-to-right order). Write s(j) = (¢’,g'). We require
that there be a substitution ¢ such that o(g’') = g and o(g’) = g (using the obvious
extension of substitution to sequences of goals).

Thus s(j) can be thought of as a rule schema, with premises g’ and conclusion g’,
and the valid instances of the schema are obtained by substituting for metavariables.
For example, one of the allowed justifications in our implementation of first-order
logic is the constant end_i (for “and-introduction”), and

s(endi) = (H-A&B, (HF A, HF B)),
which corresponds to the rule schema

H+-A HFB
H& A& B.



Note that proof trees are preserved under instentiation: if o is a substitution, p
is a proof, and o(p) is obtained by replacing every goal g in p by o(g) (and keeping
the same associated justifications), then o(p) is a proof.

There are three kinds of justifications. One corresponds to primitive rules of the
object logic and one to tactics. There is also a justification jprem, where

$(Jprem) = (G, ()-

This corresponds to a trivial “rule” which infers any goal from no premises. Goals
in a proof tree that have jp,em as their justification are called premises of the proof.
Thus proof trees represent incomplete proofs in the object logic. The root goal of a
proof is called its conclusion.

An important operation on proofs is refinement, where a justification is used to
extend a proof tree at a premise. In particular, let g be a premise of a proof p, let
J be a justification with s(j) = (¢', (¢1,.--,95)), and let o and ¢’ be substitutions
such that o(g) = o'(¢").Then the refinement of p at g using j, o and o' is obtained
from o(p) by giving j to the premise o(g) as a new justification, and adding children
c'(91),-.-,0'(95,), each with jprem as its justification. For example, if g is - ¢ & 9,
o' substitutes ¢ for A and ¢ for B, and o = 0, then refining at g using and_i, o and
o' adds children - ¢ and - ¥ to g.

Note that the problem of finding some o and o', given g and j, can be cast as a
higher-order unification problem. Let 7 be a substitution that renames metavariables
in g’ such that 7(¢') and g have no metavariables in common. Then ¢, ¢’ exist if
and only if g and 7(g") are unifiable.

Justifications corresponding to inference rules of the object logic are represented
as a subset R of A. (Typically » € R will be a constant.) For each r € R there is an
associated step s(r). The justifications corresponding to tactics have a number of
components. These will be explained by considering the typical kind of refinement:
extending a proof by applying a tactic to a premise.

Tactics are represented as a subset 7" of A. Applying a tactic e € T to a premise
g of a proof p is a single operation for a user of our theorem-prover, but it actually
consists of first obtaining a justification and substitution from e and g, and then
using these to perform a refinement step. More precisely, first the tactic e is evalu-
ated with argument g, producing as its value a step s’ = (¢’,7’) and a substitution
o such that o(g) = ¢'. Then the tactic justification j = (e, g,0,s') is formed, where
s(7) is defined to be s'. g is called the tactic argument of j. Finally, we refine p at g
using 7, o and (. Thus, applying e to g produces a substitution to be applied to p,
new children g’ for the premise being refined, and a justification for the refinement.

For example, if g is - X = 0 and if e is a tactic that instantiates X with 0, we
might have o(X) =0, -0 =0 for ¢/, and (F 0 = 0) for g'. The act of refining by j
and ¢ will replace X by 0 in the entire proof, and produce a new premise - 0 = 0
as a child of the old premise.

Note that occurrences of tactic justifications in a proof need not have arisen
from the process just described, since the constraint on a justification j is only in
terms of the step s(j) associated with it.

There are several reasons for including more information in a tactic justification
than just its step: e and g are informative to a user, since they determine the step; e



is needed for “replaying” a proof; and g and ¢ are required for the undo procedure.
These last two points are discussed in the section on undo. The step is stored in
the justification for reasons of efficiency, so that it does not have to be recomputed
from e and g every time it is needed.

Some of the more important differences between the implementation and what
is described above are as follows. In the account here, free variables correspond
to metavariables, and free variables of the object logic are assumed to be handled
by A-abstraction in goals. In the implementation, these abstractions are handled
more conveniently by distributing them throughout proofs, so there is only one
A-abstraction introduced whenever a new free variable of the object logic is needed.

In the implementation, the logic variables of AProlog are used for metavariables.
This means that when, for example, we form a tactic justification, we cannot sim-
ply directly store the tactic argument in the justification, since then subsequent
instantiations of metavariables in the proof might change it. So, when a tactic justi-
fication is created, the components have their logic variables “abstracted out”, i.e.
bound by A-abstractions, to prevent them from being instantiated by further proof
operations. More is sald about this abstraction operation in Section 5.1.

Tactics work somewhat differently in the implementation. Since we are using a
logic-programming language, and logic variables are used to implement metavari-
ables, tactics do not need to explicitly return a substitution. To guarantee soundness,
tactics produce proofs as results, from which the step is obtained as the conclusion
and premises of the proof. These proofs can again contain tactic justifications. This
introduces a circularity, but this is not hard to deal with (see [1] for one approach).

3 An Example Session

The following session illustrates interaction with our system, including refinement
commands, navigation within a proof, and undo. We prove a simple formula from
first-order logic. The tactics used here implement the basic inference rules of a
sequent calculus. The lines beginning with “!:” indicate user input. All other text
is output from the system (we have added some whitespace and renamed a few
variables). All metavariables are printed as capital letters.

We begin the session by entering the following query to AProlog.

prove (exists x\ (exists y\ ( (q x imp q y) and
(q x imp (q a or g b)) and (q a imp q b imp q x) and
(q a imp exists z\ (q z)) and (q b imp q x)))).

This results in a prompt for input. The user supplies the command to run the
tactic (repeat intro) which repeatedly applies some of the introduction rules for
connectives occurring in formulas on the right in the sequent, resulting here in five
subgoals.

!: tactic (repeat intro).
Address:
|- exists x\ (exists y\ ((q x imp q y) and
(q x imp q a or g b) and (q a imp q b imp q x) and



(q a imp exists z\ (q z)) and (q b imp q x)))
By tactic repeat intro
aX l-q¥Y
qgX|l-qaorghb
ab,qgal-qgX
qal-q2Z
ab l-qX

After running the tactic, the node of the proof is redisplayed. The output above
shows the address of the node of the proof being displayed (a list of integers, empty
in this case), followed by the goal at the node, its justification following the word
By, and the subgoals of the node.

The user then solves these subgoals in left-to-right order using the next com-
mand to go to the next premise node in the tree.

!: next.

Address: 1 qaXl-q¥Y By 7

': tactic (hyp 1).

Address: 1 qYl-q¥Y By tactic hyp 1
!: next.

Address: 2 qY|l-qaorgb By?

!: tactic (then or_iil tac (hyp 1)).

Address: 2 qgal-qaorgb By tactic then or_il tac (hyp 1)
!: next.

Address: 3 qgb,qgal-qa By 7

': tactic (hyp 2).

Address: 3 qgb,qgal-qa By tactic hyp 2
!: next.

Address: 4 qal-qZ By 7

': tactic (hyp 1).

Address: 4 qgal-qa By tactic hyp 1
!: next.

Address: 5 gbl-qa By 7

The hyp tactic completes a proof when the formula on the right unifies with the
formula on the left at the position indicated by an integer argument. In the first,
second, and fourth subgoals above, this operation causes instantiation of metavari-
ables: X to Y, Y to a, and Z to a, respectively. Note that or_il_tac in subgoal 2
chooses the first disjunct of the conclusion which, when followed by hyp 1, through
the use of the tactic combinator then, forces the instantiation of Y to a.

Now no further progress can be made. Looking at subgoal b as it originally
appeared above, the user realizes that X must be instantiated to b if this subgoal is
to be provable. By comparing to the 5 subgoals above, we see that it was subgoal
2 that forced the instantiation of a. This can be verified by moving through the
tree to the second child of the root, and then using the show tactic_arg command
to examine the goal which was the original argument to the tactic at that node.
Entering the uninst command there undoes the instantiation of the variables in
this sequent and any nodes that depended on them, in this case just Y. We omit
the printing of the root node.



!: root. !: down 2.

Address: 2 qgal-qaorgb By tactic then or_il tac (hyp 1)
!: show_tactic_arg.

qY|l-qaorghb

!: uninst.

Address: 2 qYl |-gqgaorqgb By?

By going back to the root and printing the proof, we see the refinements at subgoals
2 and 3 have been undone, since they both depended on the instantiation of Y to a.
The proof of the first subgoal which originally unified two logic variables remains,
as does the proof of subgoal 4.

': root. !: show_proof.

Goal: |- exists x\ [...] Justification: By tactic repeat intro
Goal: q Y1 |- q Y1 Justification: By tactic hyp 1
Goal: q Y1 |[-qaorghb Justification: By ?

Goal: g b, g a |- q Y1 Justification: By ?
Goal: g a |- g a Justification: By tactic hyp 1
Goal: g b |- g Y1 Justification: By ?

The remaining subgoals can be completed by choosing the second disjunct in subgoal
2 forcing the instantiation of metavariable Y1 to b.

4 Undoing Proofs

In the implemented undo procedure (uninst), we want to back the proof up enough
so that for some node, called the undo node, the goal that appeared at that node
before a tactic refinement was applied becomes the goal at that node in the new
proof. The procedure removes any parts of the proof which would force metavari-
ables in the undo node to be instantiated. Furthermore, it undoes any instantiations
forced by the removed subproofs.

For our undo procedure, we assume that all non-premise nodes in a proof have
tactic justifications. Below, we will speak of a node’s associated tactic, tactic argu-
ment, substitution, and step, corresponding to the four components of its justifi-
cation. In order to not have to worry about renaming of free variables, we assume
(without loss of generality) that justifications from different nodes in a proof have
no free variables in common. However, it is not necessary to modify a proof to meet
this criteria in order to run the undo procedure. Instead, at each step, fresh variables
could be introduced to rename the components of a justification.

The procedure works by finding an ordering on the nodes in the proof that corre-
sponds to a possible method of building the tree by using alternating instantiations
and tactic-refinement steps. The ordering is used to track “when” variables become
instantiated in order to determine which branches to prune. To reconstruct the new
tree, the appropriate branches are pruned from the original tree. Then, the same
procedure used to find the ordering on the original tree is used to construct the new
tree. We describe this core procedure and discuss how it is used in each of the two
phases of the implemented uninst operation.



The main operation of the core procedure is a step-by-step reconstruction of the
proof. At each step, we have the partially reconstructed tree p with a sequence of
premises g1,...,9n called the fringe, that collects the premises that must still be
expanded to obtain the complete tree. In addition, we have a mapping from fringe
elements to the subproofs pi,...,p, in p rooted at the corresponding locations in
the original proof. It is these subproofs that must be processed in order to com-
plete the reconstruction. At any point, if we build a “justification tree” by taking
the associated justifications of each node in p,pi,...,p, and attaching those for
p1,--..,Pn at the appropriate nodes, we obtain the same justification tree as from
the original proof.

At each step, we choose for “expansion” an element g; of the fringe that satisfies
the following two requirements. First, the tactic argument at the root node r of p;
must be an instance of g;. Let o be the matching substitution. Second, for every
other fringe element g’ mapped to subproof g, the tactic argument at the root of
g must be an instance of o(g'). Let j be the justification at node r and let 7 be
the substitution component of j. We refine p at g; using j, 0 o 7 and the empty
substitution. Thus, 7(c(g;)) now replaces g; in the new proof. We then replace g; in
the fringe by the new premises added by the refinement. The mapping is extended
by mapping these elements to the corresponding subproofs rooted at the children
of r.

A proof p' is obtained by pruning from p if it results from removing some sub-
proofs from p (leaving new premises). p' is a re-instantiation of p if the two proofs
have the same justification tree. Using an inductive argument, it can be shown that
the set of proofs for which the above reconstruction procedure can be applied is
closed under pruning, instantiation, re-instantiation, and refinement by tactics. An
important invariant during reconstruction of any proof built only from these opera-
tions is that there will always be some fringe node that meets the two requirements
for expansion. The ordering of nodes by relative time that they were expanded by
tactic refinement, for example, can be used in reconstruction of the proof, and each
successive node will meet the requirements. There may be other possible orderings,
all of which correspond to possible orderings in which the tree could have been
constructed. We call such an ordering a refinement ordering.

The proof reconstruction procedure is repeated twice in the uninst operation.
The first time, we keep track of two kinds of information: a set of variables V that
must remain uninstantiated and a set of addresses A of nodes that roots of subtrees
that must be pruned. Initially, V is the set containing all of the free variables in
the tactic argument of the undo node, and A is empty. At each step, after a fringe
node g is chosen for expansion, V is updated. In particular, the match substitution
o is checked to see if it maps any of the variables in V to new variables. These
variables must also be added to V. After each refinement step, A is updated. Any
nodes containing metavariables in V that get instantiated by this refinement step
must be marked for deletion. More precisely, let 7 be the substitution at the root
node of the proof that g is mapped to. Let V' be the set of all variables X in V
such that either 7(o(X)) is not a variable or there is a ¥ in ¥ with X # Y and
7(o(X)) = 7(c(Y)). If V' is non-empty, then the address of the node just expanded



is added to \A. In addition, the address of any fringe node that contains a variable
in V' is also added to .A. Note that no addresses will get added to .A until the point
in reconstruction after the undo node is expanded.

After the reconstruction is complete, the subproofs indicated by A are pruned,
resulting in a new proof ¢g. Now, the reconstruction procedure is repeated on gq.
This time V and A are ignored. The tree produced by this phase is a minimally
instantiated version of the justification tree. It is this proof that is returned from
the uninst operation.

A very slight modification of this procedure gives us an operation that allows the
user to point at specific variables in one or more tactic arguments and ask that they
remain uninstantiated in the remaining tree. This can be achieved by initializing
V to be the selected variables only. Multiple variables from different nodes can be
processed simultaneously by including them all in V.

A slightly more complicated operation is to request that all of the variables in-
stantiated by a particular tactic refinement are backed up along with all branches
that saw these instantiations. Here the substitution at the justification of the undo
node is used. Any variables that are mapped to anything other than themselves
should be put into V. This operation can be extended to include all variables in-
stantiated in a particular subproof. Here, in addition to any variable from the substi-
tution at the undo node, any variable from the substitution at any of its descendants
that is mapped to something other than itself must be included in V.

The operations discussed so far prune any branches that depend on instantiation
of the selected variables. Another option is to attempt to replay them using the
tactics in justifications. Such replay can be accommodated by introducing a new
bad justification. Then instead of pruning, a tactic justification is changed to a bad
one which retains the tactic and the structure of the tree below it. A final phase
of the procedure would then attempt to replay as much of the bad proof by re-
executing the tactics, only pruning when execution fails. Alternatively, the “bad”
subproofs could be left to the user.

All of these undo operations work on proofs closed under tactic refinement,
pruning, instantiation, and re-instantiation. We can extend the proof reconstruction
procedure to handle a larger class of proofs including those pieced together through
unification. However, the notion of tracking “when” a variable is instantiated no
longer works in the same way. In particular there is not necessarily a refinement
ordering because any two proofs pieced together may have been constructed in-
dependently. We define a heuristic for determining an order. This procedure is a
simple modification of the above procedure. In the case when no node in the fringe
meets the two requirements for expansion, we find a node g in the fringe maximiz-
ing a particular measure. Let g’ be the conclusion of the step at the root r of the
subproof that g is mapped to and let ¢ be a substitution such that o(g) = o(g’).
That is, instead of matching with the tactic argument, we require unification with
the step conclusion. This unification problem is in fact solvable for all nodes in the
fringe. We now need a measure to determine when one ordering of nodes is better
than another. We can use a measure that favors instantiations that are done via
tactic refinement over those done simply to match up the goal of a node with the
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corresponding premise of a step in the parent node. The measure should have the
property that any refinement ordering maximizes it. In the worst case, this heuris-
tic reduces to reconstructing the tree by repeatedly solving unification problems in
arbitrary order. In the best case, it finds an ordering corresponding to the order in
which the proof could have been constructed for those trees where such an ordering
exists.

5 Implementation

This section describes the implementation of our system. It starts with a brief
account of the implementation language.

5.1 AProlog

AProlog is a partial implementation of higher-order hereditary Harrop (hohh) for-
mulas [12] which extend positive Horn clauses in essentially two ways. First, they
allow implication and universal quantification in the bodies of clauses, in addition to
conjunctions, disjunctions, and existentially quantified formulas. In this paper, we
only consider the extension to universal quantification. Second, they replace first-
order terms with the more expressive simply typed A-terms and allow quantification
over predicate and function symbols. The application of A-terms is handled by (-
conversion, while the unification of A-terms is handled by higher-order unification.

The terms of the language are the terms of A where the set of base types includes
at least the type symbol o, which denotes the type of logic programming proposi-
tions. In this section, we adopt the syntax of AProlog. Free variables are represented
by tokens with an upper case initial letter and constants are represented by tokens
with a lower case initial letter. Bound variables can begin with either an upper or
lower case letter. A-abstraction is represented using backslash as an infix symbol.

Logical connectives and quantifiers are introduced into A-terms by introducing
suitable constants with their types. In particular, we introduce constants for con-
junction (,), disjunctions (;), and (reverse) implication (:-) having type o -> o
-> o. The constant for universal quantification (pi) is given type (4 -> o) -> o
for each type replacing the “type variable” A. A function symbol whose target type
is o, other than a logical constant, will be considered a predicate. A A-term of type
o such that the head of its B7n-long form is not a logical constant will be called an
atomic formula. A goal is a formula that does not contain implication. A clause is
a formula of the form (pi x;\...(pi x,\(4:- G))) where G is a goal formula and
A is an atomic formula with a constant as its head. In presenting clauses, we leave
off outermost universal quantifiers, and write (4:- G).

Search in AProlog is similar to that in Prolog. Universal quantification in goals
(pi x\G) is implemented by introducing a new parameter ¢ and trying to prove
[¢/x]G. Unification is restricted so that if G contains logic variables, the new con-
stant ¢ will not appear in the terms eventually instantiated for those logic variables.

Several non-logical features of AProlog are used in our implementation. We use
the cut (!) operator to eliminate backtracking points. In addition, we have im-
plemented a new primitive make_abs which takes any term and replaces all logic
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variables with A-bindings at the top-level. It has type A -> abs A -> list mvar
-> o where abs is a type constructor introduced for this purpose and the third ar-
gument is a list containing all of the logic variables in the order they occurred in the
term. We use this operation to “freeze” the degree of instantiation of a term as well
as to implement a match procedure. In order to correctly freeze a term, this oper-
ation must also freeze a record of any unification constraints on the logic variables
occurring in the term. The current implementation does not do so. However, we
have verified that our implementation does not generate constraints. We make the
restriction that any programmer defined tactics also cannot generate constraints.

AProlog allows type constructors for building types. In addition to abs, we use
pair and list in our implementation.

5.2 Proofs and Tactics

Below are the basic types and operations for our implementation of proofs.

goal type.

agoal (A -> goal) -> goal.

step type.

step goal -> list goal -> step.
prule_name type.

prule_def prule_name -> seq -> list seq -> o.
proof type.

just type.

prem_just just -> o.

prule_just prule_name -> just -> o.

tactic_to_just (goal -> proof -> o) -> goal -> proof -> just -> o.
one_step_proof step -> just -> proof -> o.

compose_proofs proof -> list proof -> proof -> o.

aproof (4 -> proof) -> proof.

These are intended to form abstract data types for justifications and proofs. We
have omitted several destructors for these types. All of our operations for building
and modifying proofs do so via the above operations.

The type goal is the type of goals. Goals are essentially sequents. They also have
some additional structure which we plan to exploit in future work. We represent
hypothesis lists of sequents using function composition (as is done in Isabelle) so
that higher-order unification can be used to deal with metavariables standing for
subsequences of hypothesis lists. A-abstracted sequents are also goals: the construc-
tor agoal converts a term x\(G x) into a goal. The type step and the constructor
step implement the steps of Section 2.

The object logic is assumed to be specified by a type prule name whose members
are the primitive rule names, and a predicate prule def that associates a (sequent
version of a) step with each rule name. For example, the following clauses specify
the rules for and-introduction and all-introduction.

pruledef and i (|- H (A and B)) ((|- H 4)::(|- H B)::nil).
pruledef foralli (|- H (forall A4)) ((aseq (x\ (|- H (4 x))))::nil).
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Here |- is the constructor for basic sequents, and aseq constructs abstracted se-
quents.

There are three ways of building proofs. One is to use aproof to turn an ab-
stracted proof into a proof. In a proof (aproof x\(P x)), the bound variable x
represents a new object level variable whose scope is the proof (P x). The second
way to build proofs is to construct a one-step proof from a step and a justification.
(one_step_proof S J P) computes the step corresponding to the justification J,
checks that it matches the step S=(step G Gs), then produces a proof whose root
has goal G and justification J, and whose children are premises with goals from the
list Gs. The premises may use the aproof constructor. This would be the case if,
for example, J were the justification for the rule forall i.

The final way to construct proofs is with compose_proofs which attaches the
members of a list of proofs at the premises of another proof. This is used in the
implementation of then, a combinator for sequencing tactics. Tactics are predicates
of type goal -> proof -> o. Some care was taken with the composition operation
in order to make tactics efficient. In particular, it produces a variant representation
of a proof that delays actual computation of the composition. Usually the actual
composition never needs to be performed, and when it does, it will usually be in the
context of other delayed compositions, and grouped compositions can be handled
much more efficiently.

The type just is an abstract type of justifications. prule_just constructs prim-
itive rule justifications. Tactic justifications have four parts made up of two “ab-
stracted” pairs with types (abs (pair (goal -> proof -> o) goal)) and (abs
(pair (list mvar) step)), respectively. The four parts of this datatype imple-
ment the four parts of the tactic justification: the tactic, tactic argument, sub-
stitution, and step. Since metavariables are implemented directly using the logic
variables of AProlog, and since we do not want variables in any of these components
to be further instantiated, we use the the make_abs operation described earlier to
“freeze” them. When a copy is needed, it is made by applying these abstractions
to new logic variables. Instead of a set of variable/instance pairs, the substitution
is represented as a list of terms such that the length of this list is the same as the
length of the binder of the first pair. A substitution is applied by taking the list of
new variables used to make a copy of the first abstraction and matching it against
this stored list.

tactic_to_just takes a tactic T, runs it on a goal, returning the tactic’s proof
and the corresponding justification. Below is the main clause of its implementation.
(The test that the last argument is a variable to ensure one-way behaviour is omitted

here).

tacticto_just T G P (trule AbsTacAp AbsSigmaStep)
:- make abs (p T G) AbsTachp Subs,
TGP,
concl P NewG,
prems P Gs,
make_abs (p Subs (step NewG Gs)) AbsSigmaStep Bazola.

trule is the hidden constructor for tactic justifications, p is a pairing constructor,
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and concl and prems compute the conclusion and premises of a proof.

Although it is unlikely, it is possible for a user of our system to build objects of
type proof that are not proofs. For maximum security, we would need to include
some further run-time checks. In a language like ML, such security could be obtained
through the type system.

5.3 TUndo: the uninst Command

The implementation of uninst follows the description in Section 4 with a few op-
timizations. One such optimization comes from using AProlog’s built-in unification
for our match procedure. When checking the first requirement of a fringe element
and determining the match substitution o, for example, the match procedure can
directly apply the result of the match to the metavariables of the goal, automatically
propagating ¢ to the new proof.

At the refinement step of proof reconstruction, the application of a substitution
is also propagated in the new proof by logic variable instantiation. Note that, in
the refinement step, instead of using the substitution in the justification, we could
simply match the goal to be refined with the conclusion of the step. In fact, we
need not record substitutions at all in tactic justifications. However, they serve
as an optimization, allowing the propagation of the exact substitution that was
originally done by executing the tactic. In addition, because matching uses AProlog
unification, by avoiding matching we also avoid generating unification constraints.

6 Discussion

Isabelle [13] and Coq [3] have metavariables and support tactic-style theorem-proving,
but refinement trees are implicit. Operations on these trees are limited, and, in par-
ticular, undo is chronological. This also applies to KIV [8], even though it explicitly
supports a form of refinement trees. In contrast to ALF [10] and Coq, our system
only supports simple types for metavariables. If the object logic has a richer type
system, then types must be represented explicitly, for example as predicates in the
object logic. ALF supports dependency-directed undo, but proofs are A-terms, not
refinement trees.

Plans for future work include: improving the way types are handled; designing
and implementing further undo operations that handle arbitrary proofs, e.g. proofs
that are pieced together using unification; adapting Nuprl’s scheme for compact
storage of proofs in files; and implementing our ideas for Nuprl.
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